Choices and Intervals : an interval fragmentation with dependence

Pascal Maillard (Univ. Paris-Sud, Université Paris-Saclay) Paris-Bath branching structure meeting, June 28, 2016

joint work with

Elliot Paquette (Weizmann Institute of Science)

to appear in *Israel J. Math.* + work in progress

Consider a random structure formed by adding objects **one after the other** according to some randomized rule. Examples:

- balls-and-bins model: *n* bins, place balls one after the other into bins, for each ball choose bin uniformly at random (maybe with size-biasing)
- andom graph growth: *n* vertices, add (uniformly chosen) edges one after the other.
- interval fragmentation: unit interval [0,1], add uniformly chosen points one after the other → fragmentation of the unit interval.

Sac

・ロト ・回 ト ・回 ト ・ 回 ト

Aim: Changing behaviour of model by applying a different rule when adding objects

- balls-and-bins model: *n* bins, at each step choose two bins uniformly at random and place ball into bin with fewer/more balls.
 Azar, Broder, Karlin, Upfal '99; D'Souza, Krapivsky, Moore '07; Malyshkin, Paquette '13
- random graph growth: *n* vertices, at each step uniformly sample two possible edges to add, choose the one that (say) minimizes the product of the sizes of the components of its endvertices. Achlioptas, D'Souza, Spencer '09; Riordan, Warnke '11+'12
- interval fragmentation: unit interval [0,1], at each step, uniformly sample two possible points to add, choose the one that falls into the larger/smaller fragment determined by the previous points.
 → this talk

Sac

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- Model A: For each ball, choose bin uniformly at random.
- Model B: For each ball, choose two bins uniformly at random and place ball into bin with more balls.
- Model C: For each ball, choose two bins uniformly at random and place ball into bin with fewer balls.

How many balls in bin with largest number of balls?

- Model A:
- Model B:
- Model C:

Sac

・ロト ・回 ト ・回 ト ・ 回 ト

- Model A: For each ball, choose bin uniformly at random.
- Model B: For each ball, choose two bins uniformly at random and place ball into bin with more balls.
- Model C: For each ball, choose two bins uniformly at random and place ball into bin with fewer balls.

How many balls in bin with largest number of balls?

- Model A: $\approx \log n / \log \log n$
- Model B:
- Model C:

200

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

- Model A: For each ball, choose bin uniformly at random.
- Model B: For each ball, choose two bins uniformly at random and place ball into bin with more balls.
- Model C: For each ball, choose two bins uniformly at random and place ball into bin with fewer balls.

How many balls in bin with largest number of balls?

- Model A: $\approx \log n / \log \log n$
- Model B: $\approx \log n / \log \log n$
- Model C:

NQ C

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

- Model A: For each ball, choose bin uniformly at random.
- Model B: For each ball, choose two bins uniformly at random and place ball into bin with more balls.
- Model C: For each ball, choose two bins uniformly at random and place ball into bin with fewer balls.

How many balls in bin with largest number of balls?

- Model A: $\approx \log n / \log \log n$
- Model B: $\approx \log n / \log \log n$
- Model C: $O(\log \log n)$

200

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Model C: For each ball, choose two bins uniformly at random and place ball into bin with fewer balls.

Theorem (Azar, Broder, Karlin, Upfal '99)

Maximum number of balls in a bin: $O(\log \log n)$

Heuristic reason: Let N_k be the number of bins containing at least k balls at the end of the game. Then one should expect

$$N_{k+1} \asymp Cn\left(\frac{N_k}{n}\right)^2$$
,

This yields

$$N_k \simeq \rho^{2^k} n$$

for some $\rho < 1$. Solving $N_k = 1$ yields $k = O(\log \log n)$.

Pascal Maillard

5 / 27

San

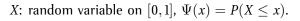
X: random variable on [0,1], $\Psi(x) = P(X \le x)$.

