Previously in MA30087/50087:

- relating LP problem to convex sets
 - objective function is a hyperplane which is a (closed) convex set
 - constraints of LP problem form a closed convex polyhedron
- solve LP-problem in canonical form, that is find $\mathbf{x} \in \mathbb{R}^n$ that will

maximise
$$z = \mathbf{c}^T \mathbf{x}$$

subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$
 $\mathbf{x} \ge \mathbf{0}_n$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{c} \in \mathbb{R}^n$ and $\mathbf{0}_n$ is the zero vector

• feasible set is

$$F_{(C)} = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}_n \}$$

Today in MA30087/50087:

- assume that $m \leq n$ with rank $(\mathbf{A}) = m$
- $\mathbf{A} = (\mathbf{a}_1, \dots, \mathbf{a}_n)$ so that

$$\mathbf{A}\mathbf{x} = \sum_{j=1}^{n} x_j \mathbf{a}_j$$

- \bullet basis: choose m linearly independent columns, corresponding variables are basic variables
 - wlog, assume these are first m columns and set $\mathbf{B} = (\mathbf{a}_1, \dots, \mathbf{a}_m)$ and $\mathbf{N} = (\mathbf{a}_{m+1}, \dots, \mathbf{a}_n)$ so that $\mathbf{A} = (\mathbf{B} \mid \mathbf{N})$
 - $-\mathbf{B}$ is an invertible $m \times m$ matrix
- basic solution: \mathbf{x} solves $\mathbf{A}\mathbf{x} = \mathbf{b}$ with non-basic variables equal to zero

- let
$$\mathbf{x}_B = (x_1, \dots, x_m)^T$$
 and $\mathbf{x}_N = (x_{m+1}, \dots, x_n)^T$ then

$$\mathbf{x}_B + \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_N = \mathbf{B}^{-1} \mathbf{b}$$

$$-\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b}, \, \mathbf{x}_N = \mathbf{0}_{n-m} \text{ solves } \mathbf{A}\mathbf{x} = \mathbf{b}$$

• basic feasible solution: basic solution with $\mathbf{x} \geq \mathbf{0}_n$