Previously in MA30087/50087:

- transporting goods from sources S_1, \ldots, S_m with supplies s_1, \ldots, s_m to destinations D_1, \ldots, D_n with demands d_1, \ldots, d_n
- amount transported from S_i to D_j is x_{ij}
- cost of transporting a unit from S_i to D_i is c_{ij}
- balanced transportation problem (so $\sum_{i=1}^{m} s_i = \sum_{j=1}^{n} d_j$)

minimise
$$z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

subject to $\sum_{j=1}^{n} x_{ij} = s_i$ $i = 1, \dots, m$
 $\sum_{i=1}^{m} x_{ij} = d_j$ $j = 1, \dots, n$
 $x_{ij} \ge 0$ $i = 1, \dots, m, j = 1, \dots, n$

Today in MA30087/50087:

$$\mathbf{A}\mathbf{x} = \mathbf{b} \Rightarrow \begin{pmatrix} 1 & \cdots & 1 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 1 & \cdots & 1 \\ 1 & \cdots & 0 & \cdots & 1 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 1 & \cdots & 0 & \cdots & 1 \end{pmatrix} \begin{pmatrix} x_{11} \\ \vdots \\ x_{1n} \\ \vdots \\ x_{m1} \\ \vdots \\ x_{mn} \end{pmatrix} = \begin{pmatrix} s_1 \\ \vdots \\ s_m \\ d_1 \\ \vdots \\ d_n \end{pmatrix}$$

• dual of the balanced transportation problem, $\mathbf{y} = (u_1, \dots, u_m, v_1, \dots, v_n)^T$

maximise
$$z' = \sum_{i=1}^{m} u_i s_i + \sum_{j=1}^{n} v_j d_j$$

subject to $u_i + v_j \le c_{ij}$ $i = 1, \dots, m, j = 1, \dots, n$

- balanced transportation problem has a finite optimal solution
- $\operatorname{Rank}(\mathbf{A}) = m + n 1$
- transportation algorithm utilises asymmetric complementary slackness

$$x_{ij}[u_i + v_j - c_{ij}] = 0 \ \forall \ i = 1, \dots, m, j = 1, \dots n$$