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1 Introduction

In quality control, we are concerned with problems involved in controlling the quality of a
manufactured product. We’ll study two major techniques:

1. ACCEPTANCE SAMPLING where we are concerned with monitoring the quality
of manufactured items supplied by the manufacturer to consumers in batches. The
problem is to decide whether the batch should be accepted or rejected on the basis of
a sample randomly drawn from the batch.

2. PROCESS CONTROL where goods are produced continuously and the problem is to
detect changes in the performance of the manufacturing process and take action (when
necessary) to control the process.

1.1 What is quality?

Most of us associate quality with luxury (such as a BMW car, a plasma screen television,
. . . ) but by quality control we are thinking in terms of “things that work in the way we
expect them to” i.e. “it does what it says on the tin”.

1. Quality implies fitness for use.

2. Quality means conformance to requirements.

Thus, quality is defined by both customers and producers.

1.2 Variability compromises quality

Mass produced items are not identical. Some variation is inevitable and can cause problems.
Too much variation might mean that parts which should fit together don’t.

e.g. A screw might be too small/large to fit the corresponding bolt.

There is a need to identify items which exhibit too much variation and deal with them,
perhaps even scrap them.
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1.3 Inspection versus Prevention

How should we deal with variation? An early strategy was to inspect goods at the end of
the production line and release, to the consumer, only those of a sufficiently high standard.
It was argued that the marginal cost of each item was small, so the cost of the rejected items
was small. However, this argument ignored a number of other costs. For example, there is
the cost of employing and equipping the inspectors; the damage to reputation if defective
goods slip through the net and are released, and so on.

An alternative is that it is cheaper to do things right the first time, that is, to aim for
zero defects.

e.g. we demand perfection from electricity suppliers and airlines, why not from
all producers?

When poorly made parts are passed down the production line, all subsequent work is wasted
when the final product is rejected by the inspectors. It is expensive to keep inspecting
components. It may be cheaper to try to prevent defects at each stage of manufacturing a
product or delivering a service. At each stage, we could let production staff be responsible
for checking the quality of their own work. This has the added benefit of giving workers a
greater investment of pride in their work, making them more like craftsmen.

2 Acceptance sampling

Any manufacturing process will inevitably produce some defective items. The manufac-
tured items will often by supplied in BATCHES or LOTS and may be examined by the
manufacturer before shipment or by the consumer before acceptance.

Acceptance sampling is used when the cost of inspecting each item is too costly or may
destroy the item, for example with chocolate bars. It is such problems we focus attention
upon and not those where inspection of every item occurs.

e.g. Precision engineering. F1 teams constantly check every part of the car to
try to maximise performance and prevent failure on race-day.

When a batch is rejected by a sampling scheme, it may be returned, purchased at a lower
cost or destroyed. Alternatively, it may be subjected to 100% inspection where all defective
items are replaced by good items. This is called a rectifying scheme and we shall consider
such schemes later.

Acceptance sampling techniques are applications of sampling theory and hypothesis test-
ing and can be divided into two classes

1. SAMPLING BY ATTRIBUTE (qualitative approach). Here, items in the sample are
classed dichotomously as ‘good’ or ‘defective’.

2. SAMPLING BY VARIABLE (quantitative approach). Here, an items quality is deter-
mined as a result of a quantitative scale.

e.g. A light bulb either works or it doesn’t (qualitative). However, you might be
interested in how many hours the bulb will last for (quantitative).

The general principles of the methodology are shared by both methods. Sampling by variable
is usually more informative, but is also more costly.

2



e.g. You can just switch on a bulb to see whether it works or not, rather than
continuously monitor its lifetime.

We shall concentrate upon sampling by attribute and look at three sampling schemes: single
sampling, double sampling, and sequential sampling.

2.1 Single sampling scheme

In a single sampling scheme, we specify two numbers: n, the sample size and c, the acceptance
number , the maximum allowable number of items with defects. The single sampling scheme
is

Select n items,
Accept batch if number of defective items ≤ c,
Reject batch if number of defective items ≥ c + 1







Suppose that the entire batch consists of N items of which k are defective. The proportion
of defective items p = k/N is a measure of the quality of the batch. The higher the value of
p, the worse the quality. Suppose we draw a sample of size n and let X be the number of
defective items in the sample. Then,

P (X = d|N, k) =

(

k
d

) (

N − k
n − d

)

(

N
n

) .

This is the hypergeometric distribution. If N is very much larger than n and the proportion
p = k/N is stable then X is approximately distributed as the binomial distribution with
parameters n and p, written Binomial(n, p). We shall assume this approximation is valid,
so that

P (X = d|p) =

(

n
d

)

pd(1 − p)n−d.

Hence,

P (Reject batch|p) = P (X ≥ c + 1|p) =

n
∑

d=c+1

(

n
d

)

pd(1 − p)n−d

and

P (Accept batch|p) = P (X ≤ c|p) =

c
∑

d=0

(

n
d

)

pd(1 − p)n−d

= 1 − P (Reject batch|p).

2.2 The operating characteristic curve

For ANY sampling scheme, OC(p) = P (Accept batch|p) is known as the operating char-
acteristic (OC) of the scheme. The plot of OC(p) is the OC-curve.

e.g. for the single sampling scheme, OC(p) =
c

∑

d=0

(

n
d

)

pd(1 − p)n−d is the OC.
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Figure 1: An ideal OC-curve.