Choices and Intervals : an interval fragmentation with dependence

6 / 27

ヘロト 人間 ト 人 田 ト 人 田 トー

E 990



• Step 1: empty unit interval [0,1]

Pascal Maillard

Ē 6 / 27 590

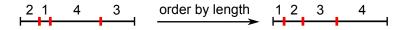
X: random variable on [0,1], $\Psi(x) = P(X \le x)$.

- Step 1: empty unit interval [0,1]
- **②** Step *n*: n 1 points in interval, splitting it into *n* fragments

590

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Ψ -process: definition

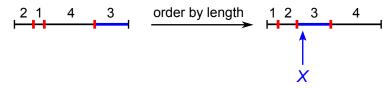


X: random variable on [0,1], $\Psi(x) = P(X \le x)$.

- Step 1: empty unit interval [0,1]
- Step n: n-1 points in interval, splitting it into n fragments
- Step n + 1:
 - Order intervals/fragments according to length

▲ 伊 ▶ ▲ 王 ▶ ▲ 王 ▶ ● 오 �

Ψ -process: definition



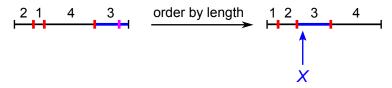
X: random variable on [0,1], $\Psi(x) = P(X \le x)$.

- Step 1: empty unit interval [0,1]
- Step n: n-1 points in interval, splitting it into n fragments
- Step n + 1:
 - Order intervals/fragments according to length
 - Choose an interval according to (copy of) random variable X

Sac

(4月) (日) (日)

Ψ -process: definition



X: random variable on [0,1], $\Psi(x) = P(X \le x)$.

- Step 1: empty unit interval [0,1]
- Step n: n-1 points in interval, splitting it into n fragments
- Step n + 1:
 - Order intervals/fragments according to length
 - Choose an interval according to (copy of) random variable X
 - Split this interval at a uniformly chosen point.

Sac

・ロト ・回ト ・ヨト ・ ヨト

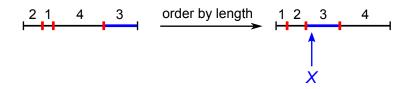
X: random variable on [0,1], $\Psi(x) = P(X \le x)$.

- Step 1: empty unit interval [0,1]
- Step n: n-1 points in interval, splitting it into n fragments
- **③** Step n + 1:
 - Order intervals/fragments according to length
 - Choose an interval according to (copy of) random variable X
 - Split this interval at a uniformly chosen point.

Sac

・ロト ・四ト ・日ト ・日ト

Ψ -process: examples



- *X*: random variable on [0,1], $\Psi(x) = P(X \le x)$.
 - $\Psi(x) = x$: uniform process
 - $\Psi(x) = \mathbf{1}_{x \ge 1}$: Kakutani process
 - $\Psi(x) = x^k$, $k \in \mathbb{N}$: max-k-process (maximum of k intervals)
 - $\Psi(x) = 1 (1 x)^k$, $k \in \mathbb{N}$: min-k-process (minimum of k intervals)

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 ■ の Q @

Uniform process

 $\Psi(x) = x$. Same as *n* iid points X_1, \ldots, X_n distributed according to Unif(0,1). Trivial fact (law of large numbers / Glivenko-Cantelli): the points X_1, \ldots, X_n are **asymptotically equidistributed**, i.e.:

$$rac{1}{n}\sum_{i=1}^n \delta_{X_i} o \mathrm{Unif}(0,1), \quad ext{almost surely as } n o \infty.$$

Furthermore, if $I_1^{(n)}, \ldots, I_{n+1}^{(n)}$ denote the lengths of the intervals at time *n*, then (Weiss '55, Blum '55)

$$\frac{1}{n+1}\sum_{i=1}^{n+1}\delta_{(n+1)I_i^{(n)}}\to \operatorname{Exp}(1), \quad \text{almost surely as } n\to\infty.$$

Easy proof using the fact that if $0 < T_1 < T_2 < ...$ are the arrival times of a Poisson process with intensity 1, then $(T_1/T_{n+1}, ..., T_n/T_{n+1})$ have the same law as the order statistics of $X_1, ..., X_n$.

