Previously on MA40189:

- using the posterior for inference: region that captures most of the values of θ (assumed univariate)
- credible interval (θ_L, θ_U) is an interval within which $100(1 \alpha)\%$ of the posterior distribution lies

 $P(\theta_L < \theta < \theta_U \,|\, x) = 1 - \alpha$

Today on MA40189:

• highest density region C such that $P(\theta \in C \mid x) = 1 - \alpha$ and if $\theta_1 \in C, \theta_2 \notin C$

 $f(\theta_1 \,|\, x) \ \ge \ f(\theta_2 \,|\, x)$

- HDRs difficult to compute but may be more meaningful for multimodal distribitions
- prediction about future observations of data

$$\begin{array}{rcl} f(z \mid x) \; = \; \int_{\theta} f(z \mid x, \theta) f(\theta \mid x) \, d\theta \\ & = \; \int_{\theta} f(z \mid \theta) f(\theta \mid x) \, d\theta \end{array}$$

if X and Z are conditionally independent given θ

• example of Binomial-Beta distribution

- prior for $\theta \sim Beta(\alpha, \beta)$

- observations, $X \mid \theta \sim Bin(n, \theta), Z \mid \theta \sim Bin(m, \theta)$
- distribution of $Z \mid x$ is Binomial-Beta.