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1 Introduction

A critical aspect of managing any business is planning for the future. Predicting future
events is called forecasting.

e.g. A company wishes to forecast future sales so that it can assess how many
items to produce. The company may use the judgement of experts (qualitative
method) or have an extensive amount of historical sales records and use these to
make the forecast (quantitative method).

We shall concern ourselves with the latter scenario. Quantitative methods use historical data
to identify a pattern, fit a model to the pattern and then use that model to forecast points
in the future.

• There is an assumption that the identified pattern will continue into the future.

• The measurements in the historical data are correlated.

• The model will typically lose accuracy the longer into the future we try to predict and
so, in general, the shorter the time frame, the more accurate the forecast.

We focus attention upon TIME SERIES MODELS. Time series models are based on the
analysis of a chronological sequence of observations on a particular variable. The level of
these observations may thus be plotted against time creating the so-called TIMEPLOT.

e.g. Economic indices such as the FTSE 100; weekly sales figures; patient’s
temperature; monthly recorded level of water in a reservoir.

1.1 The components of a time series

A time series may be thought of as consisting of several components. The usual assumption
is that four separate components: trend; cyclical; seasonal and irregular combine to
provide the observed level of the series.

1.1.1 Trend

This is the discernable change in the general level, e.g. a steady growth or decline in values
over a noticeable period , which is not attributable to the other components described below.
Trends do not generally remain constant and may frequently reverse.

e.g. Sales of DVD players. This might exhibit an upwards trend as they are
introduced into the market at ever cheaper prices. However, there may be a
downward trend once most families possess a player.
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1.1.2 Seasonality

Many business and economic series are taken quarterly or monthly and exhibit seasonality -
a periodic repetition of level changes (typically one year).

e.g. Ice cream sales, bookings at holiday resorts.

1.1.3 Cyclical Variation

Periodic variation but is not connected with the season. Time series exhibits an alternating
sequence of points below and above the trend line.

e.g. A time series for house prices might have a generally increasing trend line
but the boom-bust nature of economic markets may cause prices to alternate
above and below this trend line. This was a very typical occurrence in the 1970s
and 1980s.

1.1.4 Irregular variation

The random, unpredictable variation that cannot be explained by any of the above effects.

We shall assume that our measurements are made at discrete time points and that Xt denotes
our measurement for the quantity X at time t and {Xt} denotes the series of measurements
on X . X̂t denotes our forecast for X at time t.

There are many ways that the components described above might combine. For example,
we might have an additive seasonal model with trend

Xt = M + Tt + St + It

or a multiplicative seasonal model with trend

Xt = (M + Tt)St + It

where M represents the general level of the series and Tt, St, and It the trend, seasonal and
irregular components at time t.

2 Exponential smoothing

Exponential smoothing is a very simple technique which can be of use in its own right and
is very widely used in generalised forms.

Suppose that the time series is nonseasonal and has no significant upward or downward
trend. In this case, we can think of the model being of the form

Xt = β0 + It

where β0 represents the general level and It the random error. Our object is to estimate the
current level (note that we do not observe the level but Xt which includes the random error).
Exponential smoothing achieves this by using a weighted average of all of the observations.

Let Mt denote the estimate of the level at time t where

Mt = αXt + α(1 − α)Xt−1 + α(1 − α)2Xt−2 + · · · (1)
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where 0 < α < 1 is the smoothing constant. At time t − 1, the estimate of the level is

Mt−1 = αXt−1 + α(1 − α)Xt−2 + α(1 − α)2Xt−3 + · · · . (2)

Thus, noting that equation (1) may be expressed as

Mt = αXt + (1 − α){αXt−1 + α(1 − α)Xt−2 + α(1 − α)2Xt−3 + · · ·},

substituting (2) into (1) gives

Mt = αXt + (1 − α)Mt−1. (3)

Our new estimate for the level, Mt is a weighted average of our actual data, Xt and our old
estimate for the level, Mt−1. Starting with an initial estimate of the level, M1 = X1 say, we
may then repeatedly use equation (3) to obtain M2, M3, . . ..

