IN ESSENCE, EXCHANGEABILITY CAPTURES THE NOTION THAT ONLY THE VALUES MATTER AND NOT THE ORDER IN WHICH THE OBSERVATIONS OCCUR. THE LABELS ARE UNINFORMATIVE.

NB. FINITELY EXCHANGEABLE IMPLIES THAT

\[f(x_1, \ldots, x_n) = f(x_{\pi(1)}, \ldots, x_{\pi(n)}) \]

FOR ALL \(m \leq n \).

E.g., \(f_x(x) = \int f_{x,y}(x,y) \, dy = \int f_{x,y}(y,x) \, dy = f_y(x) \]

EXCHANGEABILITY IS A STRONGER STATEMENT THAN IDENTICALLY DISTRIBUTED (JOINTS INCLUDED) BUT WEAKER THAN INDEPENDENCE.

IID OBSERVATIONS ARE EXCHANGEABLE:

\[f(x_1, \ldots, x_n) = \prod_{i=1}^{n} f(x_i) \]

BUT EXCHANGEABLE OBSERVATIONS NEED NOT BE INDEPENDENT.

EXAMPLE.

\(X_1 \) AND \(X_2 \) ARE EXCHANGEABLE RVs WITH JOINT DENSITY

\[f(x_1, x_2) = 3 \left(x_1^2 + x_2^2 \right) \quad 0 < x_1 < 1 \]

\[0 < x_2 < 1 \]

HOWEVER, THEY ARE NOT INDEPENDENT.

DEFINITION (INFINITE EXCHANGEABILITY).

THE INFINITE SEQUENCE OF RVs \(X_1, X_2, \ldots \) ARE JUDGED TO BE INFINITELY EXCHANGEABLE IF EVERY FINITE SUBSEQUENCE IS JUDGED (FINITELY) EXCHANGEABLE.
A natural question of interest is whether every finitely exchangeable sequence can be embedded into an infinitely exchangeable sequence?

Example

Suppose that X_1, X_2, X_3 are three exchangeable events (i.e., 0-1 RVs) with:

$$P(X_1 = 0, X_2 = 1, X_3 = 1) = P(X_1 = 1, X_2 = 0, X_3 = 1) = \frac{1}{3},$$

with all other combinations having probability 0.

Is there an X_4 such that X_1, X_2, X_3 and X_4 are exchangeable?

If so, then, for example,

$$P(X_1 = 0, X_2 = 1, X_3 = 1, X_4 = 0) = P(X_1 = 0, X_2 = 0, X_3 = 1, X_4 = 1).$$

Now,

$$P(X_1 = 0, X_2 = 1, X_3 = 1, X_4 = 0) = P(X_1 = 0, X_2 = 1, X_3 = 1) - P(X_1 = 0, X_2 = 1, X_3 = 1, X_4 = 1) = \frac{1}{3} - P(X_1 = 1, X_2 = 1, X_3 = 1, X_4 = 0)$$

However, $P(X_1 = 1, X_2 = 1, X_3 = 1, X_4 = 0) \leq P(X_1 = 1, X_2 = 1, X_3 = 1) = 0$

$$\Rightarrow P(X_1 = 0, X_2 = 1, X_3 = 1, X_4 = 0) = \frac{1}{3}.$$
However,
\[P(X_1 = 0, X_2 = 0, X_3 = 1, X_4 = 1) \neq P(X_1 = 0, X_2 = 0, X_3 = 1) = 0. \]

This contradiction shows that \(X_1, X_2, X_3, X_4 \) are not exchangeable.

A finitely exchangeable sequence cannot necessarily be embedded into a larger finitely exchangeable sequence let alone an infinitely exchangeable one.

Theorem (De Finetti's Representation Theorem for 0-1 RVs)

Let \(X_1, X_2, \ldots \) be a sequence of infinitely exchangeable 0-1 RVs (i.e. events) then the joint distribution of \(X_1, \ldots, X_n \) has an integral representation of the form

\[
f(x_1, \ldots, x_n) = \int_0^1 \left\{ \prod_{i=1}^n \theta^x_i (1-\theta)^{1-x_i} \right\} f(\theta) \, d\theta
\]

where \(y_n = \sum_{i=1}^n x_i \) and \(\theta = \lim_{n \to \infty} \frac{y_n}{n} \).

The interpretation of this theorem is of profound significance:

1. Conditional on a RV \(\theta \), the \(X_i \) are judged to be independent Bernoulli trials

\[
f(x_i | \theta) = \theta^x_i (1-\theta)^{1-x_i}
\]

\[
f(x_1, \ldots, x_n | \theta) = \prod_{i=1}^n \theta^x_i (1-\theta)^{1-x_i} = \theta^{y_n} (1-\theta)^{n-y_n}
\]

2. \(\theta \) is itself assigned a probability distribution \(f(\theta) \).
(3) \(\theta = \lim_{n \to \infty} \frac{y_n}{n} \) so that \(f(\theta) \) represents beliefs about the limiting value of the mean of the \(x_\cdot \). Conditional upon \(\theta \), \(x_1, \ldots, x_n \) are a random sample from a Bernoulli with parameter \(\theta \) generating a parameterised joint sampling distribution

\[
f(x_1, \ldots, x_n | \theta) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{1-x_i}
\]

where \(\theta \) is assigned a prior distribution \(f(\theta) \).

This provides a justification for the Bayesian approach (combining a prior and a likelihood) [for events: generalisation follows].

\[\text{Heze} \]

NB. \(\theta \) is provided with a formal definition and the sentence "the true value of \(\theta \)" has a well-defined meaning.