8 / 27

Kakutani process

 $\Psi(x) = \mathbf{1}_{x \ge 1}$. Always the largest interval splits. Known:

- The splitting points are asymptotically equidistributed Lootgieter '77, van Zwet '78, Slud '78,'82
- The length of a typical interval (rescaled by n + 1) converges to Unif(0, 2) Pyke '80

Basic property exploited in the proofs: Given the intervals at time n, the intervals evolve independently at future times (modulo time-change). Best exploited by stopping the process at the time

 $N_t = \inf\{n : \text{all intervals at time } n \text{ are of length } \leq t\}$

Basically everything can be proven by studying first and second moment of N_t van Zwet '78. **Not** adaptable to Ψ -process.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

There is a large literature (see e.g. Bertoin '06) on interval fragmentation processes which process a certain branching structure: an interval of length L splits at rate f(L) into pieces of random length, independently of the other intervals.

Example: a self-similar fragmentation (Brennan, Durrett '86)

An interval of length *L* splits at rate L^{α} into two pieces of respective lengths *LU* and L(1 - U) where $U \sim \text{Unif}(0, 1)$, $\alpha \geq 0$.

- $\alpha = 0$: homogeneous interval fragmentation
- $\alpha = 1$: uniform process
- " $\alpha = \infty$ ": Kakutani process

Known: asymptotic equidistribution + length of typical interval. Branching structure + self-similarity allows for exact calculations, e.g. of moments of the length of a typical interval. Not possible for Ψ -process.

Pascal Maillard

Sar

イロト イポト イヨト イヨト

Main result

 $I_1^{(n)}, \ldots, I_n^{(n)}$: lengths of intervals after step *n*.

$$\mu_n = \frac{1}{n} \sum_{k=1}^n \delta_{n \cdot I_k^{(n)}}$$

Main theorem

Assume Ψ is continuous + polynomial decay of $1 - \Psi(x)$ near x = 1.

- μ_n (weakly) converges almost surely as $n \to \infty$ to a deterministic probability measure μ^{Ψ} on $(0, \infty)$.
- 2 Set $F^{\Psi}(x) = \int_0^x y \, \mu^{\Psi}(dy)$. Then F^{Ψ} is C^1 and

$$(F^{\Psi})'(x) = x \int_x^\infty \frac{1}{z} d\Psi(F^{\Psi}(z)).$$

San

Properties of limiting distribution

Write $\mu^{\Psi}(dx) = f^{\Psi}(x) dx$.

max-*k*-process ($\Psi(x) = x^k$)

$$f^{\Psi}(x) \sim C_k \exp(-kx), \quad \text{as } x \to \infty.$$

min-*k*-process
$$(\Psi(x) = 1 - (1 - x)^k)$$

$$f^{\Psi}(x) \sim rac{c_k}{x^{2+rac{1}{k-1}}}, \quad ext{ as } x o \infty.$$

convergence to Kakutani

If $(\Psi_n)_{n\geq 0}$ s.t. $\Psi_n(x) \to \mathbf{1}_{x\geq 1}$ pointwise, then

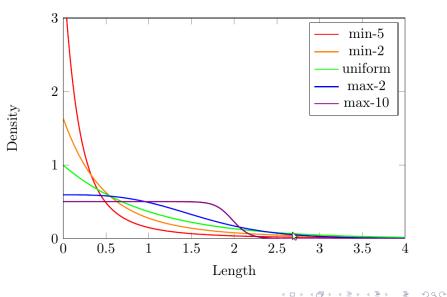
$$f^{\Psi_n}(x) \to \frac{1}{2} \mathbf{1}_{x \in [0,2]}, \quad \text{ as } n \to \infty.$$

