MA30118 - Solution Sheet Five

Simon Shaw s.c.shaw@maths.bath.ac.uk

2005/06 Semester II

- 1. The values of Bath building contracts (in millions of pounds) for a 12-month period are (in time order) 17, 21, 19, 23, 18, 16, 20, 18, 22, 20, 15, 22
 - (a) Use $\alpha = 0.1$ to compute the exponential smoothing values for the time series using the month 1 figure as the initial forecast. Calculate the forecast error for each forecast.

Month, t	X_t	$\ddot{X}_t = M_{t-1} = \alpha X_{t-1} + (1-\alpha)M_{t-2}$	$X_t - X_t$
1	17		
2	21	$M_1 = 17$	21 - 17 = 4
3	19	$M_2 = 0.1(21) + 0.9(17) = 17.4$	19 - 17.4 = 1.6
4	23	$M_3 = 0.1(19) + 0.9(17.4) = 17.56$	23 - 17.56 = 5.44
5	18	$M_4 = 0.1(23) + 0.9(17.56) = 18.104$	18 - 18.104 = -0.104
6	16	$M_5 = 0.1(18) + 0.9(18.104) = 18.0936$	16 - 18.0936 = -2.0936
7	20	$M_6 = 17.88424$	2.11576
8	18	$M_7 = 18.095816$	-0.095816
9	22	$M_8 = 18.0862344$	3.9137656
10	20	$M_9 = 18.47761096$	1.52238904
11	15	$M_{10} = 18.62984986$	-3.62984986
12	22	$M_{11} = 18.26686488$	3.73313512

(b) What is the forecast for next month? And the month following that? The forecast for all future months (so next month is n = 1, et cetera) is given by

 $\hat{X}_{12+n} = M_{12} = 0.1(22) + 0.9(18.26686488) = 18.64017839.$

(c) What is the value of the mean square deviation (MSD)?

$$MSD = \{4^2 + 1.6^2 + \dots + (-3.62984986)^2 + 3.73313512^2\}/11$$

= 101.7805354/11
= 9.252775949.

2. Let X_t denote the quarterly earning per share of a corporation in quarter t. Using a season of four, a Holt-Winters multiplicative model with smoothing parameters $\alpha = 0.5$, $\gamma = 0.6$ and $\delta = 0.7$ was fitted. The data is summarised below.

t	X_t	M_t	T_t	S_t
1	0.712	0.5287729	0.01678876	1.3616536
2	0.584	0.6020379	0.05067450	0.9450805
3	0.620	0.6900502	0.07307715	0.8846493
4	0.620	0.7430797	0.06104857	0.8413058
5	0.891	0.7292399	0.01611553	1.2637702
6	0.570	0.6742393	-0.02655412	0.8753022
7	0.540			
8	0.690			

(a) Find M_7 , T_7 and S_7 .

Using the smoothing equations given in lectures with a season of s = 4 we have

$$\begin{split} M_7 &= \alpha \frac{X_7}{S_3} + (1-\alpha)(M_6+T_6) \\ &= 0.5 \left(\frac{0.540}{0.8846493}\right) + 0.5(0.6742393 - 0.02655412) \\ &= 0.62904828, \\ T_7 &= \gamma(M_7 - M_6) + (1-\gamma)T_6 \\ &= 0.6(0.62904828 - 0.6742393) + 0.4(-0.02655412) \\ &= -0.03773626, \\ S_7 &= \delta \frac{X_7}{M_7} + (1-\delta)S_3 \\ &= 0.7 \left(\frac{0.540}{0.62904828}\right) + 0.3(0.8846493) \\ &= 0.8666302561. \end{split}$$

(b) Find M_8 , T_8 and S_8 .

In a similar vein to the previous part, we have

$$M_8 = \alpha \frac{X_8}{S_4} + (1 - \alpha)(M_7 + T_7)$$

= 0.5 $\left(\frac{0.690}{0.8413058}\right) + 0.5(0.62904828 - 0.03773626)$
= 0.705732821,
$$T_8 = \gamma(M_8 - M_7) + (1 - \gamma)T_7$$

= 0.6(0.705732821 - 0.62904828) + 0.4(-0.03773626)
= 0.03091622,
$$S_8 = \delta \frac{X_8}{M_8} + (1 - \delta)S_4$$

= 0.7 $\left(\frac{0.690}{0.705732821}\right) + 0.3(0.8413058)$

(c) Find the forecast of the quarterly earning per share in quarters 9, 10 and 15.

