Previously in MA30087/50087:

• duality: motivating example

maximise
$$z = 1x_1 + 2x_2$$

subject to $5x_1 + 20x_2 \le 400$
 $10x_1 + 15x_2 \le 450$
 $x_1, x_2 \ge 0$.

• maximum is z = 52 obtained when $x_1 = 24$ and $x_2 = 14$

Today in MA30087/50087:

• consider linear combinations of the constraints, multipliers $y_1, y_2 \ge 0$ such that

$$5y_1 + 10y_2 \ge 1$$
 (x_1 value in objective)
 $20y_1 + 15y_2 \ge 2$ (x_2 value in objective)

which make the upper bound, $400y_1 + 450y_2$, as small as possible

• primal problem (standard maximisation problem)

maximise
$$z = \mathbf{c}^T \mathbf{x}$$

(P) subject to $\mathbf{A}\mathbf{x} \leq \mathbf{b}$
 $\mathbf{x} \geq \mathbf{0}_n$

• symmetric dual problem (is in standard minimisation form)

minimise
$$z' = \mathbf{b}^T \mathbf{y}$$

(D) subject to $\mathbf{A}^T \mathbf{y} \ge \mathbf{c}$
 $\mathbf{y} \ge \mathbf{0}_m$

- dual of the dual is the primal
- asymmetric dual of the canonical maximisation problem: no constraints on the sign of the variables