Pascal Maillard

≣ 12 / 27 590

イロト 不同 とうほう 不同 とう

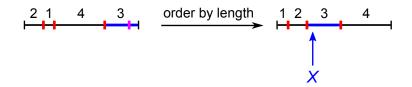
Properties of limiting distribution (2)



Choices and Intervals : an interval fragmentation with dependence

13 / 27

A good observable: the size-biased distribution function



Define the distribution function of the size-biased interval distribution:

$$\widetilde{A}_n(x) = \sum_{k=1}^n I_k^{(n)} \mathbf{1}_{(I_k^{(n)} \le x)}.$$

Suppose we split at time n + 1 an interval determined by $X \sim d\Psi$. Chance of splitting an interval of length $\in [z, z + dz]$: $d\Psi(\widetilde{A}_n(z))$. Hence

$$\mathbb{E}[\widetilde{A}_{n+1}(x) - \widetilde{A}_n(x)] = x^2 \int_x^\infty \frac{1}{z} d\Psi(\widetilde{A}_n(z)).$$

Pascal Maillard

Embedding in continuous time

Points arrive according to Poisson process with rate e^t . N_t : number of intervals at time t $I_1^{(t)}, \ldots, I_{N_t}^{(t)}$: lengths of intervals at time t. Size-biased distribution function

$$\widetilde{A}_t(x) = \sum_{k=1}^{N_t} I_k^{(t)} \mathbf{1}_{(I_k^{(t)} \le x)}$$

Key fact: $\widetilde{A} = (\widetilde{A}_t)_{t \ge 0}$ satisfies the following stochastic integral equation:

$$\widetilde{A}_t(x) = \widetilde{A}_0(x) + \int_0^t e^s x^2 \left[\int_x^\infty \frac{1}{z} d\Psi(\widetilde{A}_s(z)) \right] \, ds + \widetilde{M}_t(x),$$

for some centered noise M_t .

Note: From now on, **boldface** for *processes* of distribution functions.

Pascal Maillard

15 / 27

A stochastic evolution equation

Set $A_t(x) = \widetilde{A}_t(e^{-t}x)$. Then $A = (A_t)_{t \ge 0}$ satisfies the following stochastic evolution equation:

$$A_t(x) = A_0(e^{-t}x) + \int_0^t (e^{s-t}x)^2 \left[\int_{e^{s-t}x}^\infty \frac{1}{z} d\Psi(A_s(z)) \right] \, ds + M_t(x),$$

with $M_t(x) = \widetilde{M}_t(e^{-t}x)$, or

$$\partial_t A_t(x) = -x \partial_x A_t(x) + x^2 \int_x^\infty \frac{1}{y} d\Psi(A_t(y)) + \dot{M}_t(x).$$

5900

(本語) (本語) (本語)

A stochastic evolution equation

Set $A_t(x) = \widetilde{A}_t(e^{-t}x)$. Then $A = (A_t)_{t \ge 0}$ satisfies the following stochastic evolution equation:

$$A_t(x) = A_0(e^{-t}x) + \int_0^t (e^{s-t}x)^2 \left[\int_{e^{s-t}x}^\infty \frac{1}{z} d\Psi(A_s(z)) \right] \, ds + M_t(x),$$

with $M_t(x) = \widetilde{M}_t(e^{-t}x)$, or

$$\partial_t A_t(x) = -x \partial_x A_t(x) + x^2 \int_x^\infty \frac{1}{y} d\Psi(A_t(y)) + \dot{M}_t(x).$$

Claim

 A_t converges almost surely to a deterministic limit as $t \to \infty$.