If p is very small, we would like the batch to be accepted, while if p is large, we would like
to reject the batch. When p = 0 there are no defective items in the batch and so the batch
is certain to be accepted, thus OC(0) = 1. When p = 1 then all items are defective and so
the batch is certain to be rejected, thus OC(1) = 0.

e.g. Suppose in a single sampling scheme that n = 10 and c = 0. Then,

OC(p) =

(

10
0

)

p0(1 − p)10 = (1 − p)10.

If n = 10 and c = 1 then

OC(p) = (1 − p)10 +

(

10
1

)

p1(1 − p)9 = (1 + 9p)(1− p)9.

Thus, for a single sampling scheme, our choices of n and c affect the shape of the OC-curve.
How should we choose n and c? In general, what shape should our OC-curve be like?

Ideally, there might be a critical value p∗ such that we accept all batches with p < p∗

and reject all batches with p∗ < p. That is,

OC(p) =

{

1 p < p∗

0 p > p∗

and is shown in Figure 1. This OC-curve is impossible to achieve without 100% inspection.
An alternative would be to set

OC(p) =

{

1 p < p1

0 p > p2
p2 > p1

leaving the region (p1, p2) in which we do not mind what happens. Such an OC-curve is
shown in Figure 2. Unfortunately, this is also impossible without 100% inspection. So, we
wish to devise a sampling plan so that if p is acceptably small then there is a high probability
of accepting this batch of ‘good’ quality and if p is unacceptably large then there is a small
probability of accepting this batch of ‘bad’ quality. The producer and consumer should get
together and decide upon a sampling plan which is fair to both.

Definition 1 (AQL and producer’s risk)
The largest proportion of defectives in a batch which is acceptable to the consumer is called the
acceptable quality level (AQL) and is denoted by p1. The producer’s risk is P (Reject batch|p =
p1) = α so that OC(p1) = 1 − α.
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Figure 2: An alternative form of an ideal OC-curve.

Thus, the producer’s risk is the probability of rejecting a batch at the limit of acceptable
quality.

i.e. the producer doesn’t shift a batch that the consumer judges acceptable.

In the idealised scheme shown in Figure 2 we have α = 0.

Definition 2 (LTPD and consumer’s risk)
The smallest proportion of defectives in a batch which is unacceptable to the consumer is
called the unacceptable quality level and is denoted by p2. The corresponding percentage,
100p2, is termed the lot tolerance percentage defective (LTPD). The consumer’s risk is
P (Accept batch|p = p2) = β so that OC(p2) = β.

Thus, the consumer’s risk is the probability of accepting a batch at the lower limit of bad
quality.

i.e. the consumer accepts a batch that he judges unacceptable.

In the idealised scheme shown in Figure 2 we have β = 0.
The producer’s and consumer’s risks are illustrated in Figure 3. Notice that the pro-

ducer’s and consumer’s risks specify two points on the OC-curve.

2.2.1 A link to hypothesis testing

If we consider testing the hypothesis H0 : p = p1 against the alternative HA : p > p1 then
1 − OC(p) is the corresponding power curve. Rejecting a batch in the sampling scheme is
equivalent to rejecting H0. If the batch is rejected when H0 is actually true, then this is a
type I error, and the probability of such an error is the producer’s risk, α. Conversely, if we
accept the batch when it should have been rejected, we have a type II error. When p = p2,
the probability of a type II error is the consumer’s risk, β.

2.3 Calculating the OC-curve for single sampling schemes

2.3.1 n and c given

Bertie Bassett is negotiating a contract for buying batches of 1000 packets of Liquorice
Allsorts from Sweets’R’Us. Each packet is judged good if it contains more than 20 Liquorice
Allsorts and defective if there are less than 20 Liquorice Allsorts. Sweets’R’Us claim that
it can produce batches with proportion of defective packets below 1% which is acceptable
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Figure 3: Producer’s and consumer’s risks.

to Bertie. The AQL is thus 0.01. Suppose Bertie chooses n = 100 and c = 1 in a single
sampling scheme. He calculates the producer’s risk.

α = P (Reject batch|p = 0.01)

= 1 −
(

100
0

)

(0.01)0(0.99)100 −
(

100
1

)

(0.01)1(0.99)99

= 1 − 0.3660− 0.3697

= 0.2643.

The minimum defect rate Bertie would like to reject is 4%. This is the LTPD. He calculates
the corresponding consumer’s risk.

β = P (Accept batch|p = 0.04)

=

(

100
0

)

(0.04)0(0.96)100 +

(

100
1

)

(0.04)1(0.96)99

= 0.01687 + 0.07029

= 0.08716.

The producer may not be willing to accept such a high risk, especially in comparison to the
consumer’s risk. What should they do? How should they choose mutually satisfying n and
c? Notice that increasing c, keeping n fixed, will decrease the producer’s risk and increase
the consumer’s risk. Conversely, increasing n, keeping c fixed, decreases the consumer’s risk
and increases the producer’s risk.

2.3.2 Finding n and c from given producer’s and consumer’s risks

One way to choose n and c is to use specified producer’s and consumer’s risks at given AQL,
p1, and LTPD, 100p2. Notice that for p known, we may view the OC-curve as a function of
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n and c. We would like to choose n and c such that

f1(n, c) = P (Reject batch|p = p1) ≤ α

f2(n, c) = P (Accept batch|p = p2) ≤ β

Thus, we have two inequalities and two unknowns and so we can solve for n and c. Tables
exist to help find solutions to these inequalities: these are attached to your first homework
sheet. These are copies of Tables 3 and 6 from ‘Sampling Inspection and Quality Control’
by G. B. Wetherill, 2nd edition, Chapman & Hall, 1977. Table 3 gives the percentage points
of the χ2-distribution. We let χ2

p,υ denote the value of the χ2-distribution with υ degrees of
freedom for which the probability of observing a value less than or equal to χ2

p,υ is p. Table
6 gives values of the ratio r(c) = χ2

1−β,2(c+1)/χ2
α,2(c+1).

