MA30118 - Question Sheet Two

Simon Shaw s.c.shaw@maths.bath.ac.uk

2005/06 Semester II

Attempt all questions. Hand in by 17:00 Friday 10th March either to me in lectures, or the envelope on my door, 1W4.8.

1. For a fee of £400, the manager in question 2. of Question Sheet One may call in a consultant. Let I_1 represent the event that the consultant predicts that business will decline, I_2 that the consultant predicts business will remain the same, I_3 that the consultant predicts business will increase moderately, and I_4 that the consultant predicts business will increase rapidly. Table 1 lists the conditional probabilities for predictions made by the consultant.

	S_1	S_2	S_3	S_4
I_1	0.80	0.10	0.20	0.10
I_2	0.10	$0.10 \\ 0.70$	0.20	0.20
I_3	0.05	0.10	0.50	0.30
I_4	0.05	0.10	0.10	0.40

Table 1: Conditional probabilities for the consultant's predictions.

- (a) Find the EVSI.
- (b) What is the net efficiency?
- (c) Comment on the value of the consultant.
- 2. I have been offered two investment opportunities, A and B, which require approximately the same cash outlay. The cash requirements mean that I can only afford to make at most one investment. I thus have three alternatives: make investment $A(A_1)$; make investment $B(A_2)$; or to not invest (A_3) . The returns on my investments depends upon what happens to the stock market in the next year. With probability 0.3, the stock market may increase (S_1) ; with probability 0.5 it may remain stable (S_2) and with probability 0.2, the market may fall (S_3) . The possible payoffs, in pounds as profits, are given in Table 2 below.
 - (a) Calculate the EMV of the investment decision problem and thus state the optimal decision under this criterion.
 - (b) Suppose that it is pointed out to me that both actions A_1 and A_2 could result in losses, so I decide to think about the risk of the investments. I elect to construct

	S_1	S_2	S_3
A_1	45,000	30,000	-75,000
A_2	75,000	-30,000	-45,000
A_3	0	0	0

Table 2: Payoffs for my investment choices in question 2.

a utility function over my possible payoffs. I assign the following indifference probabilities.

Profit	Indifference probability
$\pounds 45,000$	0.95
$\pm 30,000$	0.90
$\pounds 0$	0.75
$-\pounds30,000$	0.55
-£45,000	0.40

Construct the corresponding utility table and hence find the decision which maximises the expected utility. Comment on this decision.

3. A firm has three investment alternatives: A_1 , A_2 , and A_3 . The return of these investments depends upon what happens to the stock market in the next year. With probability 0.4, the stock market may go up (S_1) ; with probability 0.3 it may remain stable (S_2) and with probability 0.3, the market may go down (S_3) . The possible payoffs, in \$1000s as profits, are given in Table 3 below.

	S_1	S_2	S_3
A_1	100	25	0
A_2	75	50	25
A_3	50	50	50

Table 3: Payoffs for my investment choices in question 3.

- (a) Calculate the EMV of the investment decision problem and thus state the optimal decision under this criterion.
- (b) For the lottery having a payoff of \$100,000 with probability p and \$0 with probability 1-p, two decision makers expressed the following indifference probabilities:

	Indifference probability		
Profit	Decision Maker A	Decision Maker B	
\$75,000	0.80	0.60	
\$ 50,000	0.60	0.30	
\$ 25,000	0.30	0.15	

Find the most preferred decision for each decision maker using the expected utility approach.

(c) Why don't decision makers A and B select the same decision alternative?