Previously on MA40189:

• exchangeable sequences with exponential family likelihood have sufficient statistics:

$$t_n = t_n(X_1, \dots, X_n) = \left[n, \sum_{i=1}^n u_1(X_i), \dots, \sum_{i=1}^n u_k(X_i) \right]$$

• conjugacy of exponential family distributions:

 \circ regard $f(x \mid \theta)$ as a function of θ ,

$$f(x \mid \theta) = \exp\left\{\sum_{j=1}^{k} u_j(x)\phi_j(\theta) + 1g(\theta) + h(x)\right\}$$

• posterior is

$$f(\theta \mid x) \propto \exp\left\{\sum_{j=1}^{k} (a_j + u_j(x))\phi_j(\theta) + (d+1)g(\theta)\right\}$$

Today on MA40189:

- usefulness of conjugate priors
 - ease the inferential process, posterior simple to obtain ease burden on prior specification
- noninformative prior distributions: let the data speak for themselves
 - represent ignorance by using improper uniform distribution; posterior is then the scaled likelihood
 - alternative is the Jeffreys prior for univariate θ , $f(\theta) \propto \sqrt{I(\theta)}$ where $I(\theta)$ is the Fisher information