CRITICAL BEHAVIOUR OF BRANCHING DIFFUSIONS IN BOUNDED DOMAINS The Fourth Bath-Paris Branching Structures Meeting

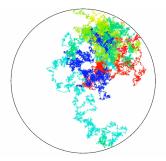
Ellen Powell

28th June 2016

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ⑦ ヘ ()

Ellen Powell

BRANCHING DIFFUSIONS IN A DOMAIN



- $D \subset \mathbb{R}^d$ bounded, C^1 domain.
- Start BBM at $x \in D$. Particles killed upon hitting the boundary.

Simulation by Henry Jackson.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Ellen Powell

NOTATIONS

 $\beta = \text{branching rate.}$

$$(X_1^t, \cdots, X_{N_t}^t) =$$
system at time t.

Ellen Powell

EXTINCTION (BBM WITH BINARY BRANCHING)

Phase Transition (Sevast'yanov 1958, Watanabe 1965)

There exists a critical value λ of the branching parameter β s.t.

- $\beta \leq \lambda \Rightarrow a.s.$ extinction
- $\beta > \lambda \Rightarrow$ survival with positive probability.

 λ is the first eigenvalue of $-\frac{1}{2}\Delta$ on D.

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = シののの

Ellen Powell

SURVIVAL PROBABILITIES

- Survival probability = $\mathbb{P}_{x}(N_{t} > 0)$.
- Decays exponentially in subcritical case.
- Critical case?

SURVIVAL PROBABILITIES

- Survival probability = $\mathbb{P}_{x}(N_{t} > 0)$.
- Decays exponentially in subcritical case.
- Critical case?

GALTON-WATSON CASE (KOLMOGOROV 1938, MIERMONT 2008)

Critical GW and multitype GW processes with finite variance have

 $\mathbb{P}(N_n > 0) \sim c/n$

as $n \to \infty$.

Ellen Powell

MAIN RESULTS (BBM WITH BINARY BRANCHING)

THEOREM (P. 2015)

In the critical case $\beta = \lambda$, for all $x \in D$ we have

$$\mathbb{P}_{x}(N_{t} > 0) \sim rac{1}{t} imes rac{arphi(x)}{\lambda \int_{D} arphi(y)^{3} dy}$$

as $t \to \infty$.

 φ is the first eigenfunction of $-\frac{1}{2}\Delta$ on *D*, normalised to have unit L^2 norm.

◆□> ◆□> ◆三> ◆三> ・三 のへで

Ellen Powell

MAIN RESULTS (BBM WITH BINARY BRANCHING)

THEOREM (P. 2015)

For any measurable $E \subset D$, if N_t^E is the number of particles in E at time t, we have

$$\left(\frac{N_t^E}{t}\middle| N_t > 0\right) \to Z$$

in distribution as $t \to \infty$, where Z is an exponential random variable with mean

$$\lambda \langle \varphi, \mathbf{1}_E \rangle_{L^2(D)} \int_D \varphi^3.$$

Ellen Powell

MAIN RESULTS (BBM WITH BINARY BRANCHING)

COROLLARY

Let

$$u_t := \frac{1}{N_t} \sum_{i=1}^{N_t} \delta_{X_t^i}$$

be the uniform distribution on all particles alive at time t, given survival. Then, for each measurable $E \subset D$, we have that

 $\mu_t(E) \to \mu(E)$

in distribution, and hence in probability, as $t
ightarrow \infty$, where

$$\mu(E) = \frac{\int_E \varphi(x) \, dx}{\int_D \varphi(x) \, dx}.$$

・ロト ・回ト ・ヨト ・ヨト

-

Ellen Powell

NOTATIONS

A = offspring distribution - mean m.L = generator.

Assume: D is C^1 , $\mathbb{E}[A^3] < \infty$ and L is uniformly elliptic and self-adjoint with smooth coefficients.

◆□> ◆□> ◆目> ◆目> ◆日> ◆□>

NOTATIONS

A = offspring distribution - mean m.L = generator.

Assume: D is C^1 , $\mathbb{E}[A^3] < \infty$ and L is uniformly elliptic and self-adjoint with smooth coefficients.

BBM with binary branching: $A \equiv 2, L = \frac{1}{2}\Delta$.

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 → のへで

Ellen Powell

EXTINCTION (GENERAL CASE)

Phase Transition (Sevast'yanov 1958, Watanabe 1965)

There exists a critical value $\frac{\lambda}{m-1}$ of the branching parameter β s.t.

