Previously on MA40189:

• stationary distribution π of chain with transition probability $q_1(\phi \mid \theta)$ satisfies

$$\pi(\phi) = \sum_{\theta \in S} \pi(\theta) q_1(\phi \mid \theta)$$

- Metropolis-Hastings algorithm:
 - sample ϕ from proposal distribution $q(\phi \mid \theta)$
 - either accept or reject move according to acceptance probability $\alpha(\theta, \phi)$

$$\alpha(\theta, \phi) = \min\left(1, \frac{\pi(\phi)q(\theta \mid \phi)}{\pi(\theta)q(\phi \mid \theta)}\right)$$

- typically, $\pi(\theta) = f(\theta \mid x), \ \theta = \theta^{(t-1)}, \ \phi = \theta^*$ for sampling from posterior at time t

Today on MA40189:

• if detailed balance

$$\pi(\theta)q_1(\phi \mid \theta) = \pi(\phi)q_1(\theta \mid \phi)$$

satisfied then $q_1(\theta \mid \phi)$ are the transition probabilities of chain with stationary distribution π

• demonstrate that Metropolis-Hastings algorithm with proposal $q(\phi \mid \theta)$ has π as the stationary distribution