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Branching Diffusions in a Domain

D ⊂ Rd bounded, C 1 domain.

Start BBM at x ∈ D. Particles killed upon hitting the boundary.

Simulation by Henry Jackson.
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Notations

β = branching rate.

(X t
1 , · · · ,X t

Nt
) = system at time t.
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Extinction (BBM with binary branching)

Phase Transition (Sevast’yanov 1958, Watanabe 1965)

There exists a critical value λ of the branching parameter β s.t.

β ≤ λ⇒ a.s. extinction

β > λ⇒ survival with positive probability.

λ is the first eigenvalue of − 1
2∆ on D.
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Survival Probabilities

Survival probability = Px(Nt > 0).

Decays exponentially in subcritical case.

Critical case?

Galton-Watson Case (Kolmogorov 1938, Miermont 2008 )

Critical GW and multitype GW processes with finite variance have

P(Nn > 0) ∼ c/n

as n→∞.
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Main Results (BBM with binary branching)

Theorem (P. 2015)

In the critical case β = λ, for all x ∈ D we have

Px (Nt > 0) ∼ 1

t
× ϕ(x)

λ
∫
D
ϕ(y)3 dy

as t →∞.

ϕ is the first eigenfunction of − 1
2∆ on D, normalised to have unit L2

norm.
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Main Results (BBM with binary branching)

Theorem (P. 2015)

For any measurable E ⊂ D, if NE
t is the number of particles in E at time

t, we have (
NE

t

t

∣∣∣∣Nt > 0

)
→ Z

in distribution as t →∞, where Z is an exponential random variable
with mean

λ 〈ϕ, 1E 〉L2(D)

∫
D

ϕ3.
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Main Results (BBM with binary branching)

Corollary

Let

µt :=
1

Nt

Nt∑
i=1

δX i
t

be the uniform distribution on all particles alive at time t, given survival.
Then, for each measurable E ⊂ D, we have that

µt(E )→ µ(E )

in distribution, and hence in probability, as t →∞, where

µ(E ) =

∫
E
ϕ(x) dx∫

D
ϕ(x) dx

.
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Notations

A = offspring distribution - mean m.

L = generator.

Assume: D is C 1, E[A3] <∞ and L is uniformly elliptic and self-adjoint
with smooth coefficients.

BBM with binary branching: A ≡ 2, L =
1

2
∆.
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Extinction (general case)

Phase Transition (Sevast’yanov 1958, Watanabe 1965)

There exists a critical value λ
m−1 of the branching parameter β s.t.

β ≤ λ
m−1 ⇒ a.s. extinction

β > λ
m−1 ⇒ survival with positive probability.

λ is the first eigenvalue of −L on D.
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Main Results (general case)

Theorem (P. 2015)

In the critical case β = λ
m−1 , for all x ∈ D we have

Px (Nt > 0) ∼ 1

t
× 2(m − 1)ϕ(x)

λ (E[A2]− E[A])
∫
D
ϕ(y)3 dy

as t →∞.

ϕ is the first eigenfunction of −L on D, normalised to have unit L2 norm.
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Main Results (general case)

Theorem (P. 2015)

For any measurable E ⊂ D, if NE
t is the number of particles in E at time

t, we have (
NE

t

t

∣∣∣∣Nt > 0

)
→ Z

in distribution as t →∞, where Z is an exponential random variable
with mean

λ
(
E[A2]− E[A]

)
〈ϕ, 1E 〉L2(D)

∫
D
ϕ3

2(m − 1)
.
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Main Results (general case)

Corollary

Let

µt :=
1

Nt

Nt∑
i=1

δX i
t

be the uniform distribution on all particles alive at time t, given survival.
Then, for each measurable E ⊂ D, we have that
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Scaling Limit

What does the conditioned
tree look like?

Conjecture: It converges
(with appropriate rescaling)
to the CRT.

Work in progress!

Simulation by Igor Kortchemski.
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FKPP equation

Key Tool: Let
u(x , t) = Px(Nt > 0).

Then u satisfies the FKPP equation:

∂u

∂t
=

1

2
∆u + λ(u − u2)

in D with correct boundary/initial conditions.
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Heuristics

Reminder: ∂u
∂t = 1

2∆u + λ(u − u2).

Write

u(x , t) =
∑
i

ai (t)ϕi (x); ai (t) =

∫
D

u(x , t)ϕi (x)dx .

Then
dai
dt

=

∫
D

(
1

2
∆u + λ(u − u2)

)
ϕi (x) dx .

IBP ⇒
dai
dt

=

∫
D

(
−λiu + λ(u − u2)

)
ϕi (x) dx .
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Heuristics

Reminder: dai
dt =

∫
D

(
−λiu + λ(u − u2)

)
ϕi (x) dx .

So
da1
dt

= −λ
∫
D

u2(x , t)ϕ(x) dx

dai
dt

= (λ− λi )ai (t)− λ
∫
D

u2(x , t)ϕi (x) dx for i ≥ 2.

Guess: u(x , t) ∼ a1(t)ϕ(x).

Sadly, doesn’t quite work.
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Heuristics

Reminder: da1
dt = −λ

∫
D
u2(x , t)ϕ(x) dx .

Suppose u(x , t) ∼ a1(t)ϕ(x). Then

da1
dt
∼ −a21 × λ

∫
D

ϕ(x)3 dx .

Easy to prove:

a1(t) ∼ 1

t
× 1

λ
∫
D
ϕ(y)3

.
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Martingales

Goal: u(x , t) ∼ a1(t)ϕ(x).

Key tool:

Mt =
Nt∑
i=1

ϕ(X i
t )

is a martingale.
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Change of Measure - Critical Case

Spine

Ordinary BBM trees

Change measure by
Mt

Ex [Mt ]
=

∑
i ϕ(X

t
i )

ϕ(x) .

Spine particle is BM
conditioned to remain in
D.

Branches at rate 2λ.

Offspring are ordinary
BBM processes.

No extinction under Qx (new measure).
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Heuristics

Reminder: want Px (Nt > 0) ∼ a1(t)ϕ(x).

Px (Nt > 0)

ϕ(x)
= Ex

[
1

Mt

Mt

ϕ(x)
1{Nt>0}

]
= Qx

[
1

Mt

]

This shouldn’t depend on x for large t.

So Px (Nt > 0) ∼ c(t)ϕ(x) as t →∞, and c(t) ∼ a1(t).
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Conditioned results

Asymptotic for survival probability.

Many-to-few Lemma.

Method of Moments.
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Scaling Limit

time

height

time

Lukasiewicz path

Want concatenated sequence of iid height functions → reflecting
Brownian motion.

GW case: connect height function with random walk.

BBM case: connect height function with martingale.
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Thanks for listening!
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