(The actual solution of these inequalities is beyond the scope of this course. If you want a
reference go to

www.york.ac.uk/depts/maths/teaching/pml/ais/acceptance.ps

then Section 1(f) page 8 onwards)

To find n and c is a three staged approach as we now illustrate.

Suppose Bertie is happy with a consumer’s risk of 0.05 and Sweets’R’Us with a producer’s
risk of 0.05 with (as before) an AQL of 0.01 and LTPD of 4. Thus, p1 = 0.01, p2 = 0.04,
α = 0.05 and β = 0.05.

1. Calculate p2/p1. In this case, p2/p1 = 0.04/0.01 = 4.

2. Use Table 6 with the given values of α and β to find the smallest c such that

r(c − 1) >
p2

p1
> r(c).

For our example, α = 0.5 and 1 − β = 0.95. So, we use the second column of Table
6(b). We see that r(5) = 4.02 and r(6) = 3.60 so that 4.02 > 4 > 3.60. We thus choose
c = 6.

3. The possible values of n are

χ2
1−β,2(c+1)

2p2
≤ n ≤

χ2
α,2(c+1)

2p1
,

where Table 3 is used to find χ2
1−β,2(c+1) and χ2

α,2(c+1). In our case, 2(c+1) = 2×7 = 14.

From Table 3 we find χ2
0.95,14 = 23.68 and χ2

0.05,14 = 6.57. Thus, our possible values
of n are

23.68

2(0.04)
≤ n ≤ 6.57

2(0.01)
⇒

296 ≤ n ≤ 328.5.

A particular solution is thus c = 6 and n = 300. Notice that we can check our work. With
p1 = 0.01, p2 = 0.04, c = 6 and n = 300 then

α = P (Reject batch|p = 0.01) = 0.03275

β = P (Accept batch|p = 0.04) = 0.04277

which conform with our requirements.
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Figure 4: Illustration of a rectifying scheme.

2.4 Rectifying schemes

A common procedure when using single sampling is to subject any batch that has been
rejected to 100% inspection of the items and to replace any defective items with good ones.
Such a strategy is called a rectifying scheme and is illustrated in Figure 4. Thus, the consumer
receives two types of batches:

1. Those which passed the inspection and may still contain defective items.

2. Perfect batches that have been rectified and defective items replaced having failed the
sampling inspection.

The quality (proportion of defectives) in batches that the consumer receives is better than
the quality of the input to the sampling inspection: the consumer has a positive probability
of receiving some batches that contain no defects, whereas without rectifying will only receive
batches with a proportion p of defects.

Definition 3 (AOQ)
The average outgoing quality (AOQ) is the average proportion of defectives in batches received
by the consumer.

Thus,

AOQ(p) = E(Proportion defectives received|Accept batch, p)P (Accept batch|p) +

E(Proportion defectives received|Reject batch, p)P (Reject batch|p)

= p × P (Accept batch|p) + 0 × P (Reject batch|p)

= pOC(p) ≤ p.

Note that when p = 0, AOQ(0) = 0 × OC(0) = 0 × 1 = 0 and when p = 1, AOQ(1) =
1×OC(1) = 1× 0 = 0. As AOQ(p) is a non-negative function then it thus has a maximum
between 0 and 1.

Definition 4 (AOQL)
The average outgoing quality limit (AOQL) is the maximum of the AOQ.

Hence, whatever the input quality, p, the consumer knows that AOQ ≤ AOQL and so he
knows the worse case scenario.
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Figure 5: Double sampling scheme.

2.5 Double sampling schemes

A simple extension of the single sampling scheme is obtained by a two-stage sampling proce-
dure. A sample of size n1 is drawn but the batch need not be accepted or rejected as a result
of the first sample if it leaves some doubt as to the quality of the batch. A second sample
of size n2 may be drawn and the results combined before a decision is made. The scheme is
illustrated in Figure 5 So, the basic idea is to cut down on the amount of sampling one needs
to do by taking an initially small sample, n1. If the number of defectives d1 found in this
sample are sufficiently small (less than or equal to c1) then the batch is accepted. If d1 is
sufficiently large (greater than c2) then the batch is rejected. If d1 falls between these cut-off
points then a second sample, of size n2, is taken in which d2 defective items are observed.
The batch is then either accepted or rejected is the total number of defective items in both
samples, d1 + d2 is less than or equal to, or exceeds, the critical value c3.

The plan is often simplified by taking c2 = c3 so that there is a critical level of defective
ideas we wish to see.

2.5.1 Operating characteristic for the double sampling scheme

We calculate the operating characteristic. Note that if we know the number of defectives
in the first sample then we know whether the batch is immediately rejected or accepted or
if the second sample is taken. If the second sample is taken, knowledge of the number of
defectives in the first sample enables us to deduce the maximum number of defectives in the
second second in order for us to accept the batch.

Let X1 denote the number of defectives in the first sample and X2 the number of defectives
in the second sample. To calculate the operating characteristic we form a partition over the
possible values of X1 and use the theorem of total probability. Thus,

OC(p) = P (Accept batch|p)

= P (Accept batch|p, X1 ≤ c1)P (X1 ≤ c1|p) +

P (Accept batch|p, X1 = c1 + 1)P (X1 = c1 + 1|p) +

P (Accept batch|p, X1 = c1 + 2)P (X1 = c1 + 2|p) + · · · +
P (Accept batch|p, X1 = c2)P (X1 = c2|p) +

P (Accept batch|p, X1 > c2)P (X1 > c2|p).

