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Branching Brownian motion

I Start with a single individual with an Exp(1) lifetime

I The individual moves according to (one-dimensional)
Brownian motion

I When the individual dies, it produces two offspring individuals

I Each new individual has an independent Exp(1) lifetime and
moves independently according to a Brownian motion until it
dies and has offspring and so on.
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BBM with decay of mass

Individuals within distance one of each other have to share
resources so their mass decays.

n(t) is number of particles at time t.
Locations of particles given by X(t) = (Xi (t), 1 ≤ i ≤ n(t)).
Masses of particles given by M(t) = (Mi (t), 1 ≤ i ≤ n(t)).

Let ζ(t, x) =
∑
{i :|Xi (t)−x |∈(0,1)}Mi (t).

Mi (t) decays at rate Mi (t)ζ(t,Xi (t)) so

Mi (t) = exp(−
∫ t

0
ζ(s,Xi ,t(s)) ds)

where Xi ,t(s) is the location of the ancestor of Xi (t) at time s.

Total mass increases through branching.
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Front location

Let d(t,m) = min{x > 0 : ζ(t, x) < m} and
D(t,m) = max{x : ζ(t, x) > m}.

0
x

m

d(t,m)D(t,m)

ζ(t, x)

maxi Xi (t)+1

If x ≥ maxi Xi (t) + 1 then ζ(t, x) = 0.
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Maximum particle in BBM

Theorem (Bramson)

The rightmost particle location maxi≥1 Xi (t) has median med(t)
which satisfies

med(t) =
√

2t − 3

2
√

2
log t + O(1).

Theorem (Hu and Shi)

Almost surely

lim sup
t→∞

|maxi≥1 Xi (t)−med(t)|
log t

<∞.

27 June 2016 BBM with mass decay 8



Main result

Theorem (Addario-Berry, P.)

Write c∗ = 34/3π2/3/27/6. Then almost surely, for all m < 1,

lim sup
t→∞

√
2t − d(t,m)

t1/3
≥ c∗ and lim inf

t→∞

√
2t − D(t,m)

t1/3
≤ c∗.

There are

I large times t at which the first low-density region lags at least
distance c∗t1/3 + o(t1/3) behind the rightmost particle

I large times t at which there is some high-density region within
distance c∗t1/3 + o(t1/3) of the rightmost particle.
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Simulation

Thanks to David Corlin-Marchand
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Density self-correction

Heuristically,

d
dt
ζ(t, x) ≈ ζ(t, x)−

∑
{i :|Xi (t)−x |∈(0,1)}

Mi (t) · ζ(t,Xi (t)) .

I If ζ(t, y)� 1 for all y s.t. |x − y | < 1, get exponential
growth.

I If ζ(t, y)� 1 for all y s.t. |x − y | < 1, get exponential decay.
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Upper bound

Fix c ∈ (0, c∗) and let g(s) =
√

2s − cs1/3 for s ≥ 0.
Let Xi ,t(s) denote the location of the ancestor of Xi (t) at time s.

Proposition (Jaffuel)

There exists δ = δ(c) > 0 such that for t sufficiently large

P (∃i ≤ n(t) s.t. Xi ,t(s) ≥ g(s)∀s ≤ t) ≤ e−δt
1/3
.
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Upper bound
Fix c ∈ (0, c∗) and let g(s) =

√
2s − cs1/3 for s ≥ 0.

Proposition

For any C > 0, there exists δ = δ(c ,C ) > 0 such that for t
sufficiently large

P
(
∃i ≤ n(t) s.t. Leb({s ≤ t : Xi ,t(s) ≤ g(s)}) ≤ Ct1/3

)
≤ e−δt

1/3
.

The upper bound follows.

Proposition

For any m > 0, almost surely

lim sup
t→∞

√
2t − d(t,m)

t1/3
≥ c∗.
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Lower bound
Proposition (Roberts)

There exists C ∗ <∞ a.s. such that for all t,

#{i : ∀s ∈ [0, t],Xi ,t(s) >
√

2s − c∗s1/3 + c∗s1/3

log2(s+e)
− C ∗} ≥ 1
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Lower bound
Proposition (Roberts)

There exists C ∗ <∞ a.s. such that for all t,
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2s − c∗s1/3 + c∗s1/3
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Proposition

There exists a constant Z such that for all t sufficiently large,

P (sup{ζ(s, x) : 0 ≤ s ≤ t, x ∈ R} > Z log t) ≤ t−4.
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√
2t − D(t,m)

t1/3
≤ c∗.
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Further work and open questions

I Higher dimensions

I Bound on lim supt→∞ supx∈R ζ(t, x).

I For m ≤ m∗, there is some constant A <∞ and random time
T <∞ a.s. such that for t ≥ T ,

d(t + A log t,m) ≥ D(t,m).

I Still open: almost surely, for all m < 1,

lim
t→∞

√
2t − d(t,m)

t1/3
= c∗ = lim

t→∞

√
2t − D(t,m)

t1/3
.

I More physical mechanism for mass growth?

I PDE approximation

27 June 2016 BBM with mass decay 20


