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Power of choices

Consider a random structure formed by adding objects one after the
other according to some randomized rule. Examples:

@ balls-and-bins model: n bins, place balls one after the other into bins,
for each ball choose bin uniformly at random (maybe with size-biasing)

@ random graph growth: n vertices, add (uniformly chosen) edges one
after the other.

@ interval fragmentation: unit interval [0, 1], add uniformly chosen points
one after the other — fragmentation of the unit interval.
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Power of choices (2)

Aim: Changing behaviour of model by applying a different rule when adding
objects

@ balls-and-bins model: n bins, at each step choose two bins uniformly at
random and place ball into bin with fewer/more balls.
Azar, Broder, Karlin, Upfal '99; D’Souza, Krapivsky, Moore '07; Malyshkin,
Paquette "13

@ random graph growth: n vertices, at each step uniformly sample two
possible edges to add, choose the one that (say) minimizes the product
of the sizes of the components of its endvertices.

Achlioptas, D’Souza, Spencer '09; Riordan, Warnke "11+12

@ interval fragmentation: unit interval [0,1], at each step, uniformly sample
two possible points to add, choose the one that falls into the
larger/smaller fragment determined by the previous points.

— this talk
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Balls-and-bins model

n bins, place n balls one after the other into bins.

@ Model A: For each ball, choose bin uniformly at random.

@ Model B: For each ball, choose two bins uniformly at random and place
ball into bin with more balls.

@ Model C: For each ball, choose two bins uniformly at random and place
ball into bin with fewer balls.

How many balls in bin with largest number of balls?

@ Model A:
@ Model B:
@ Model C:
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Balls-and-bins model

n bins, place n balls one after the other into bins.

@ Model A: For each ball, choose bin uniformly at random.

@ Model B: For each ball, choose two bins uniformly at random and place
ball into bin with more balls.

@ Model C: For each ball, choose two bins uniformly at random and place
ball into bin with fewer balls.

How many balls in bin with largest number of balls?
@ Model A: =~ log n/ loglog n
e Model B:
e Model C:
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Balls-and-bins model

n bins, place n balls one after the other into bins.

@ Model A: For each ball, choose bin uniformly at random.

@ Model B: For each ball, choose two bins uniformly at random and place
ball into bin with more balls.

@ Model C: For each ball, choose two bins uniformly at random and place
ball into bin with fewer balls.
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@ Model A: =~ log n/ loglog n
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@ Model C:
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Balls-and-bins model

n bins, place n balls one after the other into bins.

@ Model A: For each ball, choose bin uniformly at random.

@ Model B: For each ball, choose two bins uniformly at random and place
ball into bin with more balls.

@ Model C: For each ball, choose two bins uniformly at random and place
ball into bin with fewer balls.

How many balls in bin with largest number of balls?
@ Model A: =~ log n/ loglog n
@ Model B: =~ logn/loglogn
@ Model C: O(loglogn)
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Balls-and-bins model, Model C

Model C: For each ball, choose two bins uniformly at random and place ball
into bin with fewer balls.

Theorem (Azar, Broder, Karlin, Upfal ’99)

Maximum number of balls in a bin: O(loglog n)

Heuristic reason: Let N; be the number of bins containing at least k balls at
the end of the game. Then one should expect

2
- N,
Nk+l = Cn (#) )

This yields
Nk = pzkn

for some p < L. Solving N; =1 yields k = O(loglog n).
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X: random variable on [0,1], ¥(x) = P(X < x).

«O» A Fr <= «E)>» DA™



U-process: definition

X: random variable on [0,1], ¥(x) = P(X < x).

@ Step 1: empty unit interval [0, 1]
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U-process: definition

X: random variable on [0,1], ¥(x) = P(X < x).
@ Step 1: empty unit interval [0, 1]

@ Step n: n—1 points in interval, splitting it into n fragments
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U-process: definition

21 4 3 . order by length |1.2. 3 4

X: random variable on [0,1], ¥(x) = P(X < x).
@ Step 1: empty unit interval [0, 1]

@ Step n: n—1 points in interval, splitting it into n fragments
Q Stepn+1L:

e Order intervals/fragments according to length
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U-process: definition

21 4 3 order by length |1.2_ 3 4

X
X: random variable on [0,1], ¥(x) = P(X < x).
@ Step 1: empty unit interval [0, 1]

@ Step n: n—1 points in interval, splitting it into n fragments
Q Stepn+1L:

e Order intervals/fragments according to length
e Choose an interval according to (copy of) random variable X
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U-process: definition

21 4 3 order by length |1. 2 3 4

X
X: random variable on [0,1], ¥(x) = P(X < x).
@ Step 1: empty unit interval [0, 1]

