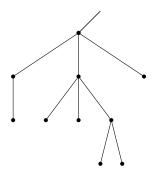
Non-extensive condensation in reinforced branching processes

– Cécile Mailler –
(Prob-L@B – University of Bath)

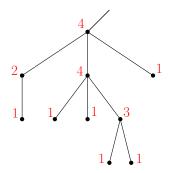
joint work with Steffen Dereich (Münster) and Peter Mörters (Bath)

June 28th, 2016

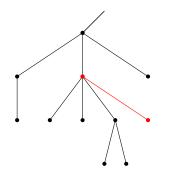
- At time 1, one node and one root-edge.
- At time *n*, add the *n*th node in the tree: link it to a random node chosen with probability proportional to the degrees.



- At time 1, one node and one root-edge.
- At time n, add the nth node in the tree: link it to a random node chosen with probability proportional to the degrees.



- At time 1, one node and one root-edge.
- At time n, add the nth node in the tree: link it to a random node chosen with probability proportional to the degrees.

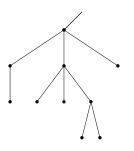


- At time 1, one node and one root-edge.
- At time *n*, add the *n*th node in the tree: link it to a random node chosen with probability proportional to the degrees.

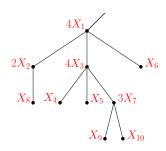
Scale-free property

$$\frac{\#\{\text{nodes of degree } k \text{ at time } n\}}{n} \sim k^{-3} \text{ when } n \to \infty$$

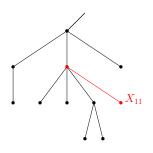
- Fix $(X_n)_{n\geq 1}$ i.i.d. fitnesses.
- At time 1, one node and one root-edge.
- At time n, add the nth node in the tree: link it to a random node chosen with probability proportional to the degrees times the fitnesses.



- Fix $(X_n)_{n\geq 1}$ i.i.d. fitnesses.
- At time 1, one node and one root-edge.
- At time n, add the nth node in the tree: link it to a random node chosen with probability proportional to the degrees times the fitnesses.

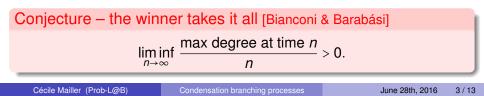


- Fix $(X_n)_{n\geq 1}$ i.i.d. fitnesses.
- At time 1, one node and one root-edge.
- At time n, add the nth node in the tree: link it to a random node chosen with probability proportional to the degrees times the fitnesses.

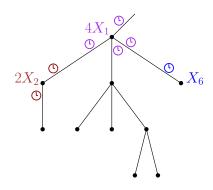


- Fix $(X_n)_{n\geq 1}$ i.i.d. fitnesses.
- At time 1, one node and one root-edge.
- At time n, add the nth node in the tree: link it to a random node chosen with probability proportional to the degrees times the fitnesses.

Two competing dynamics: rich-gets-richer and fit-gets-richer.

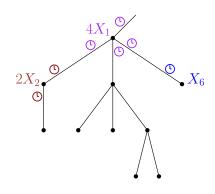


Embedding in continuous time



- Fix $(X_n)_{n\geq 1}$ i.i.d. fitnesses.
- At time 1, one node and one root-edge.
- Equip every half edge with a exponential clock of parameter the fitness of the node it's attached to.
- When a half-edge rings, add a new child to the node it's attached to.

Embedding in continuous time



- Fix $(X_n)_{n\geq 1}$ i.i.d. fitnesses.
- At time 1, one node and one root-edge.
- Equip every half edge with a exponential clock of parameter the fitness of the node it's attached to.
- When a half-edge rings, add a new child to the node it's attached to.

This is a branching process!

Our model

Define a population process as follows: at time t,

- *N*(*t*) particles (= half-edges)
- M(t) families (= set of particles sharing the same fitness = nodes)
- n^{th} family born at time τ_n , has fitness X_n and size $Z_n(t)$ (= degree)

At time *t*, each family reproduces at rate $X_nZ_n(t)$. When a birth event happens in family *n*:

- with probability γ a new particle is added to family *n*;
- with probability β a mutant having fitness $X_{M(t)+1}$ is born.

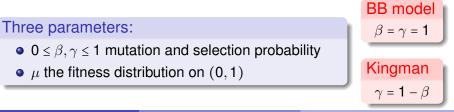
Our model

Define a population process as follows: at time t,

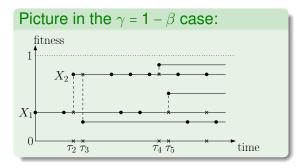
- *N*(*t*) particles (= half-edges)
- M(t) families (= set of particles sharing the same fitness = nodes)
- n^{th} family born at time τ_n , has fitness X_n and size $Z_n(t)$ (= degree)

At time *t*, each family reproduces at rate $X_nZ_n(t)$. When a birth event happens in family *n*:

- with probability γ a new particle is added to family *n*;
- with probability β a mutant having fitness $X_{M(t)+1}$ is born.