San

・ロト ・回ト ・ヨト ・ヨト

Deterministic evolution

Let $\mathbf{F} = (F_t)_{t \ge 0}$ be solution of $F_t(x) = F_0(e^{-t}x) + \int_0^t (e^{s-t}x)^2 \left[\int_{e^{s-t}x}^\infty \frac{1}{z} d\Psi(F_s(z)) \right] ds$ $=: \mathscr{S}^{\Psi}(\mathbf{F})_t.$

 $(\Longrightarrow$ solution = fixed point of \mathscr{S}^{Ψ}). Define the following norm:

$$||f||_{x^{-2}} = \int_0^\infty x^{-2} |f(x)| \, dx.$$

Lemma

Let *F* and *G* be solutions of the above equation. For every $t \ge 0$,

$$||F_t - G_t||_{x^{-2}} \le e^{-t} ||F_0 - G_0||_{x^{-2}}.$$

In particular: $\exists ! F^{\Psi} : F_t \to F^{\Psi}$ as $t \to \infty$.

Deterministic evolution

Let $\mathbf{F} = (F_t)_{t \ge 0}$ be solution of

$$F_t(x) = F_0(e^{-t}x) + \int_0^t (e^{s-t}x)^2 \left[\int_{e^{s-t}x}^\infty \frac{1}{z} d\Psi(F_s(z)) \right] ds$$

=: $\mathscr{S}^{\Psi}(F)_t.$

 $(\Longrightarrow$ solution = fixed point of \mathscr{S}^{Ψ}). Define the following norm:

$$||f||_{x^{-2}} = \int_0^\infty x^{-2} |f(x)| \, dx.$$

Note: if $f(x) = \int_0^x y\mu(dy)$, then $||f||_{x^{-2}} = \mu(\mathbb{R}_+)$

Lemma

Let *F* and *G* be solutions of the above equation. For every $t \ge 0$,

$$||F_t - G_t||_{x^{-2}} \le e^{-t} ||F_0 - G_0||_{x^{-2}}.$$

In particular: $\exists ! F^{\Psi} : F_t \to F^{\Psi}$ as $t \to \infty$.

Stochastic evolution - stochastic approximation

$$A_t(x) = A_0(e^{-t}x) + \int_0^t (e^{s-t}x)^2 \left[\int_{e^{s-t}x}^\infty \frac{1}{z} d\Psi(A_s(z)) \right] ds + M_t(x)$$

= $\mathscr{S}^{\Psi}(A)_t + M_t(x).$

Problem

Cannot control noise M_t using the norm $\|\cdot\|_{x^{-2}}!$

- \Longrightarrow cannot use previous Lemma (or the like) for A
- \implies no quantitative estimates to prove convergence.

Sac

イロト イヨト イヨト

Stochastic evolution - stochastic approximation

$$A_t(x) = A_0(e^{-t}x) + \int_0^t (e^{s-t}x)^2 \left[\int_{e^{s-t}x}^\infty \frac{1}{z} d\Psi(A_s(z)) \right] ds + M_t(x)$$

= $\mathscr{S}^{\Psi}(A)_t + M_t(x).$

Problem

Cannot control noise M_t using the norm $\|\cdot\|_{x^{-2}}!$

- \implies cannot use previous Lemma (or the like) for A
- \implies no quantitative estimates to prove convergence.

Still possible to prove convergence by adaptation of **Kushner-Clark method** for stochastic approximation algorithms.

Pascal Maillard

18 / 27

Shifted evolutions $A^{(n)} = (A_{t+n})_{t \ge 0}$. Show:

• Almost surely, the family $(A^{(n)})_{n\in\mathbb{N}}$ is precompact in a suitable functional space

(the space of maps from $[0, \infty)$ to {the space of subdistribution functions endowed with local L^1 convergence} endowed with local uniform convergence)

 $\ensuremath{\mathfrak{O}}$ $\ensuremath{\mathscr{S}}^\Psi$ is continuous in this functional space.

$$\ \, \bullet \ \, \mathbf{A}^{(n)} - \mathscr{S}^{\Psi}(\mathbf{A}^{(n)}) \to \mathbf{0} \ \text{almost surely as} \ n \to \infty.$$

This entails that every subsequential limit $A^{(\infty)}$ of $(A^{(n)})_{n \in \mathbb{N}}$ is a fixed point of \mathscr{S}^{Ψ} .