@ Step n: n—1 points in interval, splitting it into n fragments
Q Stepn+1L:

e Order intervals/fragments according to length
e Choose an interval according to (copy of) random variable X
e Split this interval at a uniformly chosen point.
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U-process: definition

X: random variable on [0,1], ¥(x) = P(X < x).
@ Step 1: empty unit interval [0, 1]

@ Step n: n—1 points in interval, splitting it into n fragments
Q Stepn+1L:

e Order intervals/fragments according to length
e Choose an interval according to (copy of) random variable X
e Split this interval at a uniformly chosen point.
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W-process: examples

21 4 3 order by length |1.2_ 3 4

L1 L
L L) 1 Co B B

l

X: random variable on [0,1], ¥(x) = P(X < x).

e Y (x) = x: uniform process
e U(x) = 1,>1: Kakutani process
o U(x) = x*, k € N: max-k-process (maximum of k intervals)

(x) =1— (1—x)k, k € N: min-k-process (minimum of k intervals)

o U(x
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Uniform process

U(x) = x. Same as n iid points Xi, ..., X, distributed according to Unif(0,1).
Trivial fact (law of large numbers / Glivenko-Cantelli): the points X, ..., X,
are asymptotically equidistributed, i.e.:

1 n
- E 0x, — Unif(0,1), almost surely as n — oo.
n

i=1

Furthermore, if Il(")7 e ,I(")

1 denote the lengths of the intervals at time n,
then (Weiss ’55, Blum ’55)

1 n+l
o E 5(n+1)1(n) — Exp(1), almost surely as n — oo.
n i
i=1

Easy proof using the fact that if 0 < T} < T, < ... are the arrival times of a
Poisson process with intensity 1, then (Ty/Ty41, - - ., T/ Tyt1) have the same
law as the order statistics of Xi, ..., X),.
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Kakutani process

U(x) = 1,>1. Always the largest interval splits. Known:

@ The splitting points are asymptotically equidistributed
Lootgieter '77, van Zwet '78, Slud '78,'82
@ The length of a typical interval (rescaled by n + 1) converges to
Unif(0, 2) Pyke '80
Basic property exploited in the proofs: Given the intervals at time n, the
intervals evolve independently at future times (modulo time-change). Best
exploited by stopping the process at the time

N; = inf{n : all intervals at time n are of length < ¢}

Basically everything can be proven by studying first and second moment of
N; van Zwet '78.
Not adaptable to W-process.
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Other interval fragmentations

There is a large literature (see e.g. Bertoin '06) on interval fragmentation
processes which process a certain branching structure: an interval of length

L splits at rate f(L) into pieces of random length, independently of the other
intervals.

An interval of length L splits at rate L into two pieces of respective lengths
LU and L(1 — U) where U ~ Unif(0,1), « > 0.

e « = 0: homogenenous interval fragmentation
@ « = 1: uniform process

@ “a = oo”: Kakutani process

Known: asymptotic equidistribution + length of typical interval. Branching
structure + self-similarity allows for exact calculations, e.g. of moments of
the length of a typical interval. Not possible for W-process.
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Main result

I,(,"): lengths of intervals after step n.

1 n
Hn = E Z 6n-1k(")
k=1

yee ey

Main theorem
Assume W is continuous + polynomial decay of 1 — ¥(x) near x = 1.

@ 1, (weakly) converges almost surely as n — oo to a deterministic
probability measure ;¥ on (0, c0).
@ Set F(x) = [y (dy). Then F¥ is C' and

FY6)=x [ dvE ()
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Properties of limiting distribution

Write ;¥ (dx) = £V (x) dx.

£ (x) ~ Crexp(—kx),

as x — oQ.

If (Up)n>0 s.t. ¥yu(x) — 1>1 pointwise, then

f¥(x) = Ele[O,Z]a as n — oo.

Pascal Maillard

=] F
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Properties of limiting distribution (2)

Density

Pascal Maillard

—— min-5

min-2
uniform

— max-2
—— max-10

Length
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A good observable: the size-biased distribution function

2 1 4 3~ orderby length 12 3 4

Define the distribution function of the size-biased interval distribution:

Z ! 1<”

Suppose we split at time n+1 an interval determined by X ~ dW. Chance of
splitting an interval of length € [z, z + dz]: dW(A,(z)). Hence

B =30 = # [ Zdu(i(2)
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Embedding in continuous time

Points arrive according to Poisson process with rate e'.
N;: number of intervals at time ¢

Il(t), . ,I]E,f): lengths of intervals at time t.