The *n*-step ahead forecast from X_8 , with s = 4, is given by:

$$\hat{X}_{8+n} = \begin{cases} (M_8 + nT_8)S_{8+n-4} & \text{for } n = 1, 2, 3, 4\\ (M_8 + nT_8)S_{8+n-8} & \text{for } n = 5, 6, 7, 8 \end{cases} \text{ and so on,}$$

so that

$$\begin{aligned} \hat{X}_9 &= (M_8 + T_8)S_5 \\ &= (0.705732821 + 0.03091622)(1.2637702) \\ &= 0.930955105, \\ \hat{X}_{10} &= (M_8 + 2T_8)S_6 \\ &= \{0.705732821 + 2(0.03091622)\}(0.8753022) \\ &= 0.671851561, \\ \hat{X}_{15} &= (M_8 + 7T_8)S_7 \\ &= \{0.705732821 + 7(0.03091622)\}(0.866302561) \\ &= 0.798857754. \end{aligned}$$

- 3. Let β_0 and β_1 be constants, $s_t = s_{t-12}$ for all t, and $\{I_t\}$ a sequence of independent random quantities with zero mean and constant variance.
 - (a) If $X_t = (\beta_0 + \beta_1 t)s_t + I_t$, show that $\nabla_{12}^2 X_t$ is a stationary process.

$$\begin{aligned} \nabla_{12} X_t &= X_t - X_{t-12} \\ &= (\beta_0 + \beta_1 t) s_t + I_t - [\{\beta_0 + \beta_1 (t-12)\} s_{t-12} + I_{t-12}] \\ &= (\beta_0 + \beta_1 t) (s_t - s_{t-12}) + 12\beta_1 s_{t-12} + I_t - I_{t-12} \\ &= 12\beta_1 s_{t-12} + I_t - I_{t-12}, \end{aligned}$$

since $s_t = s_{t-12}$ for all t. Thus,

$$\begin{aligned} \nabla_{12}^2 X_t &= \nabla_{12} (\nabla_{12} X_t) \\ &= \nabla_{12} (12\beta_1 s_{t-12} + I_t - I_{t-12}) \\ &= (12\beta_1 s_{t-12} + I_t - I_{t-12}) - (12\beta_1 s_{t-24} + I_{t-12} - I_{t-24}) \\ &= 12\beta_1 (s_{t-12} - s_{t-24}) + I_t - 2I_{t-12} + I_{t-24} \\ &= I_t - 2I_{t-12} + I_{t-24}, \end{aligned}$$

since $s_{t-12} = s_{t-24}$. Hence, $\nabla_{12}^2 X_t$ only involves the sum of independent random quantities with zero mean and constant variance and is thus stationary.

(b) If $X_t = \beta_0 + \beta_1 t + s_t + I_t$, show that $\nabla \nabla_{12} X_t$ is a stationary process.

$$\nabla_{12}X_t = X_t - X_{t-12}
= (\beta_0 + \beta_1 t + s_t + I_t) - \{\beta_0 + \beta_1 (t-12) + s_{t-12} + I_{t-12}\}
= 12\beta_1 + I_t - I_{t-12}.$$

We note that $\nabla_{12}X_t$ is thus a stationary series. We now check that if we difference a stationary series, the result is still a stationary series.

$$\begin{aligned} \nabla \nabla_{12} X_t &= \nabla (\nabla_{12} X_t) \\ &= \nabla (12\beta_1 + I_t - I_{t-12}) \\ &= (12\beta_1 + I_t - I_{t-12}) - (12\beta_1 + I_{t-1} - I_{t-13}) \\ &= I_t - I_{t-1} - I_{t-12} + I_{t-13}. \end{aligned}$$

Hence, $\nabla \nabla_{12} X_t$ only involves the sum of independent random quantities with zero mean and constant variance and is thus stationary.

4. Forecasting from a fitted Box-Jenkins model. As mentioned in class such forecasts are obtained as follows. Suppose we have fitted the ARMA(2,1) model:

$$X_s = \phi_1 X_{s-1} + \phi_2 X_{s-2} + a_s + \theta_1 a_{s-1},$$

and that the latest available value is X_t . We wish to forecast ahead at s = t + 1, t + 2, ...

Write down the forecasts \hat{X}_{t+1} , \hat{X}_{t+2} and \hat{X}_{t+3} using the following rules:

- (a) Use the above equation with the estimates $\hat{\phi}_1$, $\hat{\phi}_2$ and $\hat{\theta}_1$ and
- (b) if the equation involves a_s where $s \leq t$ use the residual from the fit, $\hat{a}_s = X_s \hat{X}_s$, otherwise if s > t, use $a_s = 0$, its expected value,
- (c) if the equation involves X_s where $s \leq t$ use the actual recorded value of X_t but if s > t use the forecast \hat{X}_s .