500

ヘロアス 留 アメ ほ アメ ほ アー ほ

Shifted evolutions $A^{(n)} = (A_{t+n})_{t \ge 0}$. Show:

• Almost surely, the family $(\mathbf{A}^{(n)})_{n\in\mathbb{N}}$ is precompact in a suitable functional space

(the space of maps from $[0, \infty)$ to {the space of subdistribution functions endowed with local L^1 convergence} endowed with local uniform convergence)

2)
$$\mathscr{S}^{\Psi}$$
 is continuous in this functional space.

$$\ \, {\bf 3} \ \, {\bf A}^{(n)} - \mathscr{S}^{\Psi}({\bf A}^{(n)}) \to {\bf 0} \ \, \text{almost surely as} \ \, n \to \infty.$$

This entails that every subsequential limit $A^{(\infty)}$ of $(A^{(n)})_{n \in \mathbb{N}}$ is a fixed point of \mathscr{S}^{Ψ} . If in addition:

• The family of distribution functions $(A_t)_{t \ge 0}$ is tight.

Then $\left\|A_0^{(\infty)}\right\|_{x^{-2}} = 1$. By previous lemma: $A_t^{(\infty)} \to F^{\Psi}$, $t \to \infty$ (in fact, $A^{(\infty)} \equiv F^{\Psi}$). Hence, $A_t \to F^{\Psi}$, $t \to \infty$.

Sac

・ロト ・日本・ 小田 ・ ・日本

- Almost surely, the family $(\mathbf{A}^{(n)})_{n \in \mathbb{N}}$ is precompact.
- $\ensuremath{ @ \mathcal{S} } \ensuremath{ \Psi }$ is continuous in this functional space.
- **3** $A^{(n)} \mathscr{S}^{\Psi}(A^{(n)}) \to 0$ almost surely as $n \to \infty$.
- The family of distribution functions $(A_t)_{t \ge 0}$ is tight.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- Almost surely, the family $(\mathbf{A}^{(n)})_{n \in \mathbb{N}}$ is precompact. equicontinuity + Arzelà-Ascoli
- **2** \mathscr{S}^{Ψ} is continuous in this functional space.

$$\ \, {\bf 3} \ \, {\bf A}^{(n)} - \mathscr{S}^{\Psi}({\bf A}^{(n)}) \to 0 \ \, \text{almost surely as} \ \, n \to \infty.$$

• The family of distribution functions $(A_t)_{t\geq 0}$ is tight.

na a

・ロト ・四ト ・ヨト ・ ヨト

- Almost surely, the family $(\mathbf{A}^{(n)})_{n \in \mathbb{N}}$ is precompact. equicontinuity + Arzelà-Ascoli
- **③** \mathscr{S}^{Ψ} is continuous in this functional space. continuity of $\Psi + \mathscr{S}^{\Psi}$ is integral operator
- $\ \, {\bf 3} \ \, {\bf A}^{(n)} \mathscr{S}^{\Psi}({\bf A}^{(n)}) \to {\bf 0} \ \, \text{almost surely as} \ \, n \to \infty.$

$$\|A_t\|_{x^{-2}} \to 1 \text{ a.s., } t \to \infty.$$

• The family of distribution functions $(A_t)_{t \ge 0}$ is tight.

