Previously in MA30087/50087:

- fundamental theorem of linear programming: if there is an optimal solution, there is an optimal basic feasible solution
 - let \mathbf{x} be an optimal feasible solution
 - wlog, let non-zero components of \mathbf{x} be first k components
 - if the corresponding columns of \mathbf{A} , $\mathbf{a}_1, \dots, \mathbf{a}_k$ are linearly independent then we're done: \mathbf{x} is a basic feasible solution
 - otherwise, assume $\mathbf{a}_1, \dots, \mathbf{a}_k$ are linearly dependent so that there exist constants α_j not all equal to 0 such that

$$\sum_{j=1}^k \alpha_j \mathbf{a}_j = \mathbf{0}_m$$

— we'll show that as long as the $\mathbf{a}_1, \ldots, \mathbf{a}_k$ are linearly dependent we can find an optimal solution with one fewer zero value than \mathbf{x}

Today in MA30087/50087:

- complete proof of fundamental theorem
- Simplex method: search for optimal basic feasible solution by moving from extreme point to adjacent extreme point in a direction that improves the objective function

•
$$\mathbf{A} = (\mathbf{B} \mid \mathbf{N}), \mathbf{x} = \begin{pmatrix} \mathbf{x}_B \\ \mathbf{x}_N \end{pmatrix}, \mathbf{c} = \begin{pmatrix} \mathbf{c}_B \\ \mathbf{c}_N \end{pmatrix}$$
 then
$$\mathbf{x}_B + \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_N = \mathbf{B}^{-1} \mathbf{b}$$

$$z = \mathbf{c}^T \mathbf{x} = \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{b} + (\mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N}) \mathbf{x}_N$$

- these tell us all that we need to know
- $\mathbf{r}^T = \mathbf{c}_N^T \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N}$ represent the reduced costs