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Introduction The preferential attachment tree - Barabási & Albert

The preferential attachment tree

At time 1, one node and one
root-edge.

At time n, add the nth node in
the tree: link it to a random
node chosen with probability
proportional to the degrees.
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Introduction The preferential attachment tree - Barabási & Albert

The preferential attachment tree

At time 1, one node and one
root-edge.

At time n, add the nth node in
the tree: link it to a random
node chosen with probability
proportional to the degrees.

Scale-free property
#{nodes of degree k at time n}

n
∼ k−3 when n →∞.
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Introduction The preferential attachment tree - Bianconi & Barabási

The preferential attachment tree with fitnesses

Fix (Xn)n≥1 i.i.d. fitnesses.

At time 1, one node and one
root-edge.

At time n, add the nth node in
the tree: link it to a random
node chosen with probability
proportional to the degrees
times the fitnesses.
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Introduction The preferential attachment tree - Bianconi & Barabási

The preferential attachment tree with fitnesses

X11

Fix (Xn)n≥1 i.i.d. fitnesses.

At time 1, one node and one
root-edge.

At time n, add the nth node in
the tree: link it to a random
node chosen with probability
proportional to the degrees
times the fitnesses.

Two competing dynamics: rich-gets-richer and fit-gets-richer.

Conjecture – the winner takes it all [Bianconi & Barabási]

lim inf
n→∞

max degree at time n
n

> 0.
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Introduction The preferential attachment tree - Bianconi & Barabási

Embedding in continuous time

2X2

4X1

X6

Fix (Xn)n≥1 i.i.d. fitnesses.

At time 1, one node and one
root-edge.

Equip every half edge with a
exponential clock of parameter
the fitness of the node it’s
attached to.

When a half-edge rings, add a
new child to the node it’s
attached to.
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Embedding in continuous time

2X2

4X1

X6

Fix (Xn)n≥1 i.i.d. fitnesses.

At time 1, one node and one
root-edge.

Equip every half edge with a
exponential clock of parameter
the fitness of the node it’s
attached to.

When a half-edge rings, add a
new child to the node it’s
attached to.

This is a branching process!

Cécile Mailler (Prob-L@B) Condensation branching processes June 28th, 2016 4 / 13



Reinforced branching processes The model

Our model
Define a population process as follows: at time t ,

N(t) particles (= half-edges)
M(t) families (= set of particles sharing the same fitness = nodes)
nth family born at time τn, has fitness Xn and size Zn(t) (= degree)

At time t , each family reproduces at rate XnZn(t). When a birth event
happens in family n:

with probability γ a new particle is added to family n;
with probability β a mutant having fitness XM(t)+1 is born.

Three parameters:
0 ≤ β, γ ≤ 1 mutation and selection probability
µ the fitness distribution on (0,1)

BB model
β = γ = 1

Kingman
γ = 1 − β
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Reinforced branching processes Condensation

Empirical fitness distribution

Picture in the γ = 1 − β case:

time

fitness
1

0

X1

X2

τ2 τ3 τ4 τ5

Remark: Given it’s birth time τn, each family is a Yule process of
parameter γXn, independent of the rest of the system, implying that,
almost surely when t →∞

e−γXn(t−τn)Zn(t)→ ξn (indep. of τn).

Cécile Mailler (Prob-L@B) Condensation branching processes June 28th, 2016 6 / 13



Reinforced branching processes Condensation

Empirical fitness distribution

Picture in the γ = 1 − β case:

time

fitness
1

0

X1

X2

τ2 τ3 τ4 τ5

Ξt Empirical fitness
distribution:

Ξt ∶=
1

N(t)

M(t)
∑
n=1

Zn(t)δXn .

If (cond) fails:

0 1

at t =∞

(cond)

β

β + γ ∫
1

0

dµ(x)
1 − x

< 1

If (cond) holds:

0 1

at t =∞
Cécile Mailler (Prob-L@B) Condensation branching processes June 28th, 2016 6 / 13



Reinforced branching processes Condensation

Condensation result

Theorem [folklore] –
If (cond) fails then there exists λ⋆ ∈ [γ, β + γ) such that

β

β + γ ∫
1

0

λ⋆

λ⋆ − γx
dµ(x) = 1,

otherwise, we let λ⋆ = γ. In both cases:

∫ 1
0 xdΞt(x)→ λ⋆/β+γ a.s. when t →∞;

Ξt → π a.s. weakly when t →∞, where

(i) if (cond) fails then dπ(x) = β
β+γ

λ⋆
λ⋆−γx dµ(x);

(ii) if (cond) holds then dπ(x) = β
β+γ

dµ(x)
1−x + ω(β, γ)δ1.