Sac

不得下 不足下 不足下

- Almost surely, the family $(\mathbf{A}^{(n)})_{n \in \mathbb{N}}$ is precompact. equicontinuity + Arzelà-Ascoli
- $\ensuremath{\mathfrak{S}} \ensuremath{\mathfrak{Y}} \ensurem$
- $A^{(n)} \mathscr{S}^{\Psi}(A^{(n)}) \to 0$ almost surely as $n \to \infty$. control of noise M_t in norm $\|\cdot\|_{x^{-3}}$

$$\|A_t\|_{x^{-2}} \to 1 \text{ a.s., } t \to \infty.$$

• The family of distribution functions $(A_t)_{t \ge 0}$ is tight.

Sac

(日本)(日本)(日本)

- Almost surely, the family $(\mathbf{A}^{(n)})_{n \in \mathbb{N}}$ is precompact. equicontinuity + Arzelà-Ascoli
- $\ensuremath{\mathfrak{S}} \ensuremath{\mathfrak{Y}} \ensurem$
- ● $A^{(n)} \mathscr{S}^{\Psi}(A^{(n)}) \rightarrow 0$ almost surely as $n \rightarrow \infty$. control of noise M_t in norm $\|\cdot\|_{x^{-3}}$

$$\|A_t\|_{x^{-2}} \to 1 \text{ a.s., } t \to \infty. \|A_t\|_{x^{-2}} = e^{-t} N_t \to 1, \ t \to \infty$$

• The family of distribution functions $(A_t)_{t \ge 0}$ is tight.

San

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

- Almost surely, the family $(\mathbf{A}^{(n)})_{n \in \mathbb{N}}$ is precompact. equicontinuity + Arzelà-Ascoli
- $A^{(n)} \mathscr{S}^{\Psi}(A^{(n)}) \to 0$ almost surely as $n \to \infty$. control of noise M_t in norm $\|\cdot\|_{x^{-3}}$
- $\begin{aligned} \bullet \quad \|A_t\|_{x^{-2}} &\to 1 \text{ a.s., } t \to \infty. \\ \|A_t\|_{x^{-2}} &= e^{-t} N_t \to 1, \ t \to \infty \end{aligned}$
- The family of distribution functions $(A_t)_{t\geq 0}$ is tight. next slide

Sac

▲掃♪ ▲ ヨ♪ ▲ ヨ♪ 二 ヨ

Tightness

Tightness of $(A_t)_{t \ge 0}$ is shown by entropy bounds. Define

$$H_t = \int_0^\infty (\log x) \, dA_t(x) = \sum_{k=1}^n I_k^{(t)} \log(e^t I_k^{(t)}).$$

 \exists simple expression for this quantity (valid for *any* interval splitting process), already used by Lootgieter '77; Slud '78.

Lemma

The semimartingale decomposition of $(H_t)_{t \ge 0}$ is

$$dH_t = (1-D_t)dt + dM_t, \quad \text{with } D_t = \frac{1}{2}\int_0^\infty z \, d\Psi(A_t(z)),$$

where $M = (M_t)_{t \ge 0}$ is a martingale with previsible quadratic variation $d\langle M \rangle_t \le L_t D_t dt$, $L_t = length$ of the longest interval at time t.

Pascal Maillard

nan

Properties of limiting distribution: max-k-process

 $\Psi(x) = x^k$. $F^{\Psi}(x) = \int_0^x y \,\mu^{\Psi}(dy)$. Recall:

$$(F^{\Psi})'(x) = x \int_x^\infty \frac{1}{z} d\Psi(F^{\Psi}(z)).$$

This yields the differential equation

$$(F^{\Psi})''(x) = \left(\frac{1}{x} - \Psi'(F^{\Psi}(x))\right)(F^{\Psi})'(x).$$

At $x = \infty$: $\Psi'(F^{\Psi}(\infty)) = \Psi'(1) = k$. Integrating this equation yields

$$(F^{\Psi})'(x) = (F^{\Psi})'(1) \exp\left(\int_{1}^{x} \left[\frac{1}{y} - \Psi'(F^{\Psi}(y))\right] dy\right)$$

~ $C_k x \exp(-kx), \quad \text{as } x \to \infty,$

for some (implicit) constant C_k .