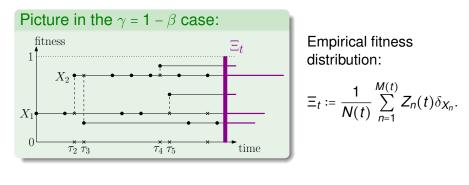
Empirical fitness distribution



Remark: Given it's birth time τ_n , each family is a Yule process of parameter γX_n , independent of the rest of the system, implying that, almost surely when $t \to \infty$

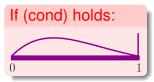
$$e^{-\gamma X_n(t-\tau_n)} Z_n(t) \rightarrow \xi_n$$
 (indep. of τ_n).

Empirical fitness distribution



at $t = \infty$

(cond) $\frac{\beta}{\beta + \gamma} \int_0^1 \frac{\mathrm{d}\mu(x)}{1 - x} < 1$



at $t = \infty$

Cécile Mailler (Prob-L@B)

Condensation branching processes

June 28th, 2016 6 / 13

Condensation result

Theorem [folklore] -

If (cond) fails then there exists $\lambda^{\star} \in [\gamma, \beta + \gamma)$ such that

$$\frac{\beta}{\beta+\gamma}\int_0^1\frac{\lambda^*}{\lambda^*-\gamma x}\,\mathrm{d}\mu(x)=1,$$

otherwise, we let $\lambda^* = \gamma$. In both cases:

•
$$\int_0^1 x d\Xi_t(x) \to \lambda^* / \beta + \gamma$$
 a.s. when $t \to \infty$;

• $\Xi_t \rightarrow \pi$ a.s. weakly when $t \rightarrow \infty$, where

(i) if (cond) fails then
$$d\pi(x) = \frac{\beta}{\beta+\gamma} \frac{\lambda^*}{\lambda^*-\gamma x} d\mu(x);$$

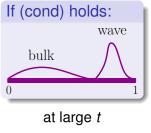
(ii) if (cond) holds then
$$d\pi(x) = \frac{\beta}{\beta+\gamma} \frac{d\mu(x)}{1-x} + \omega(\beta,\gamma)\delta_1$$
.

Remark: we get some rough information about the growth rate:

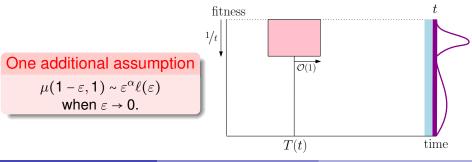
$$og N(t) = \lambda^* t + o(t).$$

Cécile Mailler (Prob-L@B)

Motivations



- how many families contribute to the condensation wave?
- how old are these families?
- what is the shape of the condensation wave?
- does the winner take it all? ...



Main results

Let $n(t) = \lfloor 1/\mu(1-1/t,1) \rfloor \approx t^{\alpha}$ and

 $T(t) = \inf\{s \ge 0 \colon M(s) \ge n(t)\}$ $\approx \text{ first time when there exists a fitness at least } 1 - 1/t$ $\approx \log t$

Theorem [DMM++]

- Size S(t) of the largest family: $e^{-\lambda^{\star}(t-T(t))}S(t) \Rightarrow \Gamma(\lambda^{\star}, \alpha)$.
- Fitness V(t) of the largest family: $t(1 V(t)) \Rightarrow W$ (explicit).
- Time of birth $\Theta(t)$ of the largest family: $\Theta(t) T(t) \Rightarrow Z$.

The winner does not take it all [DMM++]

In probability when $t \to \infty$,

$$\frac{S(t)}{N(t)} = \frac{\max_{1..M(t)} Z_n(t)}{N(t)} \to 0.$$

Our approach

$$\Gamma_t \coloneqq \sum_{n=1}^{M(t)} \delta\Big(\tau_n - T(t), t(1-X_n), \mathrm{e}^{-\gamma(t-T(t))} Z_n(t)\Big)$$

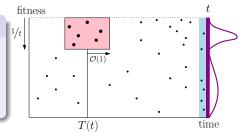
Theorem [DMM++]

When $t \to \infty$, Γ_t converges vaguely (compactly supported test functions) on $[-\infty, \infty] \times [0, \infty] \times (0, \infty]$ to the Poisson point process of intensity $d\zeta(s, x, z) = \lambda^* e^{\lambda^* s} \alpha x^{\alpha-1} e^{-z e^{\gamma(s+x)}} e^{\gamma(s+x)} ds dx dz$.

