Previously in MA30087/50087:

• consider solutions to LP problem in canonical form. Feasible set

$$F_{(C)} = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}_n \}$$

- basis: choose m linearly independent columns, corresponding variables are basic variables
 - wlog, assume these are first m columns and set $\mathbf{B} = (\mathbf{a}_1, \dots, \mathbf{a}_m)$ and $\mathbf{N} = (\mathbf{a}_{m+1}, \dots, \mathbf{a}_n)$ so that $\mathbf{A} = (\mathbf{B} \mid \mathbf{N})$
 - B is an invertible $m \times m$ matrix
- basic solution: \mathbf{x} solves $\mathbf{A}\mathbf{x} = \mathbf{b}$ with non-basic variables equal to zero

- let
$$\mathbf{x}_B = (x_1, \dots, x_m)^T$$
 and $\mathbf{x}_N = (x_{m+1}, \dots, x_n)^T$ then

$$\mathbf{x}_B + \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_N = \mathbf{B}^{-1} \mathbf{b}$$

$$-\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b}, \, \mathbf{x}_N = \mathbf{0}_{n-m} \text{ solves } \mathbf{A}\mathbf{x} = \mathbf{b}$$

- basic feasible solution: basic solution with $\mathbf{x} \geq \mathbf{0}_n$
- extreme point: no distinct v and w such that, for some $\lambda \in (0,1)$,

$$\mathbf{x} = \lambda \mathbf{v} + (1 - \lambda) \mathbf{w}$$

• if $\mathbf{x} \in F_{(C)}$ is a basic feasible solution then \mathbf{x} is an extreme point

Today in MA30087/50087:

- if $\mathbf{x} \in F_{(C)}$ is an extreme point then it is a basic feasible solution
- fundamental theorem of linear programming: if there is an optimal solution, there is an optimal basic feasible solution
- remember: if $\mathbf{a}_1, \dots, \mathbf{a}_k$ are linearly dependent then there exist $\alpha_j \in \mathbb{R}$ not all equal to zero such that

$$\sum_{j=1}^{k} \alpha_j \mathbf{a}_k = \mathbf{0}_m$$