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What is a (real-valued) self-repelling process?

If (X¢)t>0 is a one-dimensional continuous process, define its
occupation time measure:
For all t > 0, for all borel set A,

t
() = [ Lixends
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What is a (real-valued) self-repelling process?

If (X¢)t>0 is a one-dimensional continuous process, define its
occupation time measure:
For all t > 0, for all borel set A,

t
() = [ Lixends
Assumption: This measure has a density i.e.

el x + <))~ e Le(x)

— L : R — Ry is called “local time".

2/20



What is a (real-valued) self-repelling process?

Heuristical (vague) definition: (X); is called self-repulsive when:
> (Xt, Lt(+))+ is a Markov process.

> (X:): prefers to go to the less visited places
— pushed away from x € R where L.(x) is large.
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Process with its local time
Note that we can consider the 1 + 1-dimensional process

(X, He) == (X, Le(Xt))
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Process with its local time
Note that we can consider the 1 + 1-dimensional process

(X, He) == (X, Le(Xt))

(Xt, H:) is a space filling curve.

local time H; = L;(X;)

position X;

Figure : Picture at time t: X; and its local time L¢(-)
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A first example: Brownian polymers

Brownian polymers were introduced by Durrett and Rogers in 1992.
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A first example: Brownian polymers
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Possible case: b = b(®) is an approximation of the Dirac function at
0.

dX; = —V(b') « Le(X; + -))|o dt + dB;
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A first example: Brownian polymers

Brownian polymers were introduced by Durrett and Rogers in 1992.
Possible case: b = b(®) is an approximation of the Dirac function at
0.

dXe = =V(b) « Lo(Xe + -))|o dt + dB;

What happens when ¢ — 0?7 Should converge to the true
self-repelling motion (introduced after).
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A first example: Brownian polymers

I
position X

Figure : Picture at time t: X; and its local time L¢(-)

6/20



A first example: Brownian polymers

I
position X

Figure : Picture at time t: X; and its local time L¢(-)
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TSRM definition and first properties

Results of the papers of B. Toth - W. Werner 1998 and F.
Soucaliuc - B. Toth - W. Werner 2000



Short introduction to the true self-repelling motion (TSRM)

B. T6th and W. Werner constructed a one-dimensional continuous
self-repelling process (X:, t > 0) called the true self-repelling
motion (TSRM).
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Short introduction to the true self-repelling motion (TSRM)

B. T6th and W. Werner constructed a one-dimensional continuous
self-repelling process (X:, t > 0) called the true self-repelling
motion (TSRM).

For the construction, they used a family of coalescing reflected
Brownian motions in the upper half plane now called Brownian
Web. The TSRM is defined as the trace of the contour of the tree
of these coalescing Brownian motions.
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TSRM construction

Take the Brownian Web (A, p, (x,h) € R x Ry).
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TSRM construction

Take the Brownian Web (A, p, (x,h) € R x R,).

Let us consider the process (X:, H;) starting at (0,0) which traces
the contour of the tree of these coalescing Brownian motions.
— space-filling curve.

Parametrization: by the area it has swept. For every (x, h) in the
upper half plane, the process (X:, H) visits the point (x, h) at the
random time t = T, p := [p Ax p(y)dy

TSRM = first coordinate (X¢).
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Some first properties

The TSRM is unusual compared to more classical processes.
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Some first properties

The TSRM is unusual compared to more classical processes.

First properties (etablished by Balint Téth and Wendelin Werner):
» Continuity and recurrence.

» Scaling and local variation: For all a > 0, (Xz,t > 0) and
(a?/3X;, t > 0) have the same distribution and the TSRM is of
finite variation of order 3/2.
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Some first properties

The TSRM is unusual compared to more classical processes.

First properties (etablished by Balint Téth and Wendelin Werner):
» Continuity and recurrence.
» Scaling and local variation: For all a > 0, (Xz,t > 0) and

(a?/3X;, t > 0) have the same distribution and the TSRM is of
finite variation of order 3/2.

» Local time: The TSRM admits a local time L;(-) and a.s., for
every (x,h) € R x R, the Brownian Web curves corresponds

to the local time at times T, ; (strong Ray Knight theorem).
It implies Hy = L¢(X¢).

11/20



Some first properties

» Markov property: (Xt, L¢(+))+ is a Markov process.
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Some first properties

» Markov property: (Xt, L¢(+))+ is a Markov process.
» Localization: Interaction is local: the law of X just after t

depends only on L; around the point X;.
Moreover, we have a dynamical equation:

“dXe = lim — (Le(Xe + ) — Le(Xe — 2)) dt.”
e—0 2¢

Limit holds in the probability sense.
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My contributions
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Large deviations of the TSRM

TSRM is an unusual process and it gives motivation to study some
of its finest properties to discover the features it shares/does not
share with the other processes.

Proposition (L.D.)

» When x — 0o, P(X1 > x) = exp(—kx> + O(In(x))) for some
explicit k (in terms of zeros of Airy function).

» When h — oo, P(Hy > h) = exp(—8h3/9 + O(In(h))).
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Law of the iterated logarithm

Pushing forward those results permits to derive a LIL for the TSRM
when both t is large and t is small:

Proposition (L.D.)
a.s., limsup,_o t=2/3(In(In(1/t)))~Y/3X; = 1/x1/3.
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Marginal distributions

In a joint work with Balint Téth, we computed the marginal
distributions of this process.

Proposition (L.D., B. Téth)
» The density of X1 denoted by v1(x) is equal to:

= 3%3 (T(2/3)
- ; 273 <F(1/3)

2
vi(x) ) 36523 Ix])

where the scaling factors a)_are the zeros of the derivative of
the Airy function and f,/3 is the Mittag-Leffler’s function.

» The density of Hy denoted by v5(h) is equal to:

63 /7
va(h) = W exp(—(8K%)/9) U(1/6,2/3; (84°)/9)

where U is the hypergeometric function.

16 /20



Marginal distributions

Figure : Density of X; (displacement at time 1)
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A clever (self-repelling) burglar
What is the conditional law of the position X; knowing L;(-)?

0.5

0.8

0.6 -

0.4

0.2 4

Figure : On the left (X, t € [0,1]), and on the right the local time Ly(-)
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A clever (self-repelling) burglar
What is the conditional law of the position X; knowing L;(-)?
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Figure : On the left (X, t € [0,1]), and on the right the local time Ly(-)
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Result
Proposition (L.D.)

The conditional law of X1 knowing its local time at time 1, L;(-), is
uniform on the interval | defined by:
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Figure : Definition of /
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Thank you!