Now, given that X1 ≤ c1, the batch is accepted so that P (Accept batch|p, X1 ≤ c1) = 1
while given that X1 > c2 the batch is rejected so that P (Accept batch|p, X1 > c2) = 0.
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Thus,

OC(p) = P (X1 ≤ c1|p) +

c2
∑

d1=c1+1

P (Accept batch|p, X1 = d1)P (X1 = d1|p).

Now, for d1 ∈ {c1 + 1, . . . , c2} the second sample is taken and

P (Accept batch|p, X1 = d1) = P (X1 + X2 ≤ c3|p, X1 = d1)

= P (X2 ≤ c3 − d1|p, X1 = d1)

= P (X2 ≤ c3 − d1|p),

where the last equation follows since, given p, the two samples are independent. Hence,

OC(p) = P (X1 ≤ c1|p) +

c2
∑

d1=c1+1

P (X2 ≤ c3 − d1|p)P (X1 = d1|p).

We continue with the assumption that the batch size is sufficiently large that we may use
the binomial sampling approach. Thus,

OC(p) =

c1
∑

d1=0

(

n1

d1

)

pd1(1 − p)n1−d1 +

c2
∑

d1=c1+1

{

c3−d1
∑

d2=0

(

n2

d2

)

pd2(1 − p)n2−d2

}

(

n1

d1

)

pd1(1 − p)n1−d1 .

2.5.2 Worked example

Suppose that n1 = 60, n2 = 100, c1 = 0 and c2 = c3 = 2. Thus, we will accept the batch
without taking the second sample if X1 = 0 and reject the batch without taking the second
sample if X1 > 2. If X1 = 1 or X1 = 2 then the second sample is taken. In the former
case, the batch will be accepted if X2 ≤ 1 and in the latter case acceptance will occur only
if X2 = 0. Thus,

OC(p) = P (X1 = 0|p) + P (X2 ≤ 1|p)P (X1 = 1|p) + P (X2 = 0|p)P (X1 = 2|p).

So, if p = 0.01 then:

P (X1 = 0|p = 0.01) =

(

60
0

)

(0.01)0(0.99)60 = 0.5472,

P (X1 = 1|p = 0.01) =

(

60
1

)

(0.01)1(0.99)59 = 0.3316,

P (X1 = 2|p = 0.01) =

(

60
2

)

(0.01)2(0.99)58 = 0.0988,

P (X2 = 0|p = 0.01) =

(

100
0

)

(0.01)0(0.99)100 = 0.3660,

P (X1 = 1|p = 0.01) =

(

100
0

)

(0.01)1(0.99)99 = 0.3697.

So,

OC(0.01) = 0.5472 + (0.3660 + 0.3697)0.3316 + (0.3660)0.0988 = 0.827.
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Similarly, for p = 0.05 we find

P (X1 = 0|p = 0.05) = 0.0461, P (X2 = 0|p = 0.05) = 0.0059,
P (X1 = 1|p = 0.05) = 0.1455, P (X2 = 1|p = 0.05) = 0.0312,
P (X1 = 2|p = 0.05) = 0.2259.

Thus,

OC(0.05) = 0.0461 + (0.0059 + 0.0312)0.1455 + (0.0059)0.2259 = 0.053.

We would like to know how much sampling we’d expect to do.

Definition 5 (ASN)
The average sample number (ASN) for the double sampling scheme is the expected sample
size.

Hence,

ASN(p) = n1P (Don’t take second sample|p) + (n1 + n2)P (Take second sample|p)

= n1{P (X1 ≤ c1|p) + P (X1 > c2|p)} + (n1 + n2)P (c1 < X1 ≤ c2|p)

= n1 + n2P (c1 < X1 ≤ c2|p)

Thus, ASN(p) ≤ n1 + n2. For the double sampling scheme described above,

ASN(p) = 60 + 100P (0 < X1 ≤ 2|p).

For example, if p = 0.01,

ASN(0.01) = 60 + 100(0.3316 + 0.0988) = 103.04.

2.6 Sequential sampling

The amount of inspection can be reduced by using double sampling rather than taking the
whole sample at once. We can go further than this and consider sampling items one at
a time. We may be able to reach a decision before sampling the nth item where n is a
fixed sample size. We shall explore a method called the sequential probability ratio test
(SPRT). Notice that at the first stage of the double sampling scheme, we partitioned the
sample space into:

1. Acceptance region: accept batch if d1 ≤ c1

2. Rejection region: reject batch if d1 ≥ c2 + 1

3. Continue sampling region: take second sample if c1 < d1 < c2 + 1

The idea behind sequential sampling is to generalise this to each individual observation.
Consider the case where I inspect observations one by one and let n denote the cumulative
sample size and d the number of defective items in these n samples. Clearly, n ≥ d. The
closer d is to n the more we suspect the proportion of defectives in the batch is high and so
would like to reject the batch. Similarly, if d is close to 0 the more we suspect the proportion
of defectives to be small and so would like to accept the batch.

Suppose we specify an AQL of p1, a LTPD of 100p2 (p2 > p1), a producer’s risk of α and
a consumer’s risk of β. The sequential sampling rule we adopt, the SPRT, is as follows; a
derivation is given in §2.6.2.
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1. Acceptance region: if d ≤ a + nc then accept the batch.