Remark: When (cond) holds, $\lambda^* = \gamma$.

Proof key points

- vague convergence on $[-\infty,\infty) \times [0,\infty) \times [0,\infty];$
- young families are too small + non-fit families are too small.



Limit law of the size of the largest family

$$\Gamma_t \coloneqq \sum_{n=1}^{M(t)} \delta \Big(\tau_n - T(t), t(1-X_n), \mathrm{e}^{-\gamma(t-T(t))} Z_n(t) \Big)$$

How to prove that $\Gamma_t \Rightarrow \text{PPP}(\zeta)$ vaguely on $[-\infty, \infty] \times [0, \infty] \times (0, \infty]$ implies that $e^{-\gamma(t-T(t))} \max_{1..M(t)} Z_n(t) \Rightarrow \Gamma(\lambda^*, \alpha)$?

Take
$$K = [-\infty, \infty] \times [0, \infty] \times [x, \infty]$$
.

$$\sum_{n=1}^{M(t)} \mathbf{1}_{K}(\tau_{n} - T(t), t(1 - X_{n}), e^{-\gamma(t - T(t))}Z_{n}(t)) \Rightarrow \operatorname{Poi}\Big(\int_{K} \mathrm{d}\zeta(s, x, z)\Big),$$

implying that $\mathbb{P}\left(e^{-\gamma(t-T(t))}\max Z_n(t) \ge x\right) = \mathbb{P}\left(\int \mathbf{1}_K d\Gamma_t(s, x, z) \ge 1\right)$ $\rightarrow \mathbb{P}\left(\mathbb{P} \circ i\left(\int_K d\zeta(s, x, z)\right) \ge 1\right) = 1 - \exp\left(-\int_K d\zeta(s, x, z)\right)$ = the Gamma law we want.

Proof of the-winner-does-not-take-it-all $\Gamma_t \coloneqq \sum_{n=1}^{M(t)} \delta(\tau_n - T(t), t(1 - X_n), e^{-\gamma(t - T(t))} Z_n(t))$

How to prove that $\Gamma_t \Rightarrow \text{PPP}(\zeta)$ vaguely on $[-\infty, \infty] \times [0, \infty] \times (0, \infty]$ implies that $\max_{1..M(t)} Z_n(t)/N(t) \to 0$ in probability?

We know that $e^{-\gamma(t-T(t))} \max Z_n(t) \to \Gamma(\lambda^*, \alpha)$.

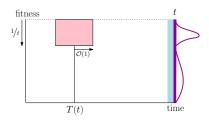
$$e^{-\gamma(t-T(t))}N(t) = e^{-\gamma(t-T(t))} \sum_{n=1}^{M(t)} Z_n(t) = \int_0^\infty z \, d\Gamma_t(s, x, z)$$
$$\geq \int_{\varepsilon}^\infty z \, d\Gamma_t(s, x, z) \to \int_{\varepsilon}^\infty z \, dPPP_{\zeta}(s, x, z).$$

We then prove that, when $\varepsilon \rightarrow 0$,

$$\mathbb{E} \int_{\varepsilon}^{\infty} z dPPP_{\zeta}(s, x, z) = \int_{\varepsilon}^{\infty} z d\zeta(s, x, z) \to +\infty,$$

and $\operatorname{Var} \int_{\varepsilon}^{\infty} z dPPP_{\zeta}(s, x, z) = O(1).$ (Apply Tchebychev to conclude.)

Conclusion and open problems



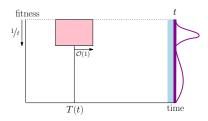
We have proved

- results about the largest family: we know its size, when it was born and its fitness.
- that the winner does not take it all (disproves BB's conjecture).

Still many open questions:

- Can we estimate better the growth rate? $N(t) = e^{\lambda^* t + o(t)}$.
- What is the shape of the wave? Need to consider a wider box.
- What if the fitness distribution has a different behaviour near 1?
- What if the fitness distribution is unbounded? What is the growth rate? What kind of distribution can we tackle?

Conclusion and open problems



We have proved

- results about the largest family: we know its size, when it was born and its fitness.
- that the winner does not take it all (disproves BB's conjecture).

Still many open questions:

- Can we estimate better the growth rate? $N(t) = e^{\lambda^* t + o(t)}$.
- What is the shape of the wave? Need to consider a wider box.
- What if the fitness distribution has a different behaviour near 1?
- What if the fitness distribution is unbounded? What is the growth rate? What kind of distribution can we tackle?

Thanks!!