1. Let X_1, \ldots, X_n be exchangeable so that the X_i are conditionally independent given a parameter θ. Suppose that $X_i \mid \theta \sim \text{Inv-gamma}(\alpha, \theta)$, where α is known, and we judge that $\theta \sim \text{Gamma}(\alpha_0, \beta_0)$, where α_0 and β_0 are known.

(a) Show that $\theta \mid x \sim \text{Gamma}(\alpha_n, \beta_n)$ where $\alpha_n = \alpha_0 + n\alpha$, $\beta_n = \beta_0 + \sum_{i=1}^{n} \frac{1}{x_i}$, and $x = (x_1, \ldots, x_n)$.

(b) We wish to use the Metropolis-Hastings algorithm to sample from the posterior distribution $\theta \mid x$ using a normal distribution with mean θ and chosen variance σ^2 as the symmetric proposal distribution.

 i. Suppose that, at time t, the proposed value $\theta^* \leq 0$. Briefly explain why the corresponding acceptance probability is zero for such a θ^* and thus that the sequence of values generated by the algorithm are never less than zero.

 ii. Describe how the Metropolis-Hastings algorithm works for this example, giving the acceptance probability in its simplest form.

2. Suppose that $X \mid \theta \sim \text{N}(\theta, \sigma^2)$ and $Y \mid \theta, \delta \sim \text{N}(\theta - \delta, \sigma^2)$, where σ^2 is a known constant and X and Y are conditionally independent given θ and δ. It is judged that the improper noninformative joint prior distribution $f(\theta, \delta) \propto 1$ is appropriate.

(a) Show that the joint posterior distribution of θ and δ given x and y is bivariate normal with mean vector μ and variance matrix Σ where

$$
\mu = \begin{pmatrix}
E(\theta \mid X, Y) \\
E(\delta \mid X, Y)
\end{pmatrix} = \begin{pmatrix}
x \\
x - y
\end{pmatrix};
\Sigma = \begin{pmatrix}
\sigma^2 & \sigma^2 \\
\sigma^2 & 2\sigma^2
\end{pmatrix}.
$$

(b) Describe how the Gibbs sampler may be used to sample from the posterior distribution $\theta, \delta \mid x, y$, deriving all required conditional distributions.

(c) Suppose that $x = 2$, $y = 1$ and $\sigma^2 = 1$. Sketch the contours of the joint posterior distribution. Starting from the origin, add to your sketch the first four steps of a typical Gibbs sampler path.

(d) Suppose, instead, that we consider sampling from the posterior distribution using the Metropolis-Hastings algorithm where the proposal distribution is the bivariate normal.
normal with mean vector \(\tilde{\mu}^{(t-1)} = (\theta^{(t-1)}, \delta^{(t-1)})^T \) and known variance matrix \(\tilde{\Sigma} \). Explain the Metropolis-Hastings algorithm for this case, explicitly stating the acceptance probability.

3. Let \(X_1, \ldots, X_n \) be exchangeable so that the \(X_i \) are conditionally independent given a parameter \(\theta = (\mu, \lambda) \). Suppose that \(X_i | \theta \sim N(\mu, 1/\lambda) \) so that \(\mu \) is the mean and \(\lambda \) the precision of the distribution. Suppose that we judge that \(\mu \) and \(\lambda \) are independent with \(\mu \sim N(\mu_0, 1/\tau) \), where \(\mu_0 \) and \(\tau \) are known, and \(\lambda \sim \text{Gamma}(\alpha, \beta) \), where \(\alpha \) and \(\beta \) are known.

(a) Show that the posterior density \(f(\mu, \lambda | x) \), where \(x = (x_1, \ldots, x_n) \), can be expressed as

\[
 f(\mu, \lambda | x) \propto \lambda^{\alpha + \frac{n}{2} - 1} \exp \left\{ -\frac{\lambda}{2} \sum_{i=1}^{n} (x_i - \mu)^2 - \frac{\tau}{2} \mu^2 + \tau \mu_0 \mu - \beta \lambda \right\} .
\]

(b) Hence show that

\[
 \lambda | \mu, x \sim \text{Gamma} \left(\alpha + \frac{n}{2}, \beta + \frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^2 \right) .
\]

(c) Given that \(\mu | \lambda, x \sim N\left(\frac{\tau \mu_0 + n \bar{x} \lambda}{\tau + n \lambda}, \frac{1}{\tau + n \lambda} \right) \), where \(\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \), describe how the Gibbs sampler may be used to sample from the posterior distribution \(\mu, \lambda | x \). Give a sensible estimate of \(\text{Var}(\lambda | x) \).

4. Consider a Poisson hierarchical model. At the first stage we have observations \(s_j \) which are Poisson with mean \(t_j \lambda_j \) for \(j = 1, \ldots, p \) where each \(t_j \) is known. We assume that that the \(\lambda_j \) are independent and identically distributed with \(\text{Gamma}(\alpha, \beta) \) prior distributions. The parameter \(\alpha \) is known but \(\beta \) is unknown and is given a \(\text{Gamma}(\gamma, \delta) \) distribution where \(\gamma \) and \(\delta \) are known. The \(s_j \) are assumed to be conditionally independent given the unknown parameters.

(a) Find, up to a constant of integration, the joint posterior distribution of the unknown parameters given \(s = (s_1, \ldots, s_p) \).

(b) Describe how the Gibbs sampler may be used to sample from the posterior distribution, deriving all required conditional distributions.

(c) Let \(\{ \lambda_j^{(t)}, \beta^{(t)} ; t = 1, \ldots, N \} \), with \(N \) large, be a realisation of the Gibbs sampler described above. Give sensible estimates of \(E(\lambda_j | s) \), \(\text{Var}(\beta | s) \) and \(E(\lambda_j | a \leq \beta \leq b, s) \) where \(0 < a < b \) are given constants.

5. Show that the Gibbs sampler for sampling from a distribution \(\pi(\theta) \) where \(\theta = (\theta_1, \ldots, \theta_d) \) can be viewed as a special case of the Metropolis-Hastings algorithm where each iteration \(t \) consists of \(d \) Metropolis-Hastings steps each with an acceptance probability of 1.