•
$$\beta \leq \frac{\lambda}{m-1} \Rightarrow a.s.$$
 extinction

•
$$\beta > \frac{\lambda}{m-1} \Rightarrow$$
 survival with positive probability.

 λ is the first eigenvalue of -L on D.

イロト イヨト イヨト ・ヨー うらの

Ellen Powell

MAIN RESULTS (GENERAL CASE)

THEOREM (P. 2015)

In the critical case $\beta = \frac{\lambda}{m-1}$, for all $x \in D$ we have

$$\mathbb{P}_{\mathsf{x}}\left(\mathsf{N}_{t}>0
ight)\simrac{1}{t} imesrac{2(m-1)arphi(\mathsf{x})}{\lambda\left(\mathbb{E}[\mathsf{A}^{2}]-\mathbb{E}[\mathsf{A}]
ight)\int_{D}arphi(\mathsf{y})^{3}\,d\mathsf{y}}$$

as $t \to \infty$.

 φ is the first eigenfunction of -L on D, normalised to have unit L^2 norm.

Ellen Powell

MAIN RESULTS (GENERAL CASE)

THEOREM (P. 2015)

For any measurable $E \subset D$, if N_t^E is the number of particles in E at time t, we have

$$\left(\frac{N_t^E}{t}\middle| N_t > 0\right) \to Z$$

in distribution as $t \to \infty$, where Z is an exponential random variable with mean

$$\frac{\lambda\left(\mathbb{E}[A^2]-\mathbb{E}[A]\right)\langle\varphi,\mathbf{1}_E\rangle_{L^2(D)}\int_D\varphi^3}{2(m-1)}.$$

Ellen Powell

MAIN RESULTS (GENERAL CASE)

COROLLARY

Let

$$u_t := \frac{1}{N_t} \sum_{i=1}^{N_t} \delta_{X_t^i}$$

be the uniform distribution on all particles alive at time t, given survival. Then, for each measurable $E \subset D$, we have that

 $\mu_t(E) \to \mu(E)$

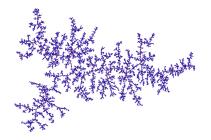
in distribution, and hence in probability, as $t
ightarrow \infty$, where

$$\mu(E) = \frac{\int_E \varphi(x) \, dx}{\int_D \varphi(x) \, dx}.$$

・ロト ・回ト ・ヨト ・ヨト

-

Ellen Powell



Simulation by Igor Kortchemski.

- What does the conditioned tree look like?
- **Conjecture**: It converges (with appropriate rescaling) to the CRT.
- Work in progress!

- ▲日 > ▲園 > ▲画 > ▲画 > ▲目 > ● ●

Ellen Powell

FKPP EQUATION

Key Tool: Let

$$u(x,t)=\mathbb{P}_x(N_t>0).$$

Then *u* satisfies the FKPP equation:

$$\frac{\partial u}{\partial t} = \frac{1}{2}\Delta u + \lambda(u - u^2)$$

in D with correct boundary/initial conditions.

Ellen Powell

Reminder:
$$\frac{\partial u}{\partial t} = \frac{1}{2}\Delta u + \lambda(u - u^2).$$

Write

$$u(x,t) = \sum_{i} a_i(t)\varphi_i(x); \quad a_i(t) = \int_D u(x,t)\varphi_i(x)dx.$$

Ellen Powell

Reminder:
$$\frac{\partial u}{\partial t} = \frac{1}{2}\Delta u + \lambda(u - u^2).$$

Write

$$u(x,t) = \sum_{i} a_i(t)\varphi_i(x); \quad a_i(t) = \int_D u(x,t)\varphi_i(x)dx.$$

Then

$$\frac{da_i}{dt} = \int_D \left(\frac{1}{2}\Delta u + \lambda(u-u^2)\right)\varphi_i(x)\,dx.$$

Ellen Powell

Reminder:
$$\frac{\partial u}{\partial t} = \frac{1}{2}\Delta u + \lambda(u - u^2).$$

Write

$$u(x,t) = \sum_{i} a_i(t)\varphi_i(x); \quad a_i(t) = \int_D u(x,t)\varphi_i(x)dx.$$

Then

$$\frac{da_i}{dt} = \int_D \left(\frac{1}{2}\Delta u + \lambda(u-u^2)\right)\varphi_i(x)\,dx.$$

 $\mathsf{IBP} \Rightarrow$

$$\frac{da_i}{dt} = \int_D \left(-\lambda_i u + \lambda(u-u^2)\right)\varphi_i(x)\,dx.$$

