Previously on MA40189:

- posterior \(f(\theta \mid x) = c g(\theta) \) where \(g(\theta) \propto f(x \mid \theta) f(\theta) \)
- worked with tractable distributions and identified \(c \) by recognising \(g(\theta) \) as a kernel of a familiar parametric family

Today on MA40189:

- **Bayesian computation**: calculate posterior summaries from distributions \(f(\theta \mid x) = c g(\theta) \) which are
 - mathematically complex
 - often high dimensional
- **Normal approximation** about the mode \(\tilde{\theta} \)
 - \(\theta \mid x \sim N(\tilde{\theta}, I^{-1}(\tilde{\theta} \mid x)) \) where \(I(\theta \mid x) \) is the observed information,
 \[
 I(\theta \mid x) = -\frac{\partial^2}{\partial \theta^2} \log f(\theta \mid x)
 \]
- **posterior sampling**: if we can sample from the posterior, can use properties of the sample to estimate properties of the posterior
- **Monte-Carlo integration**: want to estimate
 \[
 I = E(g(X)) = \int_X g(x) f(x) \, dx
 \]
 - sample \(x_1, \ldots, x_N \) from \(f(x) \)
 - estimate \(I \) by sample mean of \(g(x_1), \ldots, g(x_N) \)