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1 Introduction

We face a decision problem whenever there is a choice between two or more courses of action

e.g. today, you all had a choice about whether to attend this lecture.

It is often not enough to include just one action and its negation. You have to consider all
the possible alternatives.

e.g. if you decide not to attend the lecture, you have to do something with your
time (go shopping; go to the pub; go to the library)

Your decision problem is a choice amongst these.

1.1 Actions

The first step of the decision process is to construct a list of the possible actions that are
available.

e.g. A1 (go to the lecture); A2 (go shopping); A3 (go to the pub); A4 (go to the
library)

Our theory will limit us to a selection amongst this list of actions so the list must exhaust
the possibilities, i.e. it is an exhaustive list. We require that we will decide to take only
one of the actions, that is the list is exclusive. Alternatively, one of the actions has to be
taken, and at most one can be taken.

e.g. you will either go to the lecture, go shopping, go to the pub or go to the
library. You cannot do any two or more of these at the same time.

Definition 1 (Action Space)
Suppose that A1, A2, . . . , Am is a list of m exclusive and exhaustive actions. The set A =
{A1, A2, . . . , Am} is called the action space.

1.2 State of Nature

The selection of a single action as being, in some sense, best and the one course of action to
adopt is straightforward providing one has complete information.

e.g. you would choose to go to the lecture if you knew that in the lecture you
were to find out exactly what was in the exam.
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S1 S2 S3

A1 88 53 20
A2 75 66 32
A3 57 50 39

Table 1: Payoff (profit) table for Duff beer example

The difficulty in selection is due to you not knowing exactly what will happen if a particular
course of action is chosen. We are concerned with decision making under uncertainty.
The second stage of the decision process is to identify all relevant possible uncertainties.

Definition 2 (States of nature)
Suppose that S1, S2, . . . , Sn is a list of n exclusive and exhaustive events. The set S =
{S1, S2, . . . , Sn} is known as the states of nature or parameter space.

The decision process is to choose a single action, not knowing the state of nature.

1.3 Payoff

In order to compare each combination of action and state of nature we need a payoff (e.g.
profit or loss). Typically, this will be a numerical value and it will be clear how we compare
the payoffs. For example, we seek to maximise profit or to minimise loss. We shall deal with
maximisation problems (note that, as one is the negation of the other, there is a duality
between maximisation and minimisation problems). Initially, we shall consider the payoff to
be monetary.

Definition 3 (Payoff)
Associated with each action and each state of nature is a payoff

πij = {π(Ai, Sj), Ai ∈ A, Sj ∈ S}.

The payoff represents the ‘reward’ obtained by opting for action Ai when the state of nature
turns out to be Sj.

1.4 Working Example

Duff beer would like to market a new beer, ‘Tartar Control Duff’. The manager is trying
to decide whether to produce the beer in large quantities (A1), moderate quantities (A2) or
small quantities (A3). The manager does not know the demand for his product, but asserts
that three events could occur: strong demand (S1), moderate demand (S2) or weak demand
(S3). The profit, in thousands of dollars, with regard to marketing the beer is given in the
corresponding payoff table, see Table 1. The payoff table represents the payoffs in tabular
form: the rows are the actions and the columns are the states of nature. For example,
π12 = 53.

What should Duff beer do? If they know the state of nature then, as more profit is
preferred to less, then the decision would be easy:

• if S1 occurs, choose A1

• if S2 occurs, choose A2
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• if S3 occurs, choose A3

The choice of action which maximises profit depends upon the state of nature.

1.5 Admissibility

Sometimes, before we choose which action to take, it is possible to exclude certain actions
from further consideration because they can never be the best.

Definition 4 (Dominate; inadmissible)
If the payoff for Ai is at least as good as that for Aj, whatever the state of nature, and is
better than that for Aj for at least one state of nature then action Ai is said to dominate
action Aj. Any action that is dominated is said to be inadmissible.

Inadmissible actions should be removed from further consideration. In the payoff table for
Duff beer, all the actions are admissible.

NB. if π21 had been greater than, or equal to, 88 then A2 would have dominated
A1 and A1 would have been inadmissible.

1.6 Minimax regret

Let π∗(Sj) denote the best decision under state of nature Sj . Thus, for maximisation prob-
lems, we have

π∗(Sj) = max
i

π(Ai, Sj).

i.e. the largest value in the jth column.