Let X̂t+n denote the forecast at time t+n made using the observations {X1, X2, . . . , Xt}.
X̂t+n is called the n-step ahead forecast from Xt. For exponential smoothing, all future
forecasts are the same, and equal to the current estimate of the level, that is

X̂t+n = Mt, for all n = 1, 2, . . .

In particular, noting that the one-step ahead forecast from Xt−1, X̂(t−1)+1, is equal to Mt−1

and Mt is the one-step ahead forecast from Xt, we may express equation (3) as

X̂t+1 = αXt + (1 − α)X̂t. (4)

The forecast error in period t is the difference between the actual value of X and the forecast
value for X ,

Forecast error in period t = Xt − X̂t.

We may thus reexpress equation (4) as

X̂t+1 = X̂t + α(Xt − X̂t). (5)

Equation (5) thus reveals that the new forecast X̂t+1 is equal to the previous forecast X̂t

plus an adjustment which is α times the most recent forecast error.
The objective of smoothing methods is to “smooth out” the random fluctuations caused

by the irregular component of the time series (as we observe Xt which includes the irregular
component, It). If the irregular component in the series is LARGE then a SMALL value
of α, the smoothing constant, is preferred as much of the forecast error is due to random
variability. If the irregular component is SMALL then a LARGE value of α is preferred and
we quickly adjust the forecast when forecasting errors occur.

2.1 Criterion for determining α

We can assess the effectiveness of the forecast by looking at the MEAN SQUARE DEVIA-
TION,

MSD = Average of the sum of squared errors.

So, if our observations are X1, X2, . . . , XT then

MSD =
1

T − 1

T
∑

t=2

(Xt − X̂t)
2.

A small MSD suggests a good fit to our data. We could choose α to minimise MSD.
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Figure 1: The time series and smoothed series for the shipments.

2.2 Worked example

The data below show the monthly percentage of all shipments that were received on time
over the past 12 months.

80 82 84 83 83 84 85 84 82 83 84 83

1. Construct an exponential forecast using α = 0.2 and calculate the forecast error for
each month. Take X̂2 = M1 = 80.

Month, t Xt X̂t = Mt−1 = αXt−1 + (1 − α)Mt−2 Xt − X̂t

1 80
2 82 M1 = 80 82 − 80 = 2
3 84 M2 = 0.2(82) + 0.8(80) = 80.4 84 − 80.4 = 3.6
4 83 M3 = 0.2(84) + 0.8(80.4) = 81.12 83 − 81.12 = 1.88
5 83 M4 = 0.2(83) + 0.8(81.12) = 81.496 83 − 81.496 = 1.504
6 84 M5 = 0.2(83) + 0.8(81.496) = 81.7968 84 − 81.7968 = 2.2032
7 85 M6 = 82.23744 2.76256
8 84 M7 = 82.789952 1.210048
9 82 M8 = 83.0319616 −1.0319616
10 83 M9 = 82.82556928 0.17443072
11 84 M10 = 82.86045542 1.13954458
12 83 M11 = 83.08836434 −0.08836434

The original time series and smoothed series are shown in Figure 1. Notice that the
initial starting point was low relative to the remainder of the series and it took some
time for the smoothed series to reach what appears to be the underlying level of the
series (the mean of the twelve observations is 83.08333).
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2. What is the forecast for future months?

X̂12+n = M12 = 0.2(83) + 0.8(83.08836434) = 83.07069147.

3. What is the value of the mean square deviation?

MSD = {22 + 3.62 + 1.882 + 1.5042 + 2.20322 + 2.762562 + 1.2100482 + (−1.0319616)2 +

0.174430722 + 1.139544582 + (−0.08836434)2}/11

= {4 + 12.96 + 3.5344 + 2.262016 + 4.85409024 + 7.631737754 + 1.464216162+

1.064944744+ 0.030426076 + 1.29856185 + 0.007808257}/11

= 39.10820108/11

= 3.55529108.

