Previously in MA30087/50087:

• primal (P) and symmetric dual (D) for the standard maximisiation problem

maximise
$$z = \mathbf{c}^T \mathbf{x}$$
 minimise $z' = \mathbf{b}^T \mathbf{y}$
(P) subject to $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ (D) subject to $\mathbf{A}^T \mathbf{y} \geq \mathbf{c}$
 $\mathbf{x} \geq \mathbf{0}_n$ $\mathbf{y} \geq \mathbf{0}_m$

• weak duality theorem: \mathbf{x}_0 is a feasible solution to (P) and \mathbf{y}_0 is a feasible solution to its dual (D) then $\mathbf{c}^T \mathbf{x}_0 \leq \mathbf{b}^T \mathbf{y}_0$

Today in MA30087/50087:

- Corollary 1
 - (P) feasible but unbounded \Rightarrow (D) not feasible
 - (D) feasible but unbounded \Rightarrow (P) not feasible
- Corollary 2
 - $-\mathbf{x}_0$ feasible for (P), \mathbf{y}_0 feasible for (D) with $\mathbf{c}^T\mathbf{x}_0 = \mathbf{b}^T\mathbf{y}_0 \Rightarrow \mathbf{x}_0$ and \mathbf{y}_0 optimal
- Duality Theorem: (P) has a finite optimal solution \Leftrightarrow (D) has a finite optimal solution in which case optimal value of the objective functions are the same
- Corollary 3
 - if there exists at least one feasible solution to both (P) and (D) then there exist bounded optimal solutions to (P) and (D) with equal objective functions