Definition 5 (Opportunity regret)
Suppose we select action Ai and learn state Sj has occurred. The difference R(Ai, Sj) between
the best payoff π∗(Sj) and the actual payoff π(Ai, Sj) is termed the opportunity loss or regret
associated with action Ai when state Sj occurs.

Thus, the opportunity regret is the payoff lost due to the uncertainty in the state of nature.
The regret for action Ai and state Sj is calculated as

R(Ai, Sj) = π∗(Sj) − π(Ai, Sj).

You wish to avoid opportunity losses. The minimax regret strategy is to choose the
action that minimises your maximum opportunity loss.

1.6.1 Duff beer example

For the Duff beer example, π∗(S1) = 88, π∗(S2) = 66 and π∗(S3) = 39. Table 2 shows the
corresponding opportunity regrets. From Table 2 we find the largest opportunity regret for
each action

Action Maximum opportunity regret
A1 19
A2 13
A3 31

The minimax regret decision is the one that minimises these (that is, it minimises the
worse case scenario). In this case, the minimax regret decision is A2, market the beer in
moderate quantities.
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S1 S2 S3

A1 88 − 88 = 0 66 − 53 = 13 39 − 20 = 19
A2 88 − 75 = 13 66 − 66 = 0 39 − 32 = 7
A3 88 − 57 = 31 66 − 50 = 16 39 − 39 = 0

Table 2: Opportunity regret table for Duff beer example

2 Decision making with probabilities

The minimax regret strategy does not take into account any information about the proba-
bilities of the various states of nature.

e.g. it may be that we are almost certain to get high demand (S1) in the Duff
beer example, so A1 might be a more appropriate action.

In many situations, it is possible to obtain probability estimates for each state of nature.
These could be obtained subjectively or from empirical evidence.

Let P (Sj) denote the probability that state of nature Sj occurs. Since S1, . . . , Sn is a list
of n exclusive and exhaustive events then

P (Sj) ≥ 0 for all j;

n∑

j=1

P (Sj) = 1.

2.1 Maximising expected monetary value

For each action Ai we can calculate the expected monetary value of the action,

EMV (Ai) =

n∑

j=1

π(Ai, Sj)P (Sj).

The maximising expected monetary value strategy involves letting

EMV = max
i

EMV (Ai)

and choosing the action Ai for which EMV (Ai) = EMV , that is the action which achieves
the maximum expected monetary value.

2.1.1 Duff beer example

Suppose that the manager believes that the probability of strong demand (S1) is 0.4 (so
P (S1) = 0.4); the probability of moderate demand (S2) is 0.4 (so P (S2) = 0.4); the prob-
ability of weak demand (S3) is 0.2 (so P (S3) = 0.2). We calculate the expected monetary
value for each action.

EMV (A1) = 88(0.4) + 53(0.4) + 20(0.2) = 60.4,

EMV (A2) = 75(0.4) + 66(0.4) + 32(0.2) = 62.8,

EMV (A3) = 57(0.4) + 50(0.4) + 39(0.2) = 50.6.

Thus, EMV = max{60.4, 62.8, 50.6} = 62.8. The decision that maximises expected mone-
tary value is A2, to market the beer in moderate quantities.

Note that the payoff for a one-time decision will not be 62.8. It is either 75 (with
probability 0.4), 66 (with probability 0.4) or 32 (with probability 0.2).
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Figure 1: The decision tree for the Duff beer example.

2.2 Decision trees

A decision tree provides a graphical representation of the decision making process. It shows
the logical progression that will occur over time. The tree consists of a series of nodes and
branches. There are two types of node: a decision node (denoted as a 2) which you control
and a chance node (denoted as a ◦) which you don’t control. When branches leaving a node
correspond to actions, then the node is a decision node; if the branches are state-of-nature
branches then the node is a chance node.

2.2.1 Decision tree for the Duff beer example

The decision tree corresponding to the Duff beer example is shown in Figure 1. We solve
the problem by rollback (or backward dynamic programming).

Start at the ‘right’ of the tree:

1. At each chance node reached, mark the node with EMV of the tree to the
right of the node and remove tree to right.

2. At each decision node reached, chose decision with highest EMV, replace all
of tree to right by this EMV.

Repeat until starting node reached.

The removal of subtrees is termed ‘pruning’. The completed decision tree for Duff beer is
shown in Figure 2

2.3 The value of perfect information

If you know precisely what state-of-nature will occur, you can maximise your payoff by
always choosing the correct action. How much is this advance information worth to you?
Recall that for each state Sj, π∗(Sj) denotes the best payoff. The expected (monetary)
value under certainty (EMVUC) is

EMV UC =

n∑

j=1

π∗(Sj)P (Sj).
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Figure 2: The completed decision tree for the Duff beer example. The non-marked branches
indicate the decisions (and the ensuing consequences) we take.