3 The Holt-Winters forecasting method

So far, we have been considering a model of the form Xt = β0 + It where It represents
random error and β0 the general level. Thus, the fluctuation in the time series around β0

comes only from the random error It and we try to smooth the series out using Mt as a
smoothed estimate for the level at time period t and α the (constant) weighting factor. Our
basic equation, see equation (3), was

estimate = (constant)(actual data) + (1 − constant)(old estimate) (6)

and the exponential smoothing forecast of Xt+n based on t observations X1, . . . , Xt is X̂t+n =
Mt, n = 1, 2, 3, . . .. We now exploit this smoothing technique for more complicated models.
We shall focus upon two types of model: the first displaying a linear trend and the second
displaying a linear trend with a multiplicative seasonal effect.

3.1 Holt’s linear trend method

Suppose that the series is nonseasonal but does display trend. Model the trend as linear and
write

Xt = β0 + β1t + It (7)

where β0 represents the intercept and β1 the slope. Consider the series at time t + n. From
equation (7) we have

Xt+n = β0 + β1(t + n) + It+n

= (β0 + β1t) + β1n + It+n. (8)

Equation (8) shows that we may express the time series at time t + n as the level at time t
plus n times the slope of the linear trend plus the irregular variation. Let Mt and Tt denote
the smoothed estimates for the level and slope at time period t. Thus, Mt may be viewed
as an estimate of β0 + β1t and Tt of the estimated slope of the trend line as of time t (i.e. of
β1).

Suppose that we wish to obtain the n-step ahead forecast from time t, so using obser-
vations X1, . . . , Xt. Thus, in equation (8), Xt+n is unknown and we may replace it by its
forecast X̂t+n. Mt is our forecast for β0 + β1t and Tt our forecast for β1. The irregular

5



component It+n may be forecasted by its expectation which is zero. Thus, our n-step ahead
forecast from Xt, assuming the level and trend remain at the current values, is

X̂t+n = Mt + Ttn, n = 1, 2, 3, . . .

We use exponential smoothing to estimate Mt and Tt. Using the general principle of expo-
nential smoothing, see equation (6), we note that the old estimate for the level is given by
the one-step ahead forecast from Xt−1, namely X̂(t−1)+1 = Mt−1 + Tt−1. Thus,

Mt = αXt + (1 − α)(Mt−1 + Tt−1) (9)

where 0 < α < 1 is the smoothing constant. Notice that a current observation of the slope
may be obtained by subtracting the current and previous estimates of the level. Thus, our
smoothed values for Tt are given by

Tt = γ(Mt − Mt−1) + (1 − γ)Tt−1 (10)

where 0 < γ < 1 is the smoothing constant. In order to solve the recursions given in
equations (9) and (10) we need initial conditions. A natural choice is to set T2 = X2−X1, so
that we may view Tt as a trend representing the difference between the current and previous
level, and M2 = X2.

3.2 Holt-Winters multiplicative model

We now extend Holt’s linear trend method to take into account seasonality. There are two
versions: when the seasonal effect is additive and when it is multiplicative. We shall study
the more widely used of these two variants, the multiplicative version.

The basic idea is that a time series shows both trend and seasonality. The seasonal pattern
is amplified by the level of the series. Modelling the trend as linear we write

Xt = snt(β0 + β1t) + It,

where we assume that there are s periods in the seasonal component snt. i.e. s periods in a
“year” or season.

e.g. s = 4 for quarterly data; s = 12 for monthly data.

Thus, for forecasting, we will MULTIPLY the updated trend by the updated seasonal factor.
To deseasonalise the data, we DIVIDE the appropriate seasonal factor into the data.

