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What is a (real-valued) self-repelling process?

If (Xt)t≥0 is a one-dimensional continuous process, define its
occupation time measure:
For all t ≥ 0, for all borel set A,

µt(A) =

∫ t

0
1{Xs∈A}ds

Assumption: This measure has a density i.e.

µt([x , x + ε]) ∼
ε→0

ε Lt(x)

−→ Lt : R→ R+ is called “local time”.
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What is a (real-valued) self-repelling process?

Heuristical (vague) definition: (Xt)t is called self-repulsive when:
I (Xt , Lt(·))t is a Markov process.
I (Xt)t prefers to go to the less visited places
−→ pushed away from x ∈ R where Lt(x) is large.
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Process with its local time
Note that we can consider the 1 + 1-dimensional process

(Xt ,Ht) := (Xt , Lt(Xt))

(Xt ,Ht) is a space filling curve.

x

Lt(x)

Time t

position Xt

local time Ht := Lt(Xt)

Figure : Picture at time t: Xt and its local time Lt(·)
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A first example: Brownian polymers

Brownian polymers were introduced by Durrett and Rogers in 1992.

dXt = −∇(b ∗ Lt(Xt + ·))|0 dt + dBt

Possible case: b = b(ε) is an approximation of the Dirac function at
0.

dXt = −∇(b(ε) ∗ Lt(Xt + ·))|0 dt + dBt

What happens when ε→ 0? Should converge to the true
self-repelling motion (introduced after).
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TSRM definition and first properties

Results of the papers of B. Toth - W. Werner 1998 and F.
Soucaliuc - B. Toth - W. Werner 2000
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Short introduction to the true self-repelling motion (TSRM)

B. Tóth and W. Werner constructed a one-dimensional continuous
self-repelling process (Xt , t ≥ 0) called the true self-repelling
motion (TSRM).

For the construction, they used a family of coalescing reflected
Brownian motions in the upper half plane now called Brownian
Web. The TSRM is defined as the trace of the contour of the tree
of these coalescing Brownian motions.
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TSRM construction

Take the Brownian Web (Λx ,h, (x , h) ∈ R× R+).

Let us consider the process (Xt ,Ht) starting at (0, 0) which traces
the contour of the tree of these coalescing Brownian motions.
−→ space-filling curve.

Parametrization: by the area it has swept. For every (x , h) in the
upper half plane, the process (Xt ,Ht) visits the point (x , h) at the
random time t = Tx ,h :=

∫
R Λx ,h(y)dy

TSRM = first coordinate (Xt).
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Some first properties

The TSRM is unusual compared to more classical processes.

First properties (etablished by Bálint Tóth and Wendelin Werner):
I Continuity and recurrence.

I Scaling and local variation: For all a > 0, (Xat , t ≥ 0) and
(a2/3Xt , t ≥ 0) have the same distribution and the TSRM is of
finite variation of order 3/2.

I Local time: The TSRM admits a local time Lt(·) and a.s., for
every (x , h) ∈ R× R+, the Brownian Web curves corresponds
to the local time at times Tx ,h (strong Ray Knight theorem).
It implies Ht = Lt(Xt).
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Some first properties

I Markov property: (Xt , Lt(·))t is a Markov process.

I Localization: Interaction is local: the law of X just after t
depends only on Lt around the point Xt .

Moreover, we have a dynamical equation:

“dXt = lim
ε→0

1
2ε

(Lt(Xt + ε)− Lt(Xt − ε)) dt.”

Limit holds in the probability sense.

12 / 20



Some first properties

I Markov property: (Xt , Lt(·))t is a Markov process.
I Localization: Interaction is local: the law of X just after t

depends only on Lt around the point Xt .
Moreover, we have a dynamical equation:

“dXt = lim
ε→0

1
2ε

(Lt(Xt + ε)− Lt(Xt − ε)) dt.”

Limit holds in the probability sense.

12 / 20



My contributions
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Large deviations of the TSRM

TSRM is an unusual process and it gives motivation to study some
of its finest properties to discover the features it shares/does not
share with the other processes.

Proposition (L.D.)

I When x →∞, P(X1 > x) = exp(−κx3 + O(ln(x))) for some
explicit κ (in terms of zeros of Airy function).

I When h→∞, P(H1 > h) = exp(−8h3/9 + O(ln(h))).
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Law of the iterated logarithm

Pushing forward those results permits to derive a LIL for the TSRM
when both t is large and t is small:

Proposition (L.D.)

a.s., lim supt→0 t−2/3(ln(ln(1/t)))−1/3Xt = 1/κ1/3.
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Marginal distributions
In a joint work with Bálint Tóth, we computed the marginal
distributions of this process.

Proposition (L.D., B. Tóth)

I The density of X1 denoted by ν1(x) is equal to:

ν1(x) =
∞∑

k=1

32/3

27/3

(
Γ(2/3)

Γ(1/3)

)2

|a′k |−3f2/3(21/3|a′k ||x |)

where the scaling factors a′k are the zeros of the derivative of
the Airy function and f2/3 is the Mittag-Leffler’s function.

I The density of H1 denoted by ν2(h) is equal to:

ν2(h) =
2 · 61/3√π

Γ(1/3)2 exp(−(8h3)/9)U(1/6, 2/3; (8h3)/9)

where U is the hypergeometric function.
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Marginal distributions

-6 -4 -2 2 4 6

0.05

0.10

0.15

0.20

Figure : Density of X1 (displacement at time 1)
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A clever (self-repelling) burglar
What is the conditional law of the position X1 knowing L1(·)?
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Figure : On the left (Xt , t ∈ [0, 1]), and on the right the local time L1(·)
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Result
Proposition (L.D.)

The conditional law of X1 knowing its local time at time 1, L1(·), is
uniform on the interval I defined by:

Figure : Definition of I
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Thank you!
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