The expected value of perfect information (EVPI), that is the loss resulting from not
having perfect information, is the difference between the expected value under certainty and
the expected value under uncertainty. That is,

EV PI = EMV UC − EMV.

2.3.1 Duff beer example

Under perfect information, the manager knows before he decides whether to market the beer
in large (A1), moderate (A2) or small (A3) quantities if the demand is strong (S1), moderate
(S2) or weak (S3). His decision tree under perfect information is shown in Figure 3. Recall
that π∗(S1) = 88, π∗(S2) = 66 and π∗(S3) = 39, so that

EMV UC = 88(0.4) + 66(0.4) + 39(0.2) = 69.4.

Hence,

EV PI = EMV UC − EMV

= 69.4 − 62.8

= 6.6.

2.4 An example with sequential decisions

Decision trees are particularly useful when the problem involves a sequence of decisions.
Consider the following example. A company makes stuff and they hope for an increase
in demand. In the first year, there are two possible actions: A1 (new machinery) and A2

(overtime). In the first year, sales can either be good (g1) or bad (b1) and experts judge
that P (g1) = 0.6, P (b1) = 0.4. In the second year, the company has options which depend
upon the choices made in year one. If they chose new machinery in year one, then they
may choose either more machinery or more overtime. If overtime is chosen in year one, then
overtime continues in year two. The sales in year two will either be high (h2), medium (m2)
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Figure 3: The completed decision tree for the Duff beer example under perfect information.

or low (l2). If sales are good in year one, then the probability of high sales in year two is
0.5, of medium sales is 0.4 and of low sales is 0.1. If sales are bad in year one, then the
probability of high sales in year two is 0.4, of medium sales is 0.4 and of low sales is 0.2.
Thus, the probabilities for year two are conditional upon what happens in year one. More
formally, we have:

P (h2|g1) = 0.5, P (m2|g1) = 0.4, P (l2|g1) = 0.1,

P (h2|b1) = 0.4, P (m2|b1) = 0.4, P (l2|b1) = 0.2.

The payoffs for the problem are shown in the decision tree in Figure 4. The decision tree is
solved by rollback. Notice that the probabilities are conditional upon the states to the left
of them are the tree (that have thus occurred).

e.g. EMV (A3) given that we reach decision 2a (i.e. choose A1 and observe g1)
is

EMV (A3) = 850(0.5) + 816(0.4) + 790(0.1) = 830.4.

The decision rule is to choose new machinery in both years if sales in the first year are good,
and new machinery in year one followed by overtime in year two if sales are bad in year one.
This gives EMV = 762.24.

We now find EV PI for the factory problem. Notice that there are six possible states
for the two years ((g1, h2), (g1, m2), . . .). The probabilities for these states may be found by
multiplying all the probabilities on the path from the corresponding payoff to the root of the
tree. For example,

P (g1, h2) = P (h2|g1)P (g1) = 0.5 × 0.6 = 0.30.
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We then find the best payoff for each state. For example, π∗(g1, h1) = max{850, 820, 790} =
850. We thus have

State Probability Maximum Payoff
(g1, h2) 0.5 × 0.6 = 0.30 850
(g1, m2) 0.4 × 0.6 = 0.24 816
(g1, l2) 0.1 × 0.6 = 0.06 795
(b1, h2) 0.4 × 0.4 = 0.16 700
(b1, m2) 0.4 × 0.4 = 0.16 670
(b1, l2) 0.2 × 0.4 = 0.08 650

Hence,

EMV UC = (850 × 0.30) + (816 × 0.24) + · · · + (650 × 0.08) = 769.74.

So that,

EV PI = EMV UC − EMV = 769.74− 762.24 = 7.5.

3 Decision analysis with sample information

It is often of value to a decision maker to obtain some further information regarding the
likely state of nature. We now consider how to incorporate the sample information with the
prior probabilities about the state of nature to obtain posterior probabilities. This is done
via Bayes’ theorem. First, we briefly review some probability theory.

3.1 A brief revision of some probability theory

An uncertain situation is one for which there are various possible outcomes and there is
uncertainty as to which will occur. A sample space, denoted Ω, is a set of outcomes for the
uncertain situation such that one and only one will occur. An event associated with the
sample space is a set of possible outcomes, that is, a subset of the sample space. We use set
notation to refer to combinations of events.