2. Rejection region: if d ≥ b + nc then reject the batch.

3. Continuation rule: if a + nc < d < b + nc then continue sampling (until the batch is
either accepted or rejected)

where

a =
1

k
log

{

β

1 − α

}

, b =
1

k
log

{

1 − β

α

}

, c =
1

k
log

{

1 − p1

1 − p2

}

, k = log

{

p2(1 − p1)

p1(1 − p2)

}

Note that as p2 > p1 then 1− p1 > 1− p2. It is then straightforward to show that 0 < c < 1.

We may calculate the earliest points at which we would accept or reject the batch. Notice
that rejection of a batch always occurs after an observation of a defective item and acceptance
will only occur after observation of an acceptable item. The first n at which rejection can
occur if when we have observed only defective items, so n = d, and we are in the rejection
region.

• The first n at which rejection can occur is given by

min{n : n ≥ b + nc} i.e. the first integer n such that n ≥ b

1 − c
.

The first n at which acceptance can occur if when we have observed only acceptable items,
so d = 0, and we are in the acceptance region.

• The first n at which acceptance can occur is given by

min{n : a + nc ≥ 0} i.e. the first integer n such that n ≥ −a

c
.

A diagrammatic representation of the SPRT is given in Figure 6.

2.6.1 Worked example

The Manager of Worldwide Laptop Computers has plans to introduce a quality control
procedure for assessing batches of recently-manufactured computers. Computers are to be
sampled from the batch sequentially and then subjected to a variety of tests. Depending on
the outcome of these tests, the sampled computer will be classified as either satisfactory or
unsatisfactory, and a decision is then made either to stop or continue sampling. You have
been employed by the Manager to implement this sampling scheme, a sequential probability
ratio test (SPRT) with AQL = 0.1, LTPD = 20, producer’s risk α = 0.1 and β = 0.2.

1. Determine the lower and upper boundaries of this SPRT and explain how
the SPRT is conducted.

Under the usual notation, we have p1 = 0.1 and p2 = 0.2. We calculate

k = log

{

p2(1 − p1)

p1(1 − p2)

}

= log

(

0.2× 0.9

0.1× 0.8

)

= 0.810930216;

a =
1

k
log

(

β

1 − α

)

=
1

k
log

(

0.2

0.9

)

=
−1.504077397

0.810930216
= −1.854755646;
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Figure 6: A diagrammatic representation of the SPRT.

b =
1

k
log

(

1 − β

α

)

=
1

k
log

(

0.8

0.1

)

=
2.079441542

0.810930216
= 2.564266937;

c =
1

k
log

(

1 − p1

1 − p2

)

=
1

k
log

(

0.9

0.8

)

=
0.117783035

0.810930216
= 0.145244354.

We sequentially sample items at random from the batch. Let d be the number of
defectives in the first n items. Our sequential sampling rule is:

• Acceptance region: if d ≤ −1.854755646 + 0.145244354n then accept the batch.

• Rejection region: if d ≥ 2.564266937+ 0.145244354n then reject the batch.

• Continuation rule: if

−1.854755646 + 0.145244354n < d < 2.564266937 + 0.145244354n

then continue sampling (until the batch is either accepted or rejected).

2. What is the smallest number of observations at which the rejection of the
batch can occur?

The first n at which rejection can occur is min{n : n ≥ b + cn}, that is the smallest
integer

n ≥ b

1 − c
=

2.564266937

1 − 0.145244354
= 3.

So, the smallest number of observations at which rejection can occur is 3.
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Figure 7: Step-function and sampling boundaries for the SPRT.

3. What is the smallest number of observations at which the acceptance of the
batch can occur?

The first n at which acceptance can occur is given by min{n : a + cn ≥ 0}, that is the
smallest integer

n ≥ −a

c
=

1.854755646

0.145244354
= 12.76989842.

So, the smallest number of observations at which acceptance can occur is 13.

4. The sequential sampling procedure was applied to a batch of new comput-
ers. The computers which were examined at position numbers

7, 17, 21, 23, 27, 31, 33, 40, 42, 46, 49

in the sequence were deemed unsatisfactory, and all the remaining comput-
ers in the sequence were considered satisfactory. [You should ignore the
fact that, in practice, sampling would cease once a decision is made!] By
plotting the number of defects against the sample size, carry out the SPRT
on this data. State the outcome of the test.

The step-function showing the number of observed defectives against the total number
of samples is shown in Figure 7. We continue sampling until the step-function crosses
either the upper and lower boundary upon which we cease sampling. We observe that
we first cross a boundary, the upper boundary, when we observe the ninth defective
item which is when n = 42. We stop and reject the batch after the 42nd sample.
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2.6.2 Derivation of the SPRT (Not examined)

Suppose that p2 > p1 are two values of interest for the proportion of defectives in the batch
and consider the ratio

λn =
P (d defectives in n observations | p = p2)

P (d defectives in n observations | p = p1)
.

If λn is large then there is evidence to support the hypothesis p = p2 while small values of
λn support the hypothesis that p = p1. Typically, we shall focus attention upon p1 being
the AQL and 100p2 being the LTPD. Thus, if λn is small we would like to accept the batch
while if λn is large we would like to reject the batch. So, assume that there are critical values
A and B such that:

P (d defectives in n observations | p = p2)

P (d defectives in n observations | p = p1)
≥ B ⇒ Reject batch

P (d defectives in n observations | p = p2)

P (d defectives in n observations | p = p1)
≤ A ⇒ Accept batch

If we are between A and B then we’d like to continue sampling. Compare this argument
with the idealised OC-curves in Figures 1 and 2. Thus, we continue sampling as long as

A <
P (d defectives in n observations | p = p2)

P (d defectives in n observations | p = p1)
< B.

