Previously on MA40189:

- aim: inferences about parameter θ given data x
- <u>classical setting</u>: θ is a fixed unknown constant; work with $f(x \mid \theta)$ (a function of the data x for given θ)
- Bayesian approach: θ is treated as random; specify a prior distribution $f(\theta)$ (a function of the parameter θ)

Today on MA40189:

• look more closely at the Bayesian approach and its use of Bayes' theorem:

$$f(\theta \mid x) = \frac{f(x \mid \theta)f(\theta)}{f(x)} \propto f(x \mid \theta)f(\theta)$$

• updating rule is thus:

Posterior \propto Prior \times Likelihood

• look at using Bayes' theorem for general random variables X and Y