• A ∪ B (read as A or B) is the event that A happens or that B happens or that both
A and B happen.

• A ∩ B (read as A and B) is the event that A happens and B happens.

A probability distribution on Ω is a collection of numbers P (A) defined for each A ⊆ Ω,
obeying the following axioms:

1. P (A) ≥ 0 for each event A.

2. P (Ω) = 1.

3. If A and B are mutually exclusive (incompatible), that is it is impossible for A and B
both to occur (i.e. if A ∩ B = ∅, where ∅ denotes the empty set), then P (A ∪ B) =
P (A) + P (B).

4. Suppose that the sample space Ω is infinite and that A1, A2, . . . form an infinite se-
quence of mutually exclusive events. Then

P (

∞⋃

i=1

Ai) =

∞∑

i=1

P (Ai).
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For our purposes, the most useful consequence of these axioms is that if A1, A2, . . . , Ak are
mutually exclusive events then

P (
k⋃

i=1

Ai) =
k∑

i=1

P (Ai). (1)

If P (B) > 0 then the conditional probability that A occurs given that B occurs is defined
to be

P (A|B) =
P (A ∩ B)

P (B)
. (2)

(Intuitively, given that B occurs, it is the case that A occurs if and only if A ∩ B occurs.
Thus, P (A|B) should be proportional to P (A ∩ B), that is P (A|B) = αP (A ∩ B) for some
constant α. As P (B|B) = 1 it thus follows that α = 1/P (B).) From (2), we immediately
deduce that P (A ∩ B) = P (A|B)P (B). Switching the roles of A and B in (2) and noting
that P (A∩B) = P (B∩A), gives P (A∩B) = P (B|A)P (A). Substituting this latter equation
into (2) yields

P (A|B) =
P (B|A)P (A)

P (B)
. (3)

3.2 Bayes’ theorem

Let S1, . . . , Sn be n mutually exclusive and collectively exhaustive events. Let D be some
other event with P (D) 6= 0. We may write

D = {D ∩ S1} ∪ {D ∩ S2} ∪ . . . ∪ {D ∩ Sn} =
n⋃

j=1

{D ∩ Sj},

where {D ∩S1}, . . . , {D∩Sn} are mutually exclusive. Thus, from (1) and then (2), we have

P (D) =

n∑

j=1

P (D ∩ Sj) =

n∑

j=1

P (D|Sj)P (Sj). (4)

(4) is often referred to as the theorem of total probability. From (3) and (4) we have

P (Sj |D) =
P (D|Sj)P (Sj)

P (D)
=

P (D|Sj)P (Sj)∑n

j=1 P (D|Sj)P (Sj)
. (5)

(5) is Bayes’ theorem and enables us to compute the posterior probabilities for each state
of nature Sj following the receipt of sample information, D.

We modify P (Sj), the prior probability of Sj , to P (Sj |D), the posterior probability of
Sj , given the sample information that D occurred, using Bayes’ theorem. P (D|Sj) is often
termed the likelihood of Sj .

3.2.1 Duff beer example

The manager may conduct a survey that would predict strong demand (I1), moderate de-
mand (I2), or weak demand (I3). Historical data enables the manager to obtain conditional
probabilities with regard to the predictions of the survey (P (I|S)) and these are given in
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S1 S2 S3

I1 0.8 0.3 0.3
I2 0.1 0.5 0.1
I3 0.1 0.2 0.6

Table 3: Conditional probabilities for survey’s predictions given state of nature

Table 3. For example, P (I2|S1) = 0.1. We find the posterior probabilities of the states of
nature using Bayes’ theorem. Recall that our prior probabilities for the states of nature were
P (S1) = 0.4, P (S2) = 0.4 and P (S3) = 0.2. For example,

P (S1|I2) =
P (I2|S1)P (S1)

P (I2)

where

P (I2) =

3∑

j=1

P (I2|Sj)P (Sj)

= (0.1 × 0.4) + (0.5 × 0.4) + (0.1 × 0.2) = 0.26.

Thus,

P (S1|I2) =
(0.1 × 0.4)

0.26
=

2

13
.

It is more efficient to calculate the probabilities of the indicator, P (Ii), and the posterior
probabilities for the states of nature, P (Sj |Ii), using a tabular approach. For each indicator
Ii we form a table with the following columns:

• Column 1 counts the state, j, we are in.

• Column 2 lists the state of nature, Sj , we are in.

• Column 3 lists the prior probabilities P (Sj).