Size-biased distribution function

Nt
A =3 10,
k=1

Key fact: A = (Zt)tzo satisfies the following stochastic integral equation:

Ay(x) :ZO(x)+/0tesx2 UOO Zd\I'(Zs(z))] ds + M;(x),

for some centered noise M;.
Note: From now on, boldface for processes of distribution functions.
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A stochastic evolution equation
Set A;(x) = A;(e 'x). Then A = (A;)s>¢ satisfies the following stochastic
evolution equation:
t % 1
Ar(x) = Ap(e'x) +/ (e 'x)? [/
0 e
with M;(x) = M

~dU(A

w42 ds-+ 1),

(%) = —xBAs(x) + 22 / - Jl/d\If(At( ) + M)

X). J
Pascal Maillard
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A stochastic evolution equation

Set Ay(x) = Ai(e~'x). Then A = (A;)r>0 satisfies the following stochastic
evolution equation:

wx) = (e )+ [ (etor | [ Lavao)] dor m,

s—ty &

with M;(x) = M;(e 'x), or

OuAr(x) = —xDuAs(x) + 7 / - Jl/d\If(At(y)) i (x).

Claim

A; converges almost surely to a deterministic limit as ¢ — oo.
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Deterministic evolution
Let F = (F;)¢>0 be solution of
Fi(x) = Fo(e~'x) + /0 (i)t [ /OO id\I/(Fs(z))] ds
= .7Y(F),. o
(= solution = fixed point of .”¥). Define the following norm:

= [ () d

Lemma

Let F and G be solutions of the above equation. For every ¢ > 0,
1B = Gill,—» < €' [|[Fo — Goll - -

In particular: 3'FY : F; — FY as t — .
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Deterministic evolution
Let F = (F;)¢>0 be solution of
t [e’e) 1
Ei(x) = Fy(e~"x) + / (¢"x)? [ / d‘II(Fs(z))] ds
0 e—tx &
= y\P(F)t
(= solution = fixed point of .”¥). Define the following norm:
Wt = [0l

Note: if f(x) = [y yu(dy), then [[f][,-> = u(Ry)
Lemma

Let F and G be solutions of the above equation. For every ¢ > 0,
1B = Gill,—» < €' [|[Fo — Goll - -

In particular: 3'FY : F; — FY as t — .
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Stochastic evolution - stochastic approximation

"~ lava)

] ds + M(x)

Ar(x) = Ao(e"x) + /Ot“s_tx)z U

= Y (A); + M(x).

Cannot control noise M; using the norm |-|| !

= cannot use previous Lemma (or the like) for A
=—> no quantitative estimates to prove convergence

Pascal Maillard

[m]

&
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Stochastic evolution - stochastic approximation

A(x) = Ag(e"x) _|_/Ot(eS—tx)2 Ue“ 1

;d‘II(As(Z))
= Y (A); + M(x).

] ds + M(x)

Cannot control noise M; using the norm ||-||, !

= cannot use previous Lemma (or the like) for A
= no quantitative estimates to prove convergence.

Pascal Maillard

Still possible to prove convergence by adaptation of Kushner-Clark
method for stochastic approximation algorithms.

[m]

&
Choices and Intervals : an interval fragmentation with dependence



Kushner-Clark method (an co-dimensional version)

Shifted evolutions A = (Atsn)r>0. Show:

@ Almost surely, the family (A™),cn is precompact in a suitable
functional space
(the space of maps from [0, c0) to {the space of subdistribution functions endowed with

local I' convergence} endowed with local uniform convergence)
@ .7V is continuous in this functional space.
Q@ A — . 7Y(AM) — 0 almost surely as n — oo.

This entails that every subsequential limit A(>) of (A("),cy is a fixed point
of .7V,
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Kushner-Clark method (an co-dimensional version)

Shifted evolutions A = (Atsn)r>0. Show:

@ Almost surely, the family (A™),cn is precompact in a suitable
functional space
(the space of maps from [0, c0) to {the space of subdistribution functions endowed with

local I' convergence} endowed with local uniform convergence)
@ .7V is continuous in this functional space.
Q@ A — . 7Y(AM) — 0 almost surely as n — oo.

This entails that every subsequential limit A(>) of (A("),cy is a fixed point
of Y. If in addition:

Q A, 2 —las, t = oo.

@ The family of distribution functions (A¢)r>o is tight.
Then HA[(JOO)HX_2 = 1. By previous lemma: AEOO) — FY t — oo (in fact,

A(®) = FY) Hence, A, — FY, t — .

Pascal Maillard Choices and Intervals : an interval fragmentation with dependence 19/27



Kushner-Clark method (an co-dimensional version)

@ Almost surely, the family (A™),cy is precompact.
@ .7V is continuous in this functional space.

Q@ A — . 7Y(AM) — 0 almost surely as n — oo.
Q A, —las, t = oo

@ The family of distribution functions (A¢)¢>o is tight.
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Kushner-Clark method (an co-dimensional version)

@ Almost surely, the family (A™),cy is precompact.
equicontinuity + Arzela-Ascoli

@ .7V is continuous in this functional space.

Q@ A — .7Y(AM) — 0 almost surely as n — oo.

