Today in MA40189:

- consider an experiment with possible outcomes $\theta \in \Theta$
 - chose some decision $d \in \mathcal{D}$ where the consequences depend upon θ
 - \circ loss function $L(\theta,d)$ measures consequence of decision d if θ occurs
 - want to minimise loss: if $L(\theta, d_1) < L(\theta, d_2)$ we prefer d_1 to d_2
- focus upon statistical decision theory: consider d as being a method of inference for θ
- statistical decision problem: $[\Theta, \mathcal{D}, \pi(\theta), L(\theta, d)]$
 - \circ solve $[\Theta, \mathcal{D}, f(\theta), L(\theta, d)]$ for immediate decision
 - $\circ \text{ solve } [\Theta, \mathcal{D}, f(\theta \,|\, x), L(\theta, d)] \text{ for decision having observed } \\ \text{ the sample } x \\$
- Bayes risk $\rho^*(\pi)$ minimises expected loss

 $ho(\pi,d) = \int_{\theta} L(\theta,d) \pi(\theta) \, d\theta$

- Bayes rule d^* decision which achieves Bayes risk
- example of quadratic loss: Bayes rule is the mean, Bayes risk is the variance