Using the respective binomial probabilities, we continue sampling as long as

A <

{

p2

p1

}d {

(1 − p2)

(1 − p1)

}n−d

< B ⇔

A <

{

p2(1 − p1)

p1(1 − p2)

}d {

(1 − p2)

(1 − p1)

}n

< B ⇔

logA + nlog
{

1−p1

1−p2

}

log
{

p2(1−p1)
p1(1−p2)

} < d <
logB + nlog

{

1−p1

1−p2

}

log
{

p2(1−p1)
p1(1−p2)

} . (1)

The constraint (1) is the continuation rule. How do we choose A and B?

If p1 is the AQL and 100p2 the LTPD then to guarantee a producer’s risk of less than α and
a consumer’s risk of less than β then (from Wald’s theorem) we must choose

B ≤ 1 − β

α
and A ≥ β

1 − α
.

In particular, we take B = (1 − β)/α and A = β/(1 − α). So, let

a =
1

k
log

{

β

1 − α

}

, b =
1

k
log

{

1 − β

α

}

, c =
1

k
log

{

1 − p1

1 − p2

}

, k = log

{

p2(1 − p1)

p1(1 − p2)

}

then our sequential sampling rule is

1. Acceptance region: if d ≤ a + nc then accept the batch.

2. Rejection region: if d ≥ b + nc then reject the batch.

3. Continuation rule: if a + nc < d < b + nc then continue sampling (until the batch is
either accepted or rejected).
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3 Process Control

3.1 Introduction

In any production process, some variation in quality is unavoidable. This variation can be
divided into two categories:

1. Inherent random variation which is characteristic of the process and cannot be entirely
eliminated. This is sometimes called variation due to allowable causes.

2. Variation due to specific identifiable causes such as malfunction, incorrect setting, wear
and tear, . . . These are assignable causes of variation.

When only allowable causes of variation are present, the process is said to be IN CONTROL.
If variation due to one or more assignable cause is present, the process is said to be OUT
OF CONTROL.

The objectives of process control are

1. To detect any changes due to assignable causes as early as possible (and hence, try to
identify the cause and take appropriate action to rectify the problem).

2. To allow production to continue without too many interruptions when the process is
in control.

3.2 Control charts

The most commonly used tool for detecting changes is the CONTROL CHART (or SHE-
WHART CHART after its developer Walter Shewhart). Many quality characteristics can be
expressed in terms of a numerical measurement or variable

e.g. dimension, weight, volume, . . .

When dealing with a quality characteristic that is a variable it is usually necessary to monitor
both the mean value of the quality characteristic and its variability.

• Control of the process average, or mean quality level, is usually achieved with the
x-chart, the control chart for means.

• Process variability can be monitored by either a control chart for the standard devia-
tion, the S-chart, or a control chart for the range, the R-chart. The R-chart is more
widely used, largely because of the simplicity of calculating the range.

• Typically, separate x and R-charts are maintained for each quality characteristic of
interest.

3.2.1 Basic Principles

A variable is chosen which is characteristic of the quality of the process and can be observed
or measured. This variable is regularly observed and is plotted against the time of the
observation.

e.g. For some variable x, we might regularly take a sample of size n. For the
x-chart we plot the sample mean x while on the R-chart we plot the sample
range.
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Figure 8: A typical control chart with plotted observations.

Superimposed on the plot are a number of lines:

• CENTRE LINE (CL) which represents the specified target level for the quality of the
process.

• UPPER CONTROL LIMIT (UCL), LOWER CONTROL LIMIT (LCL). These are
positioned so that the probability that the observed characteristic falls outside of these
limits is very small when the process is in control.

– These limits are also called the UPPER and LOWER ACTION LIMITS.

A typical control chart is shown in Figure 8. If a point falls outside these limits there
is very strong evidence that assignable causes are present and action to trace and
eliminate these causes should be initiated. Notice that this can be viewed as similar to
falling outside a critical region in a hypothesis test and thus reject the null hypothesis,
that of the process being in control.

– The upper and lower control limits are typically drawn at ±3 standard deviations
of the centre line.

– Note that Chebyshev’s theorem states that, no matter what the true underlying
distribution is, at least 89% of all observations fall within ±3 standard deviations
of the mean.

– For a Normal distribution, over 99.73% of all observations fall within ±3 standard
deviations of the mean.

Definition 6 (General model for a control chart)
Let ω be a sample statistic that measures some quality characteristic of interest and suppose
that the mean of ω is µω and the standard deviation of ω is σω. Then a control chart for ω
is given by:

UCL = µω + Lσω

CL = µω

LCL = µω − Lσω

where L is the “distance” of the control limits from the centre line.
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Figure 9: A control chart with 3-sigma control limits and 2-sigma warning limits.

In order to improve sensitivity of the charts, we can add

• UPPER AND LOWER WARNING LIMITS (UWL, LWL)

– These are usually taken at ±2 standard deviations of the centre line.

– Two successive points outside the warning limits is taken as good evidence that
assignable causes of variation are present.

An example of such a control chart is shown in Figure 9.

3.3 Control charts for X and R: µ and σ known

Suppose a quality characteristic, X , is normally distributed with mean µ and standard devi-
ation σ. We write X ∼ N(µ, σ2). If X1, . . . , Xn are independent and identically distributed
N(µ, σ2) (a random sample of observations of X) then the sample mean,

X =
1

n

n
∑

i=1

Xi ∼ N(µ, σ2/n).