Ellen Powell

Reminder:
$$\frac{da_i}{dt} = \int_D (-\lambda_i u + \lambda(u - u^2)) \varphi_i(x) dx.$$

Reminder:
$$\frac{da_i}{dt} = \int_D (-\lambda_i u + \lambda(u - u^2)) \varphi_i(x) dx.$$

So

$$\frac{da_1}{dt} = -\lambda \int_D u^2(x,t)\varphi(x)\,dx$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 臣 めへぐ

Ellen Powell

Reminder:
$$\frac{da_i}{dt} = \int_D (-\lambda_i u + \lambda(u - u^2)) \varphi_i(x) dx.$$

So

$$\frac{da_1}{dt} = -\lambda \int_D u^2(x, t)\varphi(x) \, dx$$
$$\frac{da_i}{dt} = (\lambda - \lambda_i)a_i(t) - \lambda \int_D u^2(x, t)\varphi_i(x) \, dx \text{ for } i \ge 2.$$

Ellen Powell

Reminder:
$$\frac{da_i}{dt} = \int_D (-\lambda_i u + \lambda(u - u^2)) \varphi_i(x) dx.$$

So

$$\frac{da_1}{dt} = -\lambda \int_D u^2(x,t)\varphi(x) \, dx$$
$$\frac{da_i}{dt} = (\lambda - \lambda_i)a_i(t) - \lambda \int_D u^2(x,t)\varphi_i(x) \, dx \text{ for } i \ge 2.$$

Guess: $u(x,t) \sim a_1(t)\varphi(x)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�(♡

Ellen Powell

Reminder:
$$\frac{da_i}{dt} = \int_D (-\lambda_i u + \lambda(u - u^2)) \varphi_i(x) dx.$$

So

$$\frac{da_1}{dt} = -\lambda \int_D u^2(x,t)\varphi(x) \, dx$$
$$\frac{da_i}{dt} = (\lambda - \lambda_i)a_i(t) - \lambda \int_D u^2(x,t)\varphi_i(x) \, dx \text{ for } i \ge 2.$$

Guess: $u(x,t) \sim a_1(t)\varphi(x)$.

Sadly, doesn't quite work.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Ellen Powell

Reminder:
$$\frac{da_1}{dt} = -\lambda \int_D u^2(x, t)\varphi(x) dx.$$

Suppose $u(x, t) \sim a_1(t)\varphi(x)$. Then

$$rac{da_1}{dt}\sim -a_1^2 imes\lambda\int_D arphi(x)^3\,dx.$$

Ellen Powell

Reminder:
$$\frac{da_1}{dt} = -\lambda \int_D u^2(x, t)\varphi(x) dx.$$

Suppose $u(x,t) \sim a_1(t)\varphi(x)$. Then

$$\frac{da_1}{dt} \sim -a_1^2 \times \lambda \int_D \varphi(x)^3 \, dx.$$

Easy to prove:

$$a_1(t) \sim rac{1}{t} imes rac{1}{\lambda \int_D arphi(y)^3}.$$

Ellen Powell

MARTINGALES

Goal: $u(x,t) \sim a_1(t)\varphi(x)$.

ELLEN POWELL CRITICAL BEHAVIOUR OF BRANCHING DIFFUSIONS IN BOUNDED DOMAINS ▲□▶ ▲□▶ ▲国▶ ▲国▶ 三国 - のへで

MARTINGALES

Goal:
$$u(x,t) \sim a_1(t)\varphi(x)$$
.

Key tool:

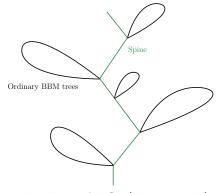
$$M_t = \sum_{i=1}^{N_t} \varphi(X_t^i)$$

is a martingale.

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへ⊙

Ellen Powell

CHANGE OF MEASURE - CRITICAL CASE



No extinction under \mathbb{Q}_x (new measure).

- Change measure by $\frac{M_t}{\mathbb{E}_{\mathbf{x}}[M_t]} = \frac{\sum_i \varphi(X_i^t)}{\varphi(\mathbf{x})}.$
- Spine particle is BM conditioned to remain in *D*.
- Branches at rate 2λ .
- Offspring are ordinary BBM processes.

-

Ellen Powell

Reminder: want $\mathbb{P}_{x}(N_{t} > 0) \sim a_{1}(t)\varphi(x)$.

