MA40189 - Useful results for Markov chains https://moodle.bath.ac.uk/course/view.php?id=1179

Simon Shaw, s.shaw@bath.ac.uk

2024/25 Semester II

Irreducible

Definition

A Markov chain is said to be **irreducible** if for every *i*, *j* there exists *k* such that

$$P(X_{t+k}=j \mid X_t=i) > 0$$

that is, all states can be reached from any other state in a finite number of moves.

▲ 同 ▶ → 三 ▶

Periodic/Aperiodic

Definition

A state *i* is said to be **periodic** with period d_i if starting from state *i* the chain returns to it within a fixed number of steps d_i or a multiple of d_i .

$$d_i = gcd\{t : P(X_t = i \mid X_0 = i) > 0\}$$

where gcd is the greatest common divisor. If $d_i = 1$ then the state *i* is said to be **aperiodic**.

Irreducible Markov chains have the property that all states have the same period. A Markov chain is called **aperiodic** if some (and hence all) states are aperiodic.

A (10) < A (10) < A (10) </p>

Recurrent/Positive Recurrent

Definition

Let τ_{ii} be the time of the first return to state i

$$\tau_{ii} = \min\{t > 0 : X_t = i \mid X_0 = i\}$$

A state *i* is recurrent if $P(\tau_{ii} < \infty) = 1$ and positive recurrent if $E(\tau_{ii}) < \infty$.

Thus, a state i is recurrent if the chain will return to state i with probability 1 and positive recurrent if, with probability 1, it will return in a finite time. An irreducible Markov chain is positive recurrent if some (and hence all) states i are positive recurrent.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Definition

A state is said to be **ergodic** if it is aperiodic and positive recurrent. A Markov chain is ergodic if all of its states are ergodic.

▲ □ ▶ ▲ □ ▶ ▲ □

Stationary

Definition

A distribution π is said to be a **stationary distribution** of a Markov chain with transition probabilities $P_{ij} = P(X_t = j | X_{t-1} = i)$, if

$$\sum_{i\in S}\pi_i P_{ij} = \pi_j \ orall j\in S$$

where *S* denotes the state space.

In matrix notation if P is the matrix of transition probabilities and π the vector with *i*th entry π_i then the stationary distribution satisfies

$$\pi = \pi P$$

A (10) < A (10) < A (10) </p>

Existence and uniqueness

Theorem

Each irreducible and aperiodic Markov chain has a unique stationary distribution π .

Convergence

Theorem

Let X_t be an irreducible and aperiodic Markov chain with stationary distribution π and arbitrary initial value $X_0 = x_0$. Then

$$P(X_t = x \mid X_0 = x_0) \quad \rightarrow \quad \pi(x)$$

as $t
ightarrow \infty$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

Ergodic

Theorem

Let X_t be an ergodic Markov chain with limiting distribution π . If $E\{g(X) | X \sim \pi(x)\} < \infty$ then the sample mean converges to the expectation of g(X) under π ,

$$P\left\{\frac{1}{N}\sum_{i=1}^{N}g(X_i)\to E\{g(X)\,|\,X\sim\pi(x)\}\right\} = 1$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Consequence of these theorems

If we can construct an ergodic Markov chain θ_t which has the posterior distribution $f(\theta | x)$ as the stationary distribution $\pi(\theta)$ then, starting from an initial point θ_0 , if we run the Markov chain for long enough, we will sample from the posterior.

- for large t, $\theta_t \sim \pi(\theta) = f(\theta \mid x)$
- for each s > t, $heta_s \sim \pi(heta) = f(heta \,|\, x)$
- the ergodic averages converge to the desired expectations under the target distribution.