Pascal Maillard

22 / 27

200

(日本) (日本) (日本)

Properties of limiting distribution: min-k-process

 $\Psi(x) = 1 - (1 - x)^k$. $\Psi'(1) = 0$. The point $x = \infty$ is a critical point for the previous differential equation. Way out: substitute

$$1 - F^{\Psi}(x) = G(\log x^{1/(k-1)}) / x^{1/(k-1)}.$$

Then G solves the autonomous equation

$$G'' - G' - (2k - 1 - k(k - 1)G^{k-1})(G' - G) = 0.$$

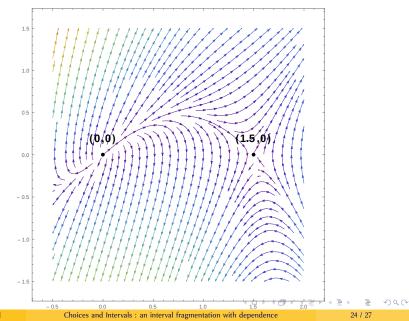
Phase plane analysis yields $G(t) \rightarrow c_k = ((2k-1)/k(k-1))^{1/(k-1)}$ as $t \rightarrow \infty$, whence

$$(F^{\Psi})'(x) \sim \frac{c_k}{(k-1)x^{1+\frac{1}{k-1}}}, \quad \text{as } x \to \infty.$$

Pascal Maillard

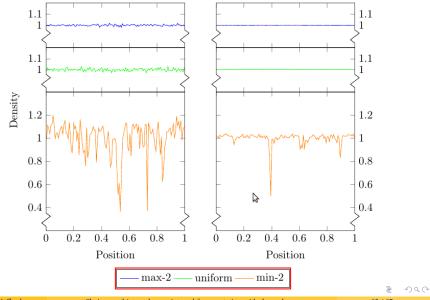
San

Properties of limiting distribution: min-k-process



Pascal Maillard

Empirical distribution of points



Pascal Maillard

Choices and Intervals : an interval fragmentation with dependence

25 / 27

Empirical distribution of points (2)

Recent progress by Matthew Junge (University of Washington): Considers evolution of $(A_t^{\alpha})_{t\geq 0}$, which is defined as $(A_t)_{t\geq 0}$ but counting only the intervals in the interval $[0, \alpha]$. Formally, it satisfies

$$A_t^{\alpha}(x) = A_0^{\alpha}(e^{-t}x) + \int_0^t (e^{s-t}x)^2 \left[\int_{e^{s-t}x}^{\infty} \frac{1}{z} \frac{dA_s^{\alpha}(z)}{dA_s(z)} d\Psi(A_s(z)) \right] ds + M_t^{\alpha}(x),$$

and if Ψ is C^1 with derivative $\psi=\Psi'$, then

$$rac{dA^{lpha}_{s}(z)}{dA_{s}(z)}d\Psi(A_{s}(z))=\psi(A_{s}(z))dA^{lpha}_{s}(z).$$

In the limit leads to the linear evolution equation

$$F_t^{\alpha}(x) = F_0^{\alpha}(e^{-t}x) + \int_0^t (e^{s-t}x)^2 \left[\int_{e^{s-t}x}^\infty \frac{\psi(F^{\Psi}(z))}{z} dF_s^{\alpha}(z) \right] ds.$$

Junge (2015): Proof of equidistribution for restricted class of processes including max-2 process (but excluding min-2 and even max-k, $k \ge 3$). Key point: extension of contraction lemma to the above evolution equation.

Pascal Maillard

26 / 27

Theorem (M-Paquette, work in progress)

The Ψ *-process is asymptotically equidistributed for all* $\Psi \in C^1$ *(maybe more...).*

Pascal Maillard

Choices and Intervals : an interval fragmentation with dependence

27 / 27

Sar

Empirical distribution of points (3)