• Column 4 the conditional probabilities P (Ii|Sj)

• Column 5 the joint probabilities P (Ii ∩ Sj)

• Column 6 the conditional probabilities P (Sj |Ii)

We fill in the first four columns. Notice that the sum of all the elements in Column 3 must be
1. Since P (Ii∩Sj) = P (Ii|Sj)P (Sj), Column 5 is obtained by multiplying the corresponding
row entries in Columns 3 and 4. Using the theorem of total probability, see (4), P (Ii) is the
sum of all of the elements in Column 5. As, see (2), P (Sj |Ii) = P (Ii ∩Sj)/Ii), then Column
6 is obtained by dividing the elements in Column 5 by the sum of all the elements in Column
5. Note that the sum of all the elements in Column 6 must be 1.

We perform these for all three possible indicators, I1, I2, I3, in the Duff beer example.
The resulting tables are given in Table 4.

11



The table for I1:
j Sj P (Sj) P (I1|Sj) P (I1 ∩ Sj) P (Sj |I1)

1 S1 0.4 0.8 0.4 × 0.8 = 0.32 0.32 ÷ 0.5 = 0.64
2 S2 0.4 0.3 0.4 × 0.3 = 0.12 0.12 ÷ 0.5 = 0.24
3 S3 0.2 0.3 0.2 × 0.3 = 0.06 0.06 ÷ 0.5 = 0.12

1 P (I1) = 0.5 1

The table for I2:
j Sj P (Sj) P (I2|Sj) P (I2 ∩ Sj) P (Sj |I2)

1 S1 0.4 0.1 0.4 × 0.1 = 0.04 0.04 ÷ 0.26 = 2
13

2 S2 0.4 0.5 0.4 × 0.5 = 0.20 0.20 ÷ 0.26 = 10
13

3 S3 0.2 0.1 0.2 × 0.1 = 0.02 0.02 ÷ 0.26 = 1
13

1 P (I2) = 0.26 1

The table for I3:
j Sj P (Sj) P (I3|Sj) P (I3 ∩ Sj) P (Sj |I3)

1 S1 0.4 0.1 0.4 × 0.1 = 0.04 0.04 ÷ 0.24 = 1
6

2 S2 0.4 0.2 0.4 × 0.2 = 0.08 0.08 ÷ 0.24 = 1
3

3 S3 0.2 0.6 0.2 × 0.6 = 0.12 0.12 ÷ 0.24 = 1
2

1 P (I3) = 0.24 1

Table 4: Calculating the posterior probabilities of the states of nature following the predic-
tions of the survey.

3.3 Calculating the expected payoff with sample information

We construct and solve the decision tree for the Duff beef example following the sample
information. The resulting decision tree is given in Figure 5. Notice that the probabilities
are conditional on all the events on a path from the probability to the root node of the tree.
Thus, we require P (Sj |Ii) for each i, j on the choices branches on the right side of the tree
and P (Ii) for each i for the choice branches coming from the root node.

If the survey predicts strong demand (I1) then the manager should choose to market the
beer in large quantities (A2). If the survey predicts moderate (I2) or weak demand (I3) then
the manager should choose to market the beer in moderate quantities (A2). The expected
payoff is 64.68 thousand dollars. Notice that, without the sample information, the optimal
decision (in terms of maximising EMV) was to choose A2. We can see the effect of the
sample information. If the survey predicts strong demand, we should change our decision
from A2 to A1.

For each possible piece of sample information there is a recommended action. This is
called a decision rule. A decision rule which uses the criterion of maximising expected
posterior payoff is called a Bayes’ decision rule. We have just found the Bayes’ decision
rule for the Duff beer example.

3.4 The value of sample information

Obtaining sample information usually costs money. How much would we pay to receive the
sample information? We should pay, at most, the expected value of sample information. Let
EVwSI denote the expected value of the optimal decision with sample information and EV-
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Figure 5: The decision tree for Duff beer with sample information.
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woSI the expected value of the optimal decision without sample information. The expected
value of sample information (EVSI) is defined as

EV SI = EV wSI − EV woSI.

3.4.1 EVSI for the Duff beer example

In the Duff beer example, EV woSI = 62.8 (see Figure 2) and EV wSI = 64.68 (see Figure
5). Hence,

EV SI = 64.68− 62.6 = 1.88.

So, we would pay up to 1.88 thousand dollars for the sample information.

