Previously on MA40189:

- Gibbs sampler: sample from a high-dimensional distribution by sampling from low-dimensional conditionals
- distribution of interest is $\pi(\theta)$ where $\theta = (\theta_1, \ldots, \theta_d)$
- for each p = 1, ..., d obtain $\theta_p^{(t)}$ from conditional distribution

$$\pi(\theta_p \mid \theta_1^{(t)}, \dots, \theta_{p-1}^{(t)}, \theta_{p+1}^{(t-1)}, \dots, \theta_d^{(t-1)})$$

Today on MA40189:

• sampling from the joint distribution of $\theta = (\theta_1, \theta_2)$ where

$$f(\theta_1, \theta_2) \propto {\binom{n}{\theta_1}} \theta_2^{\theta_1 + \alpha - 1} (1 - \theta_2)^{n - \theta_1 + \beta - 1}$$

for $\theta_1 \in \{0, 1, \dots, n\}$ and $0 \le \theta_2 \le 1$

- $\circ f(\theta_1 | \theta_2) \propto f(\theta_1, \theta_2)$ as a function of θ_1
- $\circ f(\theta_2 | \theta_1) \propto f(\theta_1, \theta_2)$ as a function of θ_2
- Illustrate the example
- Gibbs sampler can be viewed as a special case of the Metropolis-Hastings algorithm:

each iteration t consists of d Metropolis-Hastings steps
each with an acceptance probability of one

• Explore why the Metropolis-Hastings algorithm works