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Power of choices

Consider a random structure formed by adding objects one after the
other according to some randomized rule. Examples:

1 balls-and-bins model: n bins, place balls one after the other into bins,
for each ball choose bin uniformly at random (maybe with size-biasing)

2 random graph growth: n vertices, add (uniformly chosen) edges one
after the other.

3 interval fragmentation: unit interval [0, 1], add uniformly chosen points
one after the other → fragmentation of the unit interval.
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Power of choices (2)

Aim: Changing behaviour of model by applying a di�erent rule when adding
objects

1 balls-and-bins model: n bins, at each step choose two bins uniformly at
random and place ball into bin with fewer/more balls.
Azar, Broder, Karlin, Upfal ’99; D’Souza, Krapivsky, Moore ’07; Malyshkin,

Paquette ’13

2 random graph growth: n vertices, at each step uniformly sample two
possible edges to add, choose the one that (say) minimizes the product
of the sizes of the components of its endvertices.
Achlioptas, D’Souza, Spencer ’09; Riordan, Warnke ’11+’12

3 interval fragmentation: unit interval [0, 1], at each step, uniformly sample
two possible points to add, choose the one that falls into the
larger/smaller fragment determined by the previous points.
→ this talk

Pascal Maillard Choices and Intervals : an interval fragmentation with dependence 3 / 27



Balls-and-bins model

n bins, place n balls one after the other into bins.

Model A: For each ball, choose bin uniformly at random.

Model B: For each ball, choose two bins uniformly at random and place
ball into bin with more balls.

Model C: For each ball, choose two bins uniformly at random and place
ball into bin with fewer balls.

How many balls in bin with largest number of balls?

Model A:

≈ log n/ log log n

Model B:

≈ log n/ log log n

Model C:

O(log log n)
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Balls-and-bins model, Model C

Model C: For each ball, choose two bins uniformly at random and place ball
into bin with fewer balls.

Theorem (Azar, Broder, Karlin, Upfal ’99)

Maximum number of balls in a bin: O(log log n)

Heuristic reason: Let Nk be the number of bins containing at least k balls at
the end of the game. Then one should expect

Nk+1 � Cn
(
Nk
n

)2
,

This yields

Nk � ρ2
k
n

for some ρ < 1. Solving Nk = 1 yields k = O(log log n).
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Ψ-process: definition

X : random variable on [0, 1], Ψ(x) = P(X ≤ x).

1 Step 1: empty unit interval [0, 1]

2 Step n: n− 1 points in interval, splitting it into n fragments
3 Step n+ 1:

Order intervals/fragments according to length
Choose an interval according to (copy of) random variable X
Split this interval at a uniformly chosen point.
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Ψ-process: examples

12 34 1 2 3 4

X

order by length

X : random variable on [0, 1], Ψ(x) = P(X ≤ x).

Ψ(x) = x: uniform process

Ψ(x) = 1x≥1: Kakutani process

Ψ(x) = xk , k ∈ N: max-k-process (maximum of k intervals)

Ψ(x) = 1− (1− x)k , k ∈ N: min-k-process (minimum of k intervals)
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Uniform process

Ψ(x) = x. Same as n iid points X1, . . . ,Xn distributed according to Unif(0, 1).
Trivial fact (law of large numbers / Glivenko–Cantelli): the points X1, . . . ,Xn
are asymptotically equidistributed, i.e.:

1

n

n∑
i=1

δXi → Unif(0, 1), almost surely as n→∞.

Furthermore, if I (n)1 , . . . , I (n)n+1 denote the lengths of the intervals at time n,
then (Weiss ’55, Blum ’55)

1

n+ 1

n+1∑
i=1

δ
(n+1)I (n)i

→ Exp(1), almost surely as n→∞.

Easy proof using the fact that if 0 < T1 < T2 < . . . are the arrival times of a
Poisson process with intensity 1, then (T1/Tn+1, . . . , Tn/Tn+1) have the same
law as the order statistics of X1, . . . ,Xn.
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Kakutani process

Ψ(x) = 1x≥1. Always the largest interval splits. Known:

The splitting points are asymptotically equidistributed
Lootgieter ’77, van Zwet ’78, Slud ’78,’82

The length of a typical interval (rescaled by n+ 1) converges to
Unif(0, 2) Pyke ’80

Basic property exploited in the proofs: Given the intervals at time n, the
intervals evolve independently at future times (modulo time-change). Best
exploited by stopping the process at the time

Nt = inf{n : all intervals at time n are of length ≤ t}

Basically everything can be proven by studying first and second moment of
Nt van Zwet ’78.
Not adaptable to Ψ-process.
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Other interval fragmentations

There is a large literature (see e.g. Bertoin ’06) on interval fragmentation
processes which process a certain branching structure: an interval of length
L splits at rate f (L) into pieces of random length, independently of the other
intervals.