With 3-sigma limits, the x-chart may be constructed as

UCL = µ + 3
σ√
n

(2)

CL = µ (3)

LCL = µ − 3
σ√
n

(4)

Notice that, as a consequence of the normal assumption, we can calculate the probability of
an individual sample mean falling within these limits. For any normal distribution, 99.73% of
observations are within plus or minus three standard deviations of the mean. Thus, suppose
we observe a sample x1, . . . , xn with mean

x =
1

n

n
∑

i=1

xi.
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If x falls outside of these limits then there is a strong indication that the observation does
not come from the assumed normal distribution. In particular, that the mean may not be
equal to µ. Note that we have followed the convention of using upper case letters to denote
random variables (i.e. prior to being observed) and the corresponding lower case letter to
denote the observed value of the random variable.

We now construct the R-chart for monitoring the variability of the process. Let

R = max
i

Xi − min
i

Xi = Xmax − Xmin

denote the range of X1, . . . , Xn. To construct the R-chart using 3-sigma limits we need to
find, from Definition 6, the mean of R, E(R), and the the standard deviation of R, SD(R). To
do this we exploit the relationship between the range of a sample of observations, X1, . . . , Xn,
from a normal distribution and the standard deviation of those observations, σ.

Definition 7 (Relative range)
The random variable W = R/σ is called the relative range. It has expectation E(W ) = d2(n)
and standard deviation SD(W ) = d3(n).

Note that

• Both E(W ) and SD(W ) depend upon the size of the sample.

• The distribution of W has been extensively studied and the expectation and stan-
dard deviations tabulated, see the table handed out entitled “Appendix VI Factors for
Constructing Variables Control Charts”. For example, if the sample size is 10 then
E(W ) = 3.078 and SD(W ) = 0.797 whereas if the sample size is 20 then E(W ) = 3.735
and SD(W ) = 0.729.

• E(W ) = d2(n) is often called Hartley’s constant.

We can use the mean and standard deviation of the relative range to find the corresponding
mean and standard deviation of the range. As R = σW and σ is a constant, we find that

E(R) = E(σW ) = σE(W ) = σd2(n),

SD(R) = SD(σW ) = σSD(W ) = σd3(n).

The R-chart with 3-sigma control limits is thus

UCL = σd2(n) + 3σd3(n) (5)

CL = σd2(n) (6)

LCL = σd2(n) − 3σd3(n) (7)

The R-chart is used in parallel with the x-chart. For a sample x1, . . . , xn we compute the
observed sample range

r = max
i

xi − min
i

xi = xmax − xmin.

If r falls outside of the limits then there is evidence that the process is out of control. In
particular, that the variance may not be equal to σ.
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3.3.1 Control charts with non 3-sigma limits

For an x-chart we can use the normal assumption to set control limits so that the probability
of an observation, if the normal assumption is valid, being outside of the limits is equal to
some presubscribed value α. If Z denotes the standard normal distribution, so Z ∼ N(0, 1),
then if we find the value z α

2
such that P (Z < z α

2
) = 1 − α

2 we have that

P

(

µ − zα
2

σ√
n

< X < µ + zα
2

σ√
n

)

= 1 − α.

Thus,

UCL = µ + z α
2

σ√
n

CL = µ

LCL = µ − z α
2

σ√
n

is the x-chart (when µ, σ known) for which there is a probability of α of being outside of the
control limits when the process is in control. Notice that falling outside the UCL and LCL
is equivalent a hypothesis test which rejects the hypothesis that the mean is equal to µ at
the α% significance level. The value z α

2
= 3 corresponds to α = 0.0027 (so 1 − α = 0.9973)

and P (Z < 3) = 0.99865. If the distribution of the quality characteristic is not normally
distributed then, for large n, the results will be approximately correct by an application of
the Central Limit Theorem.

A similar approach can be used for the R-chart. The required values used to fix the UCL
and LCL may be found from the distribution of W for a given n. Tables are often used to
provide these. We comment that such a strategy is beyond the scope of this course.

3.4 x and R charts when µ, σ are unknown

The development in §3.3 allows us to set up the x-chart and R-chart and use it to monitor
future observations. However, in many situations µ and σ are unknown and we must first
estimate them in order to set up the charts. Typically, the estimations are made from
preliminary samples or subgroups taken when the process was in control. In this section we
shall assume that the sample size of these preliminary samples used to estimate µ and σ is
the same as that for observations once the charts have been set up. It need not be, indeed
you will see an example of when the two differ in your coursework.

Suppose m samples, each containing n observations are taken on the quality characteristic.
Note that typically n is small, often either 4, 5 or 6. Let xj1, . . . , xjn denote the n observations
in the jth sample, j = 1, . . . , m. The average of the jth sample is

xj =
1

n

n
∑

i=1

xji

and the range of this sample is

rj = max
i

xji − min
i

xji = xj max − xj min.

The best estimate of µ is the overall mean,

x =
1

m

m
∑

j=1

xj .
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It is the best estimate in the sense that the corresponding estimator (i.e. prior to taking the

observations) X is unbiased, E(X) = µ, and has the smallest variance.

To estimate σ we shall consider the average of our sample ranges,

r =
1

m

m
∑

j=1

rj .

The corresponding random variables are such that E(Rj) = σd2(n) (see equation (6) for
example) so that E(R) = σd2(n). Hence, R/d2(n) is an unbiased estimator of σ. We shall
use r/d2(n) to estimate σ. Some points to note.