Let Mt, Tt, St denote the smoothed estimates for the level, slope and season at time period
t. Once again, we utilise the general principle for exponential smoothing given by equation
(6). The actual deseasonalised data for time period t may be obtained by dividing by the
seasonal effect for the corresponding time s periods ago. Thus,

Mt = α
Xt

St−s

+ (1 − α)(Mt−1 + Tt−1) (11)

where 0 < α < 1 denotes the smoothing constant. For Tt we have

Tt = γ(Mt − Mt−1) + (1 − γ)Tt−1 (12)
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where 0 < γ < 1 is the smoothing constant. For the seasonal effect, note that a measure of
the actual seasonal variation in the data may be obtained by dividing the new estimate of
the level into the actual data point. Our old smoothed estimate of the seasonal component
is that obtained at the time period t − s. Thus, we use

St = δ
Xt

Mt

+ (1 − δ)St−s (13)

where 0 < δ < 1 is the smoothing constant. After the level, slope and seasonal estimates
have been smoothed then our n-step ahead forecast from Xt is given by:

X̂t+n =

{

(Mt + nTt)St+n−s for n = 1, 2, . . . , s
(Mt + nTt)St+n−2s for n = s + 1, s + 2, . . . , 2s

and so on,

since

Xt+n = snt+n{β0 + β1(t + n)} + It+n = snt+n{(β0 + β1t) + β1n} + It+n

so that we replace Xt+n by its forecast value, X̂t+n, estimate (β0 + β1t) by Mt and β1 by
Tt. It+n is estimated by its expectation which is zero. For the seasonal component, snt+n

we estimate it by the equivalent seasonal component prior to time t. So, for n ≤ s, this is
St+n−s, for s + 1 ≤ n ≤ 2s this is St+n−2s and so on for all possible values of n.

Note that in order to solve the recursions given by equations (11), (12) and (13) we need to
give starting values. There are several ways in which we could obtain starting values which
depend upon the seasonality of the data. We shall not go into these.

3.2.1 Worked example

The table below shows the quarterly figures for US Retail Sales (1984 - 1987) of a product.
Using a season of s = 4, a Holt-Winters multiplicative model with α = 0.11, γ = 0.01 and
δ = 0.01 was fitted. X̂t denotes the one-step ahead forecast for Xt.

t Xt Mt Tt St X̂t

1 0.9040
2 1.0150
3 1.0050
4 3085.02 48.79 1.0750
5 2881 3139.65 48.85 0.9041 2832.96
6 3249 3189.87 48.86 1.0150 3236.33
7 3180 3230.54 48.78 1.0048 3254.93
8 3505 3277.24 48.76 1.0749 3525.26
9 3020 3327.56 48.78 0.9042 3007.16

10 3449 3378.71 48.80 1.0151 3427.10
11 3472 3430.58 48.83 1.0049 3443.94
12 3715 3476.84 48.80 1.0749 3740.18
13 3184 3525.18 48.80 0.9042 3187.78
14 3576 3568.35 48.74 1.0150 3627.92
15 3657 3619.54 48.77 1.0049 3634.70
16 3941 3668.10 48.77 1.0749 3942.99
17 3319 3711.80 48.71 0.9041 3360.65
18 3850 3764.11 48.75 1.0150 3816.79
19 3883 3818.49 48.81 1.0050 3831.63
20 4159 3867.51 48.81 1.0749 4156.86
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1. Explicitly calculate X̂5.

X̂5 = X̂4+1 = (M4 + T4)S1

= (3085.02 + 48.79)0.904

= 2832.96.

2. Show how M5, T5, S5 were calculated.

M5 = α
X5

S1
+ (1 − α)(M4 + T4)

= 0.11

(

2881

0.904

)

+ 0.89(3085.02 + 48.79)

= 3139.65;

T5 = γ(M5 − M4) + (1 − γ)T4

= 0.01(3139.65− 3085.02) + 0.99(48.79)

= 48.85;

S5 = δ
X5

M5
+ (1 − δ)S1

= 0.01

(

2881

3139.65

)

+ 0.99(0.904)

= 0.9041.

3. How were M20, T20, S20 calculated?

M20 = α
X20

S16
+ (1 − α)(M19 + T19)

= 0.11

(

4159

1.0749

)

+ 0.89(3818.49 + 48.81)

= 3867.51;

T20 = γ(M20 − M19) + (1 − γ)T19

= 0.01(3867.51− 3818.49) + 0.99(48.81)

= 48.81;

S20 = δ
X20

M20
+ (1 − δ)S16

= 0.01

(

4159

3867.51

)

+ 0.99(1.0749)

= 1.0749.

