MA30118 - Question Sheet Five

Simon Shaw s.c.shaw@maths.bath.ac.uk

2005/06 Semester II

If you wish to have this sheet marked, please place it in the wallet on my office door, 1W4.8. I will mark it and place it in the pigeon-holes in the Maths square for you to collect and notify you via e-mail when it is there. Obviously, for this to work, you must ensure your full name is on the work!

- 1. The values of Bath building contracts (in millions of pounds) for a 12-month period are (in time order) 17, 21, 19, 23, 18, 16, 20, 18, 22, 20, 15, 22
 - (a) Use $\alpha = 0.1$ to compute the exponential smoothing values for the time series using the month 1 figure as the initial forecast. Calculate the forecast error for each forecast.
 - (b) What is the forecast for next month? And the month following that?
 - (c) What is the value of the mean square deviation (MSD)?
- 2. Let X_t denote the quarterly earning per share of a corporation in quarter t. Using a season of four, a Holt-Winters multiplicative model with smoothing parameters $\alpha = 0.5$, $\gamma = 0.6$ and $\delta = 0.7$ was fitted. The data is summarised below.

t	X_t	M_t	T_t	S_t
1	0.712	0.5287729	0.01678876	1.3616536
2	0.584	0.6020379	0.05067450	0.9450805
3	0.620	0.6900502	0.07307715	0.8846493
4	0.620	0.7430797	0.06104857	0.8413058
5	0.891	0.7292399	0.01611553	1.2637702
6	0.570	0.6742393	-0.02655412	0.8753022
7	0.540			
8	0.690			

- (a) Find M_7 , T_7 and S_7 .
- (b) Find M_8 , T_8 and S_8 .
- (c) Find the forecast of the quarterly earning per share in quarters 9, 10 and 15.
- 3. Let β_0 and β_1 be constants, $s_t = s_{t-12}$ for all t, and $\{I_t\}$ a sequence of independent random quantities with zero mean and constant variance.
 - (a) If $X_t = (\beta_0 + \beta_1 t)s_t + I_t$, show that $\nabla_{12}^2 X_t$ is a stationary process.
 - (b) If $X_t = \beta_0 + \beta_1 t + s_t + I_t$, show that $\nabla \nabla_{12} X_t$ is a stationary process.

4. Forecasting from a fitted Box-Jenkins model. As mentioned in class such forecasts are obtained as follows. Suppose we have fitted the ARMA(2,1) model:

$$X_s = \phi_1 X_{s-1} + \phi_2 X_{s-2} + a_s + \theta_1 a_{s-1},$$

and that the latest available value is X_t . We wish to forecast ahead at $s = t+1, t+2, \ldots$. Write down the forecasts \hat{X}_{t+1} , \hat{X}_{t+2} and \hat{X}_{t+3} using the following rules:

- (a) Use the above equation with the estimates $\hat{\phi}_1,\,\hat{\phi}_2$ and $\hat{\theta}_1$ and
- (b) if the equation involves a_s where $s \leq t$ use the residual from the fit, $\hat{a}_s = X_s \hat{X}_s$, otherwise if s > t, use $a_s = 0$, its expected value,
- (c) if the equation involves X_s where $s \leq t$ use the actual recorded value of X_t but if s > t use the forecast \hat{X}_s .
- 5. The ARIMA(1,1,1) model, which has first-order differencing, can be written in the form

$$W_t = \gamma + \phi_1 W_{t-1} + a_t - \theta_1 a_{t-1}$$

where $W_t = \nabla X_t$.

- (a) Express the model in terms of $\{X_t\}$ and $\{a_t\}$ rather than $\{W_t\}$ and $\{a_t\}$.
- (b) Use this to derive the forecasts for one, two and three steps ahead from time t using the usual rules.