Remark: we get some rough information about the growth rate:

log N(t) = λ⋆t + o(t).
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Reinforced branching processes Condensation

Motivations

If (cond) holds:

0 1

bulk

wave

at large t

how many families contribute to the
condensation wave?
how old are these families?
what is the shape of the condensation wave?
does the winner take it all? ...

One additional assumption
µ(1 − ε,1) ∼ εα`(ε)

when ε→ 0.

t

T (t)

1/t

time

fitness

O(1)
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Reinforced branching processes The winner does not take it all

Main results
Let n(t) = ⌊1/µ(1−1/t,1)⌋ ≈ tα and

T (t) = inf{s ≥ 0 ∶ M(s) ≥ n(t)}
≈ first time when there exists a fitness at least 1 − 1/t

≈ log t

Theorem [DMM++]

Size S(t) of the largest family: e−λ
⋆(t−T(t))S(t)⇒ Γ(λ⋆, α).

Fitness V(t) of the largest family: t(1 −V(t))⇒W (explicit).
Time of birth Θ(t) of the largest family: Θ(t) − T (t)⇒ Z .

The winner does not take it all [DMM++]

In probability when t →∞, S(t)
N(t) =

max1..M(t) Zn(t)
N(t) → 0.
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Ideas of proofs A point process

Our approach

Γt ∶=
M(t)
∑
n=1

δ(τn − T (t), t(1 −Xn),e−γ(t−T(t))Zn(t))

Theorem [DMM++]

When t →∞, Γt converges vaguely (compactly supported test
functions) on [−∞,∞] × [0,∞] × (0,∞] to the Poisson point process of
intensity dζ(s,x ,z) = λ⋆eλ⋆s αxα−1 e−zeγ(s+x)

eγ(s+x) ds dx dz.

Remark: When (cond) holds, λ⋆ = γ.

Proof key points
1 vague convergence on

[−∞,∞) × [0,∞) × [0,∞];
2 young families are too small +

non-fit families are too small.

t

T (t)

1/t

time

fitness

O(1)
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Ideas of proofs Largest family

Limit law of the size of the largest family

Γt ∶=
M(t)

∑
n=1

δ(τn − T (t), t(1 −Xn),e−γ(t−T(t))Zn(t))

How to prove that Γt ⇒ PPP(ζ) vaguely on [−∞,∞] × [0,∞] × (0,∞]
implies that e−γ(t−T(t))max1..M(t) Zn(t)⇒ Γ(λ⋆, α)?

Take K = [−∞,∞] × [0,∞] × [x ,∞].

M(t)
∑
n=1

1K (τn − T (t), t(1 −Xn),e−γ(t−T(t))Zn(t))⇒ Poi(∫
K

dζ(s,x ,z)),

implying that P(e−γ(t−T(t))max Zn(t) ≥ x) = P(∫ 1K dΓt(s,x ,z) ≥ 1)

→ P(Poi(∫
K

dζ(s,x ,z)) ≥ 1) = 1 − exp ( − ∫
K

dζ(s,x ,z))
= the Gamma law we want.
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Ideas of proofs The winner does not take it all

Proof of the-winner-does-not-take-it-all
Γt ∶=

M(t)

∑
n=1

δ(τn − T (t), t(1 −Xn),e−γ(t−T(t))Zn(t))

How to prove that Γt ⇒ PPP(ζ) vaguely on [−∞,∞] × [0,∞] × (0,∞]
implies that max1..M(t) Zn(t)/N(t)→ 0 in probability?

We know that e−γ(t−T(t))max Zn(t)→ Γ(λ⋆, α).

e−γ(t−T(t))N(t) = e−γ(t−T(t))
M(t)
∑
n=1

Zn(t) = ∫
∞

0
z dΓt(s,x ,z)

≥ ∫
∞

ε
z dΓt(s,x ,z)→ ∫

∞

ε
zdPPPζ(s,x ,z).

We then prove that, when ε→ 0,

E∫
∞

ε
zdPPPζ(s,x ,z) = ∫

∞

ε
zdζ(s,x ,z)→ +∞,

and Var∫
∞

ε
z dPPPζ(s,x ,z) = O(1). (Apply Tchebychev to conclude.)
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Conclusion

Conclusion and open problems
t

T (t)

1/t

time

fitness

O(1)

We have proved
results about the largest
family: we know its size, when
it was born and its fitness.
that the winner does not take it
all (disproves BB’s conjecture).

Still many open questions:
Can we estimate better the growth rate? N(t) = eλ⋆t+o(t).
What is the shape of the wave? Need to consider a wider box.
What if the fitness distribution has a different behaviour near 1?
What if the fitness distribution is unbounded? What is the growth
rate? What kind of distribution can we tackle?

Thanks!!
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