4. Find the three-step and five-step ahead forecasts from time t = 20.

X̂23 = (M20 + 3T20)S19

= (3867.51 + 3(48.81))1.0050 = 4034.01;

X̂25 = (M20 + 5T20)S17

= (3867.51 + 5(48.81))0.9041 = 3717.26.
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4 Box-Jenkins methodology

This is an iterative model building procedure.

1. Identify a possible model from a general class of linear models.

2. Estimate the parameters of the model.

3. Diagnostic checking: check the model against historical data to see if it accurately
describes the underlying process that generates the series.

The model fits well if the differences between the original data and the forecasts are
small, independent and random.

4. If the model doesn’t fit well, the process is repeated using another model designed to
improve the original one.

The process is carried out on a time series that is STATIONARY

i.e. the distribution of Xt does not depend on t, implying that the series has
a constant mean, µ, a constant variance, σ2, and a constant autocorrelation
function, ρ(k) = Corr(Xt, Xt+k).

The models employed are called AUTOREGRESSIVE INTEGRATED MOVING AVER-
AGE (ARIMA) models. We will describe the constituent parts of these models.

4.1 Autoregressive models and autocorrelation

In an autoregressive model, values of the time series are regressed on one or more previous
values. We might expect to find a pattern of correlation between values of Xt and Xt−k for
various values of k, the autocorrelation at lag k.

e.g. Suppose that the correlation between adjacent values is some number φ1, say;
that between values two periods apart is φ2

1; that between values three periods
is φ3

1, . . .,

i.e. Corr(Xt, Xt−k) = φk
1 for k = 1, 2, 3, . . .

One model giving rise to such an autocorrelation structure is

Xt = γ + φ1Xt−1 + at (14)

where γ and φ1 are fixed and {at} = {a1, a2, . . .} is a sequence of uncorrelated
random variables with zero mean and constant variance. The model given by
(14) is termed a first order autoregressive model, written AR(1), as we use
one past observation.

Definition 1 (Autoregressive model of order p)
The autoregressive model of order p, AR(p), is written

Xt = γ + φ1Xt−1 + φ2Xt−2 + · · · + φpXt−p + at (15)

where γ, φ1, . . . , φp are fixed and {at} = {a1, a2, . . .} is a sequence of uncorrelated random
variables with zero mean and constant variance. γ is the constant term.
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4.2 Moving average models

In a moving average model, the present observation is a linear function, or weighted average,
of present and past errors. The number of past error terms used is known as the order.

Definition 2 (Moving average model of order q)
The moving average model of order q, MA(q), is written

Xt = γ + at + θ1at−1 + θ2at−2 + · · · + θqat−q (16)

where γ, θ1, . . . , θq are fixed and {at} = {a1, a2, . . .} is a sequence of uncorrelated random
variables with zero mean and constant variance. γ is the constant term.

Notice that Xt and Xt+k are independent if k > q as, in this case,

Xt+k = γ + at+k + θ1at+k−1 + · · · + θqat+k−q

shares no common error terms with those in Xt and hence ρ(k) = Corr(Xt, Xt+k) = 0.

4.3 ARMA(p, q) models

In an ARMA model, Xt is a combination of an autoregressive and a moving average model,
that is, it is a linear function of past observations and present and past forecasting errors.

Definition 3 (ARMA(p, q))
The ARMA(p, q) model is a mixture of an AR(p) model and a MA(q) model and is written

Xt = γ + φ1Xt−1 + φ2Xt−2 + · · · + φpXt−p + at + θ1at−1 + θ2at−2 + · · · + θqat−q (17)

where γ, φ1, . . . , φp, θ1, . . . , θq are fixed and {at} = {a1, a2, . . .} is a sequence of uncorrelated
random variables with zero mean and constant variance. γ is the constant term.

Note that a MA(q) model is often (equivalently) written as

Xt = γ + at − θ1at−1 − θ2at−2 − · · · − θqat−q

and similarly for an ARMA(p, q) model.

