Today in MA40189:

- \bullet aim: inferences about parameter θ given data x
- <u>Classical setting</u>
 - the data is treated as if it is random, even after it has been observed
 - the parameter is viewed as a fixed unknown constant
 - -estimator T(X) has properties derived from distribution $f(x \mid \theta)$, only distribution available to the classicist
- <u>Bayesian approach</u>
 - the parameter, having not been observed, is treated as random and thus possesses a probability distribution
 - the data, having been observed, is treated as being fixed
 - the Bayesian has distributions $f(\theta)$ (prior) and $f(\theta \mid x)$ (posterior) as well as $f(x \mid \theta)$