Example: a self-similar fragmentation (Brennan, Durrett ’86)

An interval of length L splits at rate Lα into two pieces of respective lengths
LU and L(1− U ) where U ∼ Unif(0, 1), α ≥ 0.

α = 0: homogenenous interval fragmentation

α = 1: uniform process

“α =∞”: Kakutani process

Known: asymptotic equidistribution + length of typical interval. Branching
structure + self-similarity allows for exact calculations, e.g. of moments of
the length of a typical interval. Not possible for Ψ-process.
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Main result

I (n)1 , . . . , I (n)n : lengths of intervals after step n.

µn =
1

n

n∑
k=1

δ
n·I (n)k

Main theorem

Assume Ψ is continuous + polynomial decay of 1−Ψ(x) near x = 1.

1 µn (weakly) converges almost surely as n→∞ to a deterministic
probability measure µΨ on (0,∞).

2 Set FΨ(x) =
∫ x
0 y µ

Ψ(dy). Then FΨ is C 1 and

(FΨ)′(x) = x

∫ ∞
x

1

z
dΨ(FΨ(z)).
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Properties of limiting distribution

Write µΨ(dx) = f Ψ(x) dx.

max-k-process (Ψ(x) = xk)

f Ψ(x) ∼ Ck exp(−kx), as x →∞.

min-k-process (Ψ(x) = 1− (1− x)k)

f Ψ(x) ∼ ck

x2+
1

k−1

, as x →∞.

convergence to Kakutani

If (Ψn)n≥0 s.t. Ψn(x)→ 1x≥1 pointwise, then

f Ψn(x)→ 1

2
1x∈[0,2], as n→∞.
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Properties of limiting distribution (2)
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A good observable: the size-biased distribution function

12 34 1 2 3 4

X

order by length

Define the distribution function of the size-biased interval distribution:

Ãn(x) =
n∑
k=1

I (n)k 1
(I (n)k ≤x)

.

Suppose we split at time n+ 1 an interval determined by X ∼ dΨ. Chance of
splitting an interval of length ∈ [z, z + dz]: dΨ(Ãn(z)). Hence

E[Ãn+1(x)− Ãn(x)] = x2
∫ ∞
x

1

z
dΨ(Ãn(z)).
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Embedding in continuous time

Points arrive according to Poisson process with rate et .
Nt : number of intervals at time t
I (t)1 , . . . , I (t)Nt : lengths of intervals at time t.
Size-biased distribution function

Ãt(x) =

Nt∑
k=1

I (t)k 1
(I (t)k ≤x)

Key fact: Ã = (Ãt)t≥0 satisfies the following stochastic integral equation:

Ãt(x) = Ã0(x) +

∫ t

0
esx2

[∫ ∞
x

1

z
dΨ(Ãs(z))

]
ds + M̃t(x),

for some centered noise M̃t .
Note: From now on, boldface for processes of distribution functions.
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A stochastic evolution equation

Set At(x) = Ãt(e−tx). Then A = (At)t≥0 satisfies the following stochastic
evolution equation:

At(x) = A0(e
−tx) +

∫ t

0
(es−tx)2

[∫ ∞
es−tx

1

z
dΨ(As(z))

]
ds +Mt(x),

with Mt(x) = M̃t(e−tx), or

∂tAt(x) = −x∂xAt(x) + x2
∫ ∞
x

1

y
dΨ(At(y)) + Ṁt(x).

Claim

At converges almost surely to a deterministic limit as t →∞.
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Deterministic evolution

Let F = (Ft)t≥0 be solution of

Ft(x) = F0(e
−tx) +

∫ t

0
(es−tx)2

[∫ ∞
es−tx

1

z
dΨ(Fs(z))

]
ds

=: S Ψ(F)t .

(=⇒ solution = fixed point of S Ψ). Define the following norm:

‖f ‖x−2 =

∫ ∞
0

x−2|f (x)| dx.

Note: if f (x) =
∫ x
0 yµ(dy), then ‖f ‖x−2 = µ(R+)

Lemma

Let F and G be solutions of the above equation. For every t ≥ 0,

‖Ft − Gt‖x−2 ≤ e−t ‖F0 − G0‖x−2 .

In particular: ∃!FΨ : Ft → FΨ as t →∞.
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Stochastic evolution - stochastic approximation

At(x) = A0(e
−tx) +

∫ t

0
(es−tx)2

[∫ ∞
es−tx

1

z
dΨ(As(z))

]
ds +Mt(x)

= S Ψ(A)t +Mt(x).

Problem

Cannot control noise Mt using the norm ‖·‖x−2 !
=⇒ cannot use previous Lemma (or the like) for A
=⇒ no quantitative estimates to prove convergence.

