Previously in MA30087/50087:

- Two-phase simplex method
 - in the first phase we solve an auxiliary LP problem to obtain a basic feasible solution to the problem we want to solve

maximise
$$z' = -\sum_{j=1}^{k} u_j$$

subject to $\mathbf{A}'\mathbf{x}' = \mathbf{b}$
 $\mathbf{x}' \ge \mathbf{0}_{n+k}$

– in the second phase we use this basic feasible solution as the starting point to solve the original LP problem (with $\mathbf{b} \geq \mathbf{0}_m$)

maximise
$$z = \mathbf{c}^T \mathbf{x}$$

subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$
 $\mathbf{x} \ge \mathbf{0}_n$

Today in MA30087/50087:

- the primal simplex algorithm
- duality: motivating example

maximise
$$z = 1x_1 + 2x_2$$

subject to $5x_1 + 20x_2 \le 400$
 $10x_1 + 15x_2 \le 450$
 $x_1, x_2 \ge 0$.

- maximum is z = 52 obtained when $x_1 = 24$ and $x_2 = 14$
- consider linear combinations of the constraints, multipliers $y_1, y_2 \ge 0$ such that

$$5y_1 + 10y_2 \ge 1$$
 (x₁ value in objective)
 $20y_1 + 15y_2 \ge 2$ (x₂ value in objective)

which make the upper bound, $400y_1 + 450y_2$, as small as possible