Previously in MA30087/50087:

• balanced transportation problem

minimise
$$z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

subject to $\sum_{j=1}^{n} x_{ij} = s_i \quad i = 1, \dots, m$
 $\sum_{i=1}^{m} x_{ij} = d_j \quad j = 1, \dots, n$
 $x_{ij} \ge 0 \quad i = 1, \dots, m, j = 1, \dots, n$

• dual of the balanced transportation problem

maximise
$$z' = \sum_{i=1}^{m} u_i s_i + \sum_{j=1}^{n} v_j d_j$$

subject to $u_i + v_j \le c_{ij} \ i = 1, ..., m, j = 1, ..., n$

• transportation algorithm utilises asymmetric complementary slackness

$$x_{ij}[u_i + v_j - c_{ij}] = 0 \ \forall \ i = 1, \dots, m, j = 1, \dots n$$

- find an initial BFS to balanced transportation problem
 - typically use north-west corner method or the matrix method
- solve complementary slackness to find possible dual solution

$$x_{ij} > 0 \implies u_i + v_j = c_{ij}$$

- if dual solution feasible, we have optimal solution
- if dual solution not feasible, move to another BFS

Today in MA30087/50087:

- using the matrix method to find an initial BFS
- \bullet coping with degeneracy: keep m+n-1 variables in the basis
- for $x_{ij} = 0$ in the basis, still solve $u_i + v_j = c_{ij}$