Still possible to prove convergence by adaptation of Kushner–Clark
method for stochastic approximation algorithms.
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Kushner–Clark method (an ∞-dimensional version)

Shifted evolutions A(n) = (At+n)t≥0. Show:

1 Almost surely, the family (A(n))n∈N is precompact in a suitable
functional space
(the space of maps from [0,∞) to {the space of subdistribution functions endowed with

local L1 convergence} endowed with local uniform convergence)

2 S Ψ is continuous in this functional space.

3 A(n) −S Ψ(A(n))→ 0 almost surely as n→∞.

This entails that every subsequential limit A(∞) of (A(n))n∈N is a fixed point
of S Ψ.

If in addition:

4 ‖At‖x−2 → 1 a.s., t →∞.

5 The family of distribution functions (At)t≥0 is tight.

Then
∥∥∥A(∞)

0

∥∥∥
x−2

= 1. By previous lemma: A(∞)
t → FΨ, t →∞ (in fact,

A(∞) ≡ FΨ). Hence, At → FΨ, t →∞.
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Kushner–Clark method (an ∞-dimensional version)

1 Almost surely, the family (A(n))n∈N is precompact.

equicontinuity + Arzelà-Ascoli

2 S Ψ is continuous in this functional space.

continuity of Ψ + S Ψ is integral operator

3 A(n) −S Ψ(A(n))→ 0 almost surely as n→∞.

control of noise Mt in norm ‖ · ‖x−3

4 ‖At‖x−2 → 1 a.s., t →∞.

‖At‖x−2 = e−tNt → 1, t →∞

5 The family of distribution functions (At)t≥0 is tight.

next slide
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Tightness

Tightness of (At)t≥0 is shown by entropy bounds. Define

Ht =

∫ ∞
0

(log x) dAt(x) =

n∑
k=1

I (t)k log(et I (t)k ).

∃ simple expression for this quantity (valid for any interval splitting process),
already used by Lootgieter ’77; Slud ’78.

Lemma

The semimartingale decomposition of (Ht)t≥0 is

dHt = (1− Dt)dt + dMt , with Dt =
1

2

∫ ∞
0

z dΨ(At(z)),

where M = (Mt)t≥0 is a martingale with previsible quadratic variation
d〈M〉t ≤ LtDt dt , Lt = length of the longest interval at time t.
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Properties of limiting distribution: max-k-process

Ψ(x) = xk . FΨ(x) =
∫ x
0 y µ

Ψ(dy). Recall:

(FΨ)′(x) = x

∫ ∞
x

1

z
dΨ(FΨ(z)).

This yields the di�erential equation

(FΨ)′′(x) =

(
1

x
−Ψ′(FΨ(x))

)
(FΨ)′(x).

At x =∞: Ψ′(FΨ(∞)) = Ψ′(1) = k. Integrating this equation yields

(FΨ)′(x) = (FΨ)′(1) exp

(∫ x

1

[
1

y
−Ψ′(FΨ(y))

]
dy

)
∼ Ckx exp(−kx), as x →∞,

for some (implicit) constant Ck .
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Properties of limiting distribution: min-k-process

Ψ(x) = 1− (1− x)k . Ψ′(1) = 0. The point x =∞ is a critical point for the
previous di�erential equation. Way out: substitute

1− FΨ(x) = G(log x1/(k−1))/x1/(k−1).

Then G solves the autonomous equation

G′′ − G′ − (2k − 1− k(k − 1)Gk−1)(G′ − G) = 0.

Phase plane analysis yields G(t)→ ck = ((2k− 1)/k(k− 1))1/(k−1) as t →∞,
whence

(FΨ)′(x) ∼ ck

(k − 1)x1+
1

k−1

, as x →∞.
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Properties of limiting distribution: min-k-process
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Empirical distribution of points
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Empirical distribution of points (2)

Recent progress by Matthew Junge (University of Washington): Considers
evolution of (Aαt )t≥0, which is defined as (At)t≥0 but counting only the
intervals in the interval [0, α]. Formally, it satisfies

Aαt (x) = Aα0 (e−tx) +

∫ t

0
(es−tx)2

[∫ ∞
es−tx

1

z

dAαs (z)

dAs(z)
dΨ(As(z))

]
ds +Mα

t (x),

and if Ψ is C 1 with derivative ψ = Ψ′, then

dAαs (z)

dAs(z)
dΨ(As(z)) = ψ(As(z))dA

α
s (z).

In the limit leads to the linear evolution equation

Fαt (x) = Fα0 (e−tx) +

∫ t

0
(es−tx)2

[∫ ∞
es−tx

ψ(FΨ(z))

z
dFαs (z)

]
ds.

Junge (2015): Proof of equidistribution for restricted class of processes
including max-2 process (but excluding min-2 and even max-k, k ≥ 3). Key
point: extension of contraction lemma to the above evolution equation.
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Empirical distribution of points (3)

Theorem (M–Paquette, work in progress)

The Ψ-process is asymptotically equidistributed for all Ψ ∈ C 1 (maybe
more...).
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