3.5 Efficiency of sample information

We don’t expect the sample information to obtain perfect information, but we can use an
efficiency measure to express the value of sample information. With perfect information
having an efficiency rating of 100%, the efficiency rating E for the sample information is
computed as

E =
EV SI

EV PI
× 100.

For the Duff beer example, EV SI = 1.88 and EV PI = 6.6. The efficiency is thus

E =
1.88

6.6
× 100 = 28.48%.

The information from the sample is 28.48% as efficient as perfect information. Low efficiency
ratings for sample information might lead you to look for other types of information before
making your final decision whereas high values indicate that the sample information is almost
as good as perfect information and additional sources are not worthwhile.

Suppose that there is a cost, C, for the sample information. The net expected gain
of the sample information is the difference between between the EVSI and the cost of the
sample information. The net efficiency (NE) is the percentage proportion of the EV PI
obtained by the net expected gain.

e.g. Suppose the survey in the Duff beer example costs one thousand dollars.
The net expected gain is thus

Net expected gain = EV SI − C = 1.88 − 1 = 0.88.

The net efficiency is

NE =
Net expected gain

EV PI
× 100 =

0.88

6.6
× 100 = 13.33%.

4 Utility

4.1 The St. Petersburg Paradox

So far, we have used the expected monetary value, EMV, as a means of decision making.
Is this the correct approach? Consider the following game. A coin is tossed until a head
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appears. If the first head appears on the jth toss, then the payoff is £2j. How much should
you pay to play this game?

Let Sj denote the event that the first head appears on the jth toss. Then P (Sj) = 1/2j

and the payoff for Sj , π(Sj) = 2j . Thus,

EMV =
∞∑

j=1

π(Sj)P (Sj) =
∞∑

j=1

2j ×
1

2j
= ∞.

The expected monetary payoff is infinite. However much you pay to play the game, you may
expect to win more. Would you risk everything that you possess to play this game? One
would suppose that real-world people would not be willing to risk an infinite amount to play
this game.

The EMV criterion avoids recognising that a decision maker’s attitude to the prospect of
gaining or losing different amounts of money is influenced by the risks involved. A person’s
valuation of a risky venture is not the expected return of that venture but rather the expected
utility from that venture.

4.2 Preferences

Given a choice between two rewards, R1 and R2 we write:

• R2 ≺⋆ R1, you prefer R1 to R2, if you would pay an amount of money (however small)
in order to swap R2 for R1.

• R1 ∼⋆ R2, you are indifferent between R1 and R2, if neither R2 ≺⋆ R1 or R1 ≺⋆ R2

hold.

• R2 �⋆ R1, R1 is at least as good as R2, if one of R2 ≺⋆ R1 or R1 ∼⋆ R2 holds.

e.g. A bakery might have five types of cake available and you assert that

fruit cake ≺⋆ carrot cake ≺⋆ banana cake ≺⋆ chocolate cake ≺⋆ cheese cake.

Thus, we would be willing to pay to exchange a fruit cake for a carrot cake and
then pay again to exchange the carrot cake for a banana cake and so on.

We make two assumptions about our preferences over rewards. Suppose that R1, R2, . . . , Rn

constitute a collection of n rewards. We assume

1. (COMPARABILITY) For any Ri, Rj exactly one of Ri ≺⋆ Rj , Rj ≺⋆ Ri, Ri ∼⋆ Rj

holds.

2. (COHERENCE) If Ri ≺⋆ Rj and Rj ≺⋆ Rk then Ri ≺⋆ Rk.

Comparability ensures that we can express a preference between any two rewards. Suppose
that we didn’t have coherence. For example, consider that carrot cake ≺⋆ banana cake and
banana cake ≺⋆ chocolate cake but that chocolate cake ≺⋆ carrot cake. Then you would pay
money to swap from carrot cake to banana cake and then from banana cake to chocolate
cake. You then are willing to pay to switch the chocolate cake for a carrot cake. You are
back in your original position, but have spent money to maintain the status quo. You are a
money pump.
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The consequence of these assumptions is that, for a collection of n rewards R1, R2, . . . , Rn,
there is a labelling R(1), R(2), . . . , R(n) such that

R(1) �
⋆ R(2) �

⋆ · · · �⋆ R(n).

This is termed a preference ordering for the rewards. In particular, there is a best reward,
R(n), and a worst reward, R(1) (though these are not necessarily unique).

4.3 Gambles

A gamble, G, is simply a random reward.

e.g. Toss a fair coin. If you toss a head then your reward is a carrot cake whilst
if you toss a tail you receive a banana cake.