4.4 Achieving stationarity through differencing

The Box-Jenkins methodology assumes that the time series it fits models to are stationary.
Unfortunately, most time series are not stationary.

e.g. Series with trend and seasonality are not stationary.

There are many ways to transform series to stationarity. Box-Jenkins use a technique known
as differencing. Careful use of differencing operators can induce stationarity.

Definition 4 (Difference)
The (backward) difference is a finite difference defined by ∇kXt = Xt − Xt−k. Most com-
monly,

∇Xt = ∇1Xt = Xt − Xt−1.

Finite differencing is the discrete analogue to differentiation. Some examples:

1. ∇12Xt = Xt − Xt−12.
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2. ∇4Xt = Xt − Xt−4.

3. ∇2
12Xt = ∇12(∇12Xt) = ∇12(Xt − Xt−12) = Xt − 2Xt−12 + Xt−24.

4. If Xt = β0 + β1t + It, so a linear trend, show that ∇Xt is a stationary process.

∇Xt = Xt − Xt−1

= {β0 + β1t + It} − {β0 + β1(t − 1) + It−1}

= β1 + It − It−1.

As the errors It and It−1 are assumed to be random with zero mean and constant
variance and β1 is constant, then ∇Xt does not depend upon t and is thus stationary.

∇ denotes the first difference, ∇2 the second difference, ∇3 the third difference and so on.

Definition 5 (ARIMA(p, d, q))
Let Xt be a time series. Suppose that after d simple differencing passes have been made,
the series is stationary and a suitable ARMA(p, q) model is fitted. The process is then
integrated, that is the differencing operations are reversed. The resulting model is termed an
autoregressive integrated moving average model, ARIMA(p, d, q).

An ARIMA(p, d, q) model thus consists of an AR(p) model, d differences and a MA(q)
model. A couple of examples:

1. ARIMA(p, 1, q). Then Wt = ∇Xt is stationary and the ARMA(p, q) model is fitted
to Wt. That is,

Wt = γ + φ1Wt−1 + φ2Wt−2 + · · · + φpWt−p + at + θ1at−1 + θ2at−2 + · · · + θqat−q.

2. Suppose that, after first differencing the series {Xs, s = 1, 2, . . . , t} to obtain the series
{∇Xs}, you decide to fit the MA(q) model with no constant term, that is

∇Xs = as + θ1as−1 + θ2as−2 + . . . + θqas−q .

What ARIMA(p, d, q) model has been fitted to {Xs}?

We have fitted the ARMA(0, q) model to the first difference so we have fitted the
ARIMA(0, 1, q) model to {Xs}.

4.5 Forecasting

This is achieved by using the estimated values of the parameters and the residuals from the
fit. We use the ARMA equation we have fitted which will involve Xts and ats as well as
the estimates of γ, the φs and the θs. Suppose we have data up to time t and we wish to
forecast ahead from there.

• Use the known values of {Xs : s ≤ t} when we have them and forecast values {X̂t+n :
n = 1, 2, . . .} when we do not.

• Use the residual âs = Xs − X̂s for s ≤ t if as appears in the forecast equation.

• Set to zero (its expected value) any at+n for n ≥ 0 which occurs in the forecast equation.

• Replace γ, {φ}, {θ} by their estimates γ̂, {φ̂}, {θ̂} in the forecast equation.

• Forecasting ahead one step ahead at a time means that everything is available by the
time it is needed.
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4.5.1 Worked example

Consider the following ARIMA(0, 2, 2) model,

∇2Xt = at − 0.9at−1 + 0.5at−2.

1. Express the model in the form Xt =.

We note that ∇2Xt = Xt − 2Xt−1 + Xt−2 so that

Xt − 2Xt−1 + Xt−2 = ∇2Xt = at − 0.9at−1 + 0.5at−2

whence Xt = 2Xt−1 − Xt−2 + at − 0.9at−1 + 0.5at−2.

2. Using the usual rules, write down the forecasts X̂t+1, X̂t+2, X̂t+3.

(a) One-step ahead forecast.