Reminder: want $\mathbb{P}_{x}(N_{t} > 0) \sim a_{1}(t)\varphi(x)$.

$$\begin{array}{ll} \frac{\mathbb{P}_{x}\left(N_{t}>0\right)}{\varphi(x)} &=& \mathbb{E}_{x}\left[\frac{1}{M_{t}}\frac{M_{t}}{\varphi(x)}\mathbf{1}_{\{N_{t}>0\}}\right] \\ &=& \mathbb{Q}_{x}\left[\frac{1}{M_{t}}\right] \end{array}$$

ELLEN POWELL

Reminder: want $\mathbb{P}_{x}(N_{t} > 0) \sim a_{1}(t)\varphi(x)$.

$$\begin{array}{ll} \frac{\mathbb{P}_{x}\left(N_{t}>0\right)}{\varphi(x)} & = & \mathbb{E}_{x}\left[\frac{1}{M_{t}}\frac{M_{t}}{\varphi(x)}\mathbf{1}_{\{N_{t}>0\}}\right] \\ & = & \mathbb{Q}_{x}\left[\frac{1}{M_{t}}\right] \end{array}$$

This shouldn't depend on x for large t.

▲ロ → ▲ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ →

Ellen Powell

Reminder: want $\mathbb{P}_{x}(N_{t} > 0) \sim a_{1}(t)\varphi(x)$.

$$\begin{array}{ll} \frac{\mathbb{P}_{x}\left(N_{t}>0\right)}{\varphi(x)} & = & \mathbb{E}_{x}\left[\frac{1}{M_{t}}\frac{M_{t}}{\varphi(x)}\mathbf{1}_{\{N_{t}>0\}}\right] \\ & = & \mathbb{Q}_{x}\left[\frac{1}{M_{t}}\right] \end{array}$$

This shouldn't depend on x for large t.

イロン 不同 とうじょう シーロー うらつ

So $\mathbb{P}_{x}\left(\mathsf{N}_{t}>0
ight)\sim c(t)arphi(x)$ as $t
ightarrow\infty$,

Ellen Powell

Reminder: want $\mathbb{P}_{x}(N_{t} > 0) \sim a_{1}(t)\varphi(x)$.

$$\begin{array}{ll} \frac{\mathbb{P}_{x}\left(N_{t}>0\right)}{\varphi(x)} &=& \mathbb{E}_{x}\left[\frac{1}{M_{t}}\frac{M_{t}}{\varphi(x)}\mathbf{1}_{\{N_{t}>0\}}\right] \\ &=& \mathbb{Q}_{x}\left[\frac{1}{M_{t}}\right] \end{array}$$

This shouldn't depend on x for large t.

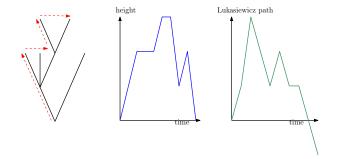
So $\mathbb{P}_{x}(N_{t}>0)\sim c(t)arphi(x)$ as $t
ightarrow\infty$, and $c(t)\sim a_{1}(t).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Ellen Powell

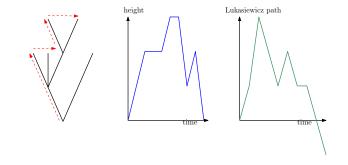
CONDITIONED RESULTS

- Asymptotic for survival probability.
- Many-to-few Lemma.
- Method of Moments.



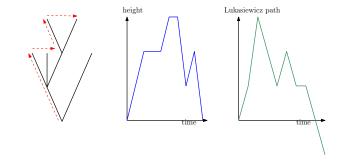
◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへぐ

Ellen Powell



 \bullet Want concatenated sequence of iid height functions \rightarrow reflecting Brownian motion.

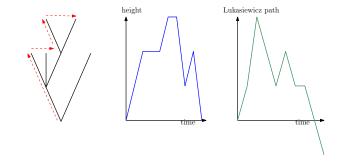
Ellen Powell



 \bullet Want concatenated sequence of iid height functions \rightarrow reflecting Brownian motion.

-

• GW case: connect height function with random walk.



 $\bullet\,$ Want concatenated sequence of iid height functions $\to\,$ reflecting Brownian motion.

- GW case: connect height function with random walk.
- BBM case: connect height function with martingale.

THANKS FOR LISTENING!

・ロ・・日・・日・・日・ うくぐ

CRITICAL BEHAVIOUR OF BRANCHING DIFFUSIONS IN BOUNDED DOMAINS

ELLEN POWELL