We write

G = p1R1 +g p2R2 +g · · · +g pnRn (6)

for the gamble that returns R1 with probability p1, R2 with probability p2, . . ., Rn with
probability pn. The representation of G as in (6) is a notational convenience. We do not
multiply the rewards by the probabilities nor do we add anything together. The notation
+g (which you should read as ‘plus gamble’) helps emphasise this.

e.g. The gamble where if you toss a head then your reward is a carrot cake whilst
if you toss a tail you receive a banana cake may thus be expressed as

G =
1

2
carrot cake +g

1

2
banana cake. (7)

Note that, despite being random, each gamble can be considered a reward over which pref-
erences are held.

e.g. If carrot cake �⋆ banana cake then our preferences over the gamble G given
by (7) must be carrot cake �⋆ G �⋆ banana cake.

We make two assumptions to ensure that our gambles are coherently compared.

1. If R1 �⋆ R2, p < q then pR2 +g (1 − p)R1 �⋆ qR2 +g (1 − q)R1.

2. If R1 �⋆ R2 then pR1 +g (1 − p)R3 �⋆ pR2 +g (1 − p)R3.

Gambles provide the link between probability, preference and utility.

4.4 Utility

Preference orderings are not quantitative. For example, we can say R1 ≺⋆ R2 and R2 ≺⋆ R3

but not whether R2 ≺⋆ 1
2R1 +g

1
2R3. For this, we need a numerical scale, your utility.

Definition 6 (Utility)
A utility function U on gambles G = p1R1+gp2R2+g · · ·+gpnRn over rewards R1, R2, . . . , Rn

assigns a real number U(G) to each G subject to the following conditions

1. Let G1, G2 be any two gambles. If G1 ≺⋆ G2 then U(G1) < U(G2), and if G1 ∼⋆ G2

then U(G1) = U(G2).
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S1 S2 S3

A1 -10,000 -10,000 -10,000
A2 0 -100,000 -200,000

Table 5: Payoff (profit) table for the insurance example.

2. For any p ∈ [0, 1] and any rewards A, B,

U(pA +g (1 − p)B) = pU(A) + (1 − p)U(B).

REMARKS

• Condition 1. says that utilities agree with preferences, so you choose the gamble with
the highest expected utility.

• Condition 2. says that, for the generic gamble G = p1R1 +g p2R2 +g · · ·+g Rn, U(G) =
p1U(R1) + p2U(R2) + · · · + pnU(Rn). Hence, U(G) = E(U(G)).

i.e. Expected utility of a gamble = Actual utility of that gamble.

• Conditions 1. and 2. combined imply that we choose the gamble with the highest
expected utility. So, if we can specify a utility function over rewards, we can solve
any decision problem by choosing the decision which maximises expected utility.

Note then, that if you are given utilities as a payoff rather than a monetary value (e.g.
profit), to find the optimal decision: proceed as for the expected monetary value approach
but with the utility values in place of the respective payoffs.

4.4.1 Example - should we insure?

The University of Bath is considering purchasing an insurance policy, against the risk of fire,
for a new building. The policy has an annual cost of £10, 000. If no insurance is purchased
and minor fire damage occurs to the building then the cost is £100, 000 while major fire
damage to an uninsured building occurs a cost of £200, 000. The probability of no fire
damage (S1) is 0.96, of minor fire damage (S2) is 0.03 and of major fire damage (S3) is
0.01. The action of purchasing insurance we label A1 and that of not purchasing insurance
is labelled A2. We construct the corresponding payoff table, see Table 5.

The decision problem is a choice between two gambles over the four rewards, £ − 10, 000,
£0, £ − 100, 000 and £− 200, 000. Choosing action A1 results in a gamble, G1, which may
be expressed as

G1 = 0.96£− 10, 000 +g 0.03£− 10, 000 +g 0.01£− 10, 000 ∼⋆ £ − 10, 000

while choosing action A2 results in the gamble G2,

G2 = 0.96£0 +g 0.03£− 100, 000 +g 0.01£− 200, 000

The expected utility of each of these gambles is equal to the actual utility of the gamble.
The respective utilities are

U(G1) = 0.96U(£− 10, 000) + 0.03U(£− 10, 000) + 0.01U(£− 10, 000)

= U(£ − 10, 000),

U(G2) = 0.96U(£0) + 0.03U(£− 100, 000) + 0.01U(£− 200, 000).
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We choose insurance if U(G1) > U(G2) and we don’t insure if U(G1) < U(G2). Suppose
that our utility is equal to the money value, that is

U(£x) = x.