For Xt+1, we have

Xt+1 = 2Xt − Xt−1 + at+1 − 0.9at + 0.5at−1.

Xt, Xt−1 are available but Xt+1 is replaced by its forecast value X̂t+1. at+1 is
replaced by its expected value 0 and at, at−1 by the their respective residuals
from the fit, ât, ât−1. The one-step ahead forecast is

X̂t+1 = 2Xt − Xt−1 − 0.9ât + 0.5ât−1.

(b) Two-step ahead forecast.

We consider the model for Xt+2. We find

Xt+2 = 2Xt+1 − Xt + at+2 − 0.9at+1 + 0.5at.

Xt is available but Xt+2, Xt+1 are replaced by their respective forecast values
X̂t+2, X̂t+1. at+2, at+1 are replaced by their expected values: 0 and at by its
residual from the fit, ât. The two-step ahead forecast is

X̂t+2 = 2X̂t+1 − Xt + 0.5ât.

(c) Three-step ahead forecast.

For the three-step ahead forecast we have

Xt+3 = 2Xt+2 − Xt+1 + at+3 − 0.9at+2 + 0.5at+1.

Xt+3, Xt+2, Xt+1 are replaced by their respective forecast values X̂t+3, X̂t+2,
X̂t+1. at+3, at+2, at+1 are replaced by their expected values: 0. The three-step
ahead forecast is

X̂t+3 = 2X̂t+2 − X̂t+1.

Notice that all future forecasts will have this form, that is for k ≥ 3 the k-step
ahead forecast from time t is given by

X̂t+k = 2X̂t+k−1 − X̂t+k−2.
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4.6 Box-Jenkins model identification (not in the exam)

As we outlined before, there are four basic steps to the Box-Jenkins methodology.

1. Identification of a model.

2. Estimation of parameters in the model.

3. Diagnostic checking of the model.

4. Forecasting.

In the previous subsection, we have discussed how to forecast from a given ARIMA(p, d, q)
model. To determine the appropriate model to fit, it is necessary to study analyse the
behaviour of the autocorrelation function (ACF) and the partial autocorrelation function
(PACF).

The autocorrelation coefficient measures the correlation between a set of observations
and a lag set of observations in a time series. Given the time series {Xs : s = 1, . . . , t} the
autocorrelation between Xs and Xs+k, ρ(k) measures the correlation between the pairs
(X1, X1+k), (X2, X2+k), . . . , (Xt−k, Xt). Note that the series is assumed to be stationary so
that the correlation depends only on k, how far apart the observations are, and not on t. An
estimate of ρ(k) is the sample autocorrelation coefficient

rk =

∑

s(Xs − X)(Xs+k − X)
∑

s(Xs − X)2
,

where Xs is the data from the stationary time series, Xs+k the data k time periods ahead
and X the mean of the stationary time series.

When the sample autocorrelation coefficients are computed for lag 1, lag 2, lag 3, . . . and
graphed rk versus k, the resultant plot is called the sample autocorrelation function
(ACF) or CORRELOGRAM.

The partial autocorrelation coefficient (ρkk) is a measure of the relationship between
Xs and Xs+k when the effect of the intervening variables Xs+1, Xs+2, . . . , Xs+k−1 has been
removed. This adjustment is made to see if the correlation between Xs and Xs+k is due to the
intervening variables or something else. We may estimate the sample partial autocorrelation
coefficient as rkk . A plot of rkk versus k is known as the autocorrelation coefficient
function (PACF).

The ACT and PACF may be used to aide the identification of p and q in the ARIMA
model. The following table provides a brief summary.

Model ACF PACT
MA(q) Cuts off after lag q Dies down exponentially and/or

(Typically, q = 1, 2) sinusoidally
AR(p) Dies down exponentially and/or Cuts off after lag p

sinusoidally (Typically, p = 1, 2)
ARMA(p, q) Dies down exponentially and/or Dies down exponentially and/or

sinusoidally sinusoidally

Having identified a model, estimated the parameters (for example, by least squares fitting
to the observed data) and checked the residuals to examine the fit, if we are happy we go
ahead and forecast.
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