Q A, —1las, t = oo

@ The family of distribution functions (A¢)¢>o is tight.
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Kushner-Clark method (an co-dimensional version)

@ Almost surely, the family (A™),cy is precompact.
equicontinuity + Arzela-Ascoli

@ .7V is continuous in this functional space.
continuity of U + .7V is integral operator
Q@ A — .7Y(AM) — 0 almost surely as n — oo.

Q A, —1las, t = oo

@ The family of distribution functions (A¢)¢>o is tight.
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Kushner-Clark method (an co-dimensional version)

@ Almost surely, the family (A™),cy is precompact.
equicontinuity + Arzela-Ascoli

@ .7V is continuous in this functional space.
continuity of U + .7V is integral operator

Q@ A — .7Y(AM) — 0 almost surely as n — oo.
control of noise M; in norm || - || -3

Q A, —las, t = oo

@ The family of distribution functions (A¢)s>o is tight.
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Kushner-Clark method (an co-dimensional version)

@ Almost surely, the family (A™),cy is precompact.
equicontinuity + Arzela-Ascoli

@ .7V is continuous in this functional space.
continuity of U + .7V is integral operator

Q@ A — .7Y(AM) — 0 almost surely as n — oo.
control of noise M; in norm || - || -3

Q A, —las, t = oo
HAtfoz = 8_[N[ — 1, t— o0

@ The family of distribution functions (A¢)s>o is tight.
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Kushner-Clark method (an co-dimensional version)

@ Almost surely, the family (A™),cy is precompact.
equicontinuity + Arzela-Ascoli

@ .7V is continuous in this functional space.
continuity of U + .7V is integral operator

Q@ A — .7Y(AM) — 0 almost surely as n — oo.
control of noise M; in norm || - || -3

Q A, —las, t = oo
HAtfoz = 8_[N[ — 1, t— o0

@ The family of distribution functions (A¢)s>o is tight.
next slide
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Tightness

Tightness of (A;)¢>¢ is shown by entropy bounds. Define

Ht:/ (log x) dA;(x th)log o).
0

3 simple expression for this quantity (valid for any interval splitting process),
already used by Lootgieter *77; Slud '78.

Lemma

The semimartingale decomposition of (Hy) > is
1 o
dH, = (1— Dy)dt + dM;,  with D; 2/ 2dU(A(2)),
0

where M = (My)>¢ is a martingale with previsible quadratic variation
d(M); < LDy dt, L; = length of the longest interval at time t.
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Properties of limiting distribution: max-k-process

U(x) =1k F¥(x) = [y " (dy). Recall:

() = [

X

o0

é AU (FY (2)).

This yields the differential equation

) = (5

X

- \If'<FW<x>>) (FY ().

At x = oo: U/(F¥(00)) = W/(1) = k. Integrating this equation yields
) = e (2 - weton] @)
1
~ Crxexp(—kx), as x — oo,

for some (implicit) constant C.
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Properties of limiting distribution: min-k-process

U(x) =1— (1—x)k. W(1) = 0. The point x = oo is a critical point for the
previous differential equation. Way out: substitute

1— FY(x) = G(log xl/(k_l))/xl/(k_l).

Then G solves the autonomous equation

G — G — (2k—1—k(k—1)G)(G — G) = 0. ]

Phase plane analysis yields G(¢) — ¢ = ((2k —1)/k(k —1))/* =D as ¢ — oo,
whence c
(FY(x) ~ —%  as x = .
(k—1)x e
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Properties of limiting distribution: min-k-process

05
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=
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Empirical distribution of points
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Empirical distribution of points (2)

Recent progress by Matthew Junge (University of Washington): Considers
evolution of (A);>¢, which is defined as (A;);>o but counting only the
intervals in the interval [0, a. Formally, it satisfies

! > 1dA2(2)
« _paf —t s—F.\2 - «
a0 =45 + [ (@ U ST AAG)| )
and if ¥ is C' with derivative ¢ = ¥/, then

dA () B X
diyz) V() = D (As(2))dA (2).

In the limit leads to the linear evolution equation
t 00 F\I/
FX(x) = E (e 'x) +/ (e 'x)? [ Y (2)
0

es—ty ¥4
Junge (2015): Proof of equidistribution for restricted class of processes
including max-2 process (but excluding min-2 and even max-k, k > 3). Key
point: extension of contraction lemma to the above evolution equation.

dF° (z)| ds.
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more...).

The W -process is asymptotically equidistributed for all ¥ € C' (maybe

«O» A Fr <= «E)>» DA™




Empirical distribution of points (3)

\
ot

X"
Theorem (M-Paquette, work in progress) ‘(
The W -process is asymptotically eq{ dﬁ‘%uted for all U € C' (maybe

more...).
ﬂo\}
:2;(\
A\
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