1. r/d2(n) is not the only possible estimate of σ. We could use the POOLED SAMPLE
STANDARD DEVIATION

s =

√

√

√

√

1

m

m
∑

j=1

s2
j

where sj is the standard deviation of the jth sample, so that

sj =

√

√

√

√

1

n − 1

n
∑

i=1

(xji − xj)2.

Traditionally, because of the small sample sizes and its simplicity, r/d2(n) has been
preferred. If n is large, then s is a better estimate as the corresponding variance is
smaller.

2. If we take nj observations in the j sample (so that the sample size depends upon the
sample number) then the standard deviation of the jth sample is

sj =

√

√

√

√

1

nj − 1

nj
∑

i=1

(xji − xj)2

and the pooled standard deviation given by

s =

√

∑m

j=1(nj − 1)s2
j

∑m

j=1(nj − 1)
.

We may now use the estimates to set up the control charts. For the x-chart we replace µ by
its estimate x in equations (2)- (4) and σ by its estimate r/r2(n) in equations (2) and (4) to
obtain

UCL = x + 3
r

d2(n)
√

n
= x + A2r

CL = x

LCL = x − 3
r

d2(n)
√

n
= x − A2r

where A2 = 3/(d2(n)
√

n) is as given on the hand out “Appendix VI Factors for Constructing
Variables Control Charts”. The R-chart is obtained by replacing σ by r/d2(n) in equations
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(5) - (7) to obtain

UCL =
r

d2(n)
d2(n) + 3

r

d2(n)
d3(n) = D4r

CL = d2(n)
r

d2(n)
= r

LCL =
r

d2(n)
d2(n) − 3

r

d2(n)
d3(n) = D3r

where D4 = 1 + 3(d3(n)/d2(n)) and D3 = 1 − 3(d3(n)/d2(n)). D3 and D4 are tabulated
for various values of n, see the hand out “Appendix VI Factors for Constructing Variables
Control Charts”. Note that the range is always non-negative so that D3 is tabulated as
max{0, 1− 3(d3(n)/d2(n))}.

When using our m samples to create the estimates x and r it is assumed that the process
was in control when these samples were collected. To check this, the m sample means xj j =
1, . . . , m should be plotted on the created x-chart and the m sample ranges rj j = 1, . . . , m
plotted on the R-chart. If any out of control points are observed, the corresponding data
should be discarded and fresh estimates of µ and σ obtained.

3.4.1 Example

Piston rings for an automotive engine are produced by a forging process. We wish to establish
statistical control of the inside diameter of the rings manufactured by this process using x
and R charts. 25 samples, each of size five, are taken when the process is in control. The
inside diameter measurements are found to satisfy

25
∑

j=1

xj = 1850.028,

25
∑

j=1

rj = 0.581.

Construct the x-chart and R-chart.

We find that

x =
1

25

25
∑

j=1

xj =
1850.028

25
= 74.00112;

r =
1

25

25
∑

j=1

rj =
0.581

25
= 0.02324.

From the tables, for n = 5, A2 = 0.577, D3 = 0 and D4 = 2.115. Thus, the x-chart is

UCL = 74.00112 + 0.577(0.02324) = 74.01453

CL = 74.00112

LCL = 74.00112− 0.577(0.02324) = 73.98771

and the R-chart is

UCL = 2.115(0.02324) = 0.04915

CL = 0.02324

LCL = 0(0.02324) = 0.
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Notice that if we hadn’t taken D3 = max{0, 1 − 3(d3(5)/d2(5))} then we’d have found the
LCL = −0.00267 but this could never be crossed as the range is always non-negative.

3.5 Interpretation of control charts

We have already commented upon INDIVIDUAL OUTLIERS. When a point falls outside
the control limits, there is strong evidence that assignable causes of variation are present.
Similarly, we can add warning limits to try to detect outliers, so that if two successive points
fall outside the warning limits we suspect the process may be out of control.

An out of control situation can also be present even if no single point lies outside the
control limits. This occurs when the pattern of plotted points on the chart exhibits non-
random behaviour. We now give a number of important patterns to be aware of.

1. Increasing or decreasing trends. This indicates the that the process mean may
have drifted. This can occur due to a gradual wearing out of tools or seasonal effects
such as temperature.

2. Shift in the process level. Indicates that the process mean may have shifted. This
could be due to the introduction of a new workforce.

3. Cycles. Regular repeating waves above and below the CL could indicate, for example,
worker fatigue or shift pattern problems.

4. Hugging the control limits. Uniformly large deviations from the mean could in-
dicate two distinct populations are being observed. For example, output from several
sources (e.g. parallel machines) fed into a common stream.

5. Hugging the centre line. Uniformly small deviations around the mean could indicate
variability has been reduced from previously expected levels and the control limits need
to be tightened.

3.6 Rational subgroups

The fundamental idea in the use of control charts is the collection of sample data according
to what Shewhart called the RATIONAL SUBGROUP. To illustrate this, suppose that we
are using an x-chart to detect changes in the process mean. The rational subgroups concept
means that subgroups, or samples, should be selected so that if assignable causes are present,
the chance for differences BETWEEN subgroups will be maximised, while the chance for
differences due to these assignable causes WITHIN a subgroup will be minimised.

When the variation between subgroups is large relative to the variation within subgroups,
we may conclude that an assignable cause is present. The within subgroup variation is our
estimate of the common cause variation which some people refer to as the “short-term
variation” from subgroup to subgroup.

e.g. Sampling all from the same shift.

The selection of subgroups should be made carefully as we can often make the process appear
in control by stretching out the observations in the sample or by combining too much in one
sample.

Number of different machines producing output into a single pool. We should
ensure that we sample from a single machine, and then to different operators and
so on.
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