Previously on MA40189:

• prediction about future observations of data

$$f(z \mid x) = \int_{\theta} f(z \mid x, \theta) f(\theta \mid x) d\theta$$

• if X and Z are conditionally independent given θ then only need the distributions $Z \mid \theta$ and $\theta \mid x$ and

$$f(z \mid x) = \int_{\theta} f(z \mid \theta) f(\theta \mid x) d\theta$$

Today on MA40189:

- example of Binomial-Beta distribution
 - prior for $\theta \sim Beta(\alpha, \beta)$
 - observations, $X \mid \theta \sim Bin(n, \theta), Z \mid \theta \sim Bin(m, \theta)$
 - distribution of $Z \mid x$ is Binomial-Beta.
- if X and Z are conditionally independent given θ then $E(Z \mid X) = E(E(Z \mid \theta) \mid X)$

$$Var(Z \mid X) = Var(E(Z \mid \theta) \mid X) + E(Var(Z \mid \theta) \mid X)$$

- observations that classicists judge as independent (and identically distributed) judged as exchangeable by Bayesians
- X_1, \ldots, X_n finitely exchangeable if

$$f(x_1,...,x_n) = f(x_{\pi(1)},...,x_{\pi(n)})$$

for all permutations π defined on $\{1, \ldots, n\}$