$$X_{t+1} = \phi_1 X_t + \phi_2 X_{t-1} + a_{t+1} + \theta_1 a_t.$$

Now, X_t and X_{t-1} are available but X_{t+1} is replaced by the forecast value X_{t+1} . ϕ_1 , ϕ_2 , θ_1 are replaced by their estimates $\hat{\phi}_1$, $\hat{\phi}_2$, $\hat{\theta}_1$. a_{t+1} is replaced by its expected value 0 and a_t by the residual from the fit, \hat{a}_t . Thus,

$$\dot{X}_{t+1} = \phi_1 X_t + \phi_2 X_{t-1} + \theta_1 \hat{a}_t.$$

Similarly,

$$X_{t+2} = \phi_1 X_{t+1} + \phi_2 X_t + a_{t+2} + \theta_1 a_{t+1}$$

Now, X_t is available but X_{t+2} , X_{t+1} are replaced by the forecast values \hat{X}_{t+2} , \hat{X}_{t+1} respectively. ϕ_1 , ϕ_2 , θ_1 are replaced by their estimates $\hat{\phi}_1$, $\hat{\phi}_2$, $\hat{\theta}_1$. a_{t+2} , a_{t+1} are replaced by their expected values: 0. Thus,

$$\hat{X}_{t+2} = \hat{\phi}_1 \hat{X}_{t+1} + \hat{\phi}_2 X_t.$$

Finally, for X_{t+3} we have

$$X_{t+3} = \phi_1 X_{t+2} + \phi_2 X_{t+1} + a_{t+3} + \theta_1 a_{t+2}.$$

Now, X_{t+3} , X_{t+2} , X_{t+1} are replaced by the forecast values \hat{X}_{t+3} , \hat{X}_{t+2} , \hat{X}_{t+1} respectively. ϕ_1 , ϕ_2 , θ_1 are replaced by their estimates $\hat{\phi}_1$, $\hat{\phi}_2$, $\hat{\theta}_1$. a_{t+3} , a_{t+2} are replaced by their expected values: 0. Thus,

$$\hat{X}_{t+3} = \hat{\phi}_1 \hat{X}_{t+2} + \hat{\phi}_2 \hat{X}_{t+1}.$$

5. The ARIMA(1,1,1) model, which has first-order differencing, can be written in the form

$$W_t = \gamma + \phi_1 W_{t-1} + a_t - \theta_1 a_{t-1}$$

where $W_t = \nabla X_t$.

(a) Express the model in terms of $\{X_t\}$ and $\{a_t\}$ rather than $\{W_t\}$ and $\{a_t\}$. We replace W_t by $X_t - X_{t-1}$ and W_{t-1} by $X_{t-1} - X_{t-2}$ so that:

$$X_t - X_{t-1} = \gamma + \phi_1(X_{t-1} - X_{t-2}) + a_t - \theta_1 a_{t-1} \Leftrightarrow$$

$$X_t = \gamma + (1 + \phi_1) X_{t-1} - \phi_1 X_{t-2} + a_t - \theta_1 a_{t-1}$$

(b) Use this to derive the forecasts for one, two and three steps ahead from time t using the usual rules.

$$X_{t+1} = \gamma + (1+\phi_1)X_t - \phi_1 X_{t-1} + a_{t+1} - \theta_1 a_t.$$

Now, X_t and X_{t-1} are available but X_{t+1} is replaced by the forecast value \hat{X}_{t+1} . γ, ϕ_1, θ_1 are replaced by their estimates $\hat{\gamma}, \hat{\phi}_1, \hat{\theta}_1$. a_{t+1} is replaced by its expected value 0 and a_t by the residual from the fit, \hat{a}_t . Thus,

$$\hat{X}_{t+1} = \hat{\gamma} + (1 + \hat{\phi}_1) X_t - \hat{\phi}_1 X_{t-1} - \hat{\theta}_1 \hat{a}_t.$$

Similarly,

$$X_{t+2} = \gamma + (1+\phi_1)X_{t+1} - \phi_1X_t + a_{t+2} - \theta_1a_{t+1}$$

Now, X_t is available but X_{t+2} , X_{t+1} are replaced by the forecast values \hat{X}_{t+2} , \hat{X}_{t+1} respectively. γ , ϕ_1 , θ_1 are replaced by their estimates $\hat{\gamma}$, $\hat{\phi}_1$, $\hat{\theta}_1$. a_{t+2} , a_{t+1} are replaced by their expected values: 0. Thus,

$$\hat{X}_{t+2} = \hat{\gamma} + (1 + \hat{\phi}_1)\hat{X}_{t+1} - \hat{\phi}_1 X_t.$$

Finally, for X_{t+3} we have

$$X_{t+3} = \gamma + (1+\phi_1)X_{t+2} - \phi_1 X_{t+1} + a_{t+3} - \theta_1 a_{t+2}.$$

Now, X_{t+3} , X_{t+2} , X_{t+1} are replaced by the forecast values \hat{X}_{t+3} , \hat{X}_{t+2} , \hat{X}_{t+1} respectively. γ , ϕ_1 , θ_1 are replaced by their estimates $\hat{\gamma}$, $\hat{\phi}_1$, $\hat{\theta}_1$. a_{t+3} , a_{t+2} are replaced by their expected values: 0. Thus,

$$\hat{X}_{t+3} = \hat{\gamma} + (1 + \hat{\phi}_1)\hat{X}_{t+2} - \hat{\phi}_1\hat{X}_{t+1}$$