The problem is then identical to maximising expected monetary value, so

U(G1) = −10, 000 = EMV (A1),

U(G2) = 0.96(0) + 0.03(−100, 000)+ 0.01(−200, 000) = −5, 000 = EMV (A2).

We choose action A2. We don’t purchase insurance. This is not surprising. Insurance
companies make money; their premiums are always bigger than the expected payoff. Should
no-one ever insure then? No, this example merely illustrates that money is not a (useful)
utility scale. It doesn’t capture the risk of the ventures.

Can we construct a utility function for the insurance problem such that U(£ − 10, 000),
U(£0), U(£ − 100, 000), U(£ − 200, 000) matches our attitude to risk? Can we construct a
general utility function over a set of n rewards, R1, R2, . . . , Rn? The answer is yes and we
shall now show how.

4.5 General method for constructing utility for rewards R1, . . . , Rn

For an ordered set of rewards R(1) �
⋆ R(2) �

⋆ · · · �⋆ R(n), define U(R(1)) = 0 and U(R(n)) =
1. For each integer 1 < i < n define U(R(i)) to be the probability p such that

R(i) ∼
⋆ (1 − p)R(1) +g pR(n).

Thus, pi is the probability where you are indifferent between a guaranteed reward of R(i)

and a gamble with reward R(n) with probability p and R(1) with probability (1 − p). p is
often termed the indifference probability for reward R(i). We comment that finding such a
p is not easy.

4.5.1 Example revisited - should we insure?

We return to the example of §4.4.1. We have rewards

£ − 200, 000 �⋆ £ − 100, 000 �⋆ £ − 10, 000 �⋆ £0.

over which we construct our utility function. The worst reward is £ − 200, 000 and so we
set U(−£200, 000) = 0. The best reward is £0

We set U(−£200, 000) = 0 and U(−£0) = 1. U(−£100, 000) is the probability p such
that −£100, 000 ∼⋆ (1 − p)(−£200, 000) +g p(£0). Suppose we assert an indifference prob-
ability of 0.60. Then U(−£100, 000) = 0.6. [Aside. Note that the expected monetary value
of the gamble (1− p)(−£200, 000)+g p(£0) when p = 0.6 is −£80, 000. We are prepared to
forfeit £20, 000 of the EMV (i.e. −80000− (−100000)) to avoid risk. We are averse to risk.]

U(−£10, 000) is the probability q such that −£10, 000 ∼⋆ (1− q)(−£200, 000)+g q(£0).
Since −£100, 000 ≺⋆ −£10, 000 ≺⋆ £0 then q ∈ (0.6, 1). Suppose we assert an indifference
probability of 0.99. Then U(−£10, 000) = 0.99.

Notice that for each action Ai and state of nature Sj we may find the corresponding
utility U(Ai, Sj). We can construct a utility table of our problem. This is analogous to the
payoff table but with each payoff π(Ai, Sj) replaced by the corresponding utility U(Ai, Sj).
The utility table for the insurance problem is given by Table 6. We choose the action which
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S1 S2 S3

A1 0.99 0.99 0.99
A2 1 0.6 0

Table 6: Utility table for the insurance example.

maximises our expected utility.

EU(A1) =

3∑

j=1

U(A1, Sj)P (Sj) (8)

= (0.99)(0.96) + (0.99)(0.03) + (0.99)(0.01)

= 0.99;

EU(A2) =

3∑

j=1

U(A2, Sj)P (Sj) (9)

= (1)(0.96) + (0.6)(0.03) + (0)(0.01)

= 0.978.

Thus, we choose action A1, we insure. Compare equations (8) and (9) with (8) and (8).
To calculate our expected utilities, as opposed to our expected monetary values, we simply
replace each payoff by the corresponding utility.

4.6 Uniqueness of utility

We should question whether our utility is unique? Is there only one set of numbers which
appropriately represent our preferences for gambles over a set of rewards? If it is not unique,
then do different utilities lead to different decisions?

The answer is reassuring. A utility function on a set of rewards is unique up to an
arbitrary positive linear transformation. That is

1. If U(·) is a utility function over a set of rewards and a > 0, b are numbers then
V (·) = aU(·) + b is also a utility function over that set of rewards.

2. Suppose that U , V are utilities on a reward set. Then there exist numbers a > 0, b
such that for each reward R, V (R) = aU(R) + b.

Hence, if we choose the action which maximises the expected utility for U , this is also the
action which maximises the expected utility for V and vice versa.
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