Illustrating the two-phase method

Example 1 We use the two-phase method to solve the linear programming problem

$$\begin{array}{ll} \textit{maximise} & z = 3x_1 + x_2 \\ \textit{subject to} & x_1 + x_2 + s_1 = 6 \\ & 4x_1 - x_2 - s_2 = 8 \\ & 2x_1 + x_2 = 8 \\ & x_1, x_2, s_1, s_2 \geq 0. \end{array}$$

In $Phase\ I$ we solve the auxiliary linear programming problem

maximise
$$z' = -u_1 - u_2$$

subject to $x_1 + x_2 + s_1 = 6$
 $4x_1 - x_2 - s_2 + u_1 = 8$
 $2x_1 + x_2 + u_2 = 8$
 $x_1, x_2, s_1, s_2, u_1, u_2 \ge 0$.

to obtain a basic feasible solution to the original problem, (1). In **Phase II** we solve the original problem.

We use $\{s_1, u_1, u_2\}$ as our initial basis with basic feasible solution $s_1 = 6$, $u_1 = 8$ and $u_2 = 8$ with the remaining variables set to zero. To proceed, we want to write our objective function z' as a function of the non-basic variables. To do this note that we have

$$4x_1 - x_2 - s_2 + u_1 = 8 (2)$$

$$2x_1 + x_2 + u_2 = 8 (3)$$

$$z' + u_1 + u_2 = 0 (4)$$

so that subtraction of each row containing an artificial variable, from the z' row will eliminate the artificial variables from this equation, that is we perform (4) - (3) - (2) to obtain

$$z' - 6x_1 + s_2 = -16.$$

Note that our original objective function $z = 3x_1 + x_2$ does not contain any of the basis variables, $\{s_1, u_1, u_2\}$, so we have $z - 3x_1 - x_2 = 0$. We are ready to commence Phase I.

Phase I

We create the initial simplex tableau.

T_1	z'	z	x_1	x_2	s_1	s_2	u_1	u_2	
s_1	0	0	1	1			0	0	6
u_1	0	0	4	-1	0	-1	1	0	8
u_2	0	0	2	1	0	0	0	1	8
\overline{II}	0	1	-3	-1	0	0	0	0	0
\overline{I}	1	0	-6	0	0	1	0	0	-16

We proceed as usual for the simplex method using z' as the objective but performing row operations on the row labelled II which corresponds to the objective function z to ensure that it is always expressed as a function of non-basic variables only. From the bottom row, we see that introducing x_1 into the basis will increase z' and $\theta_1 = \min\{6, 8/4, 8/2\} = 2$ so that we push out u_1 . We perform row operations on T_1 to introduce x_1 into the basis, obtaining the tableau T_2 .

T_2	z'	z	x_1	x_2	s_1	s_2	u_1	u_2	
s_1	0	0	0	5/4	1	1/4	_	0	4
x_1	0	0	1	-1/4	0	-1/4	_	0	2
u_2	0	0	0	5/4 $-1/4$ $3/2$	0	1/2	_	1	4
				-7/4					
\overline{I}	1	0	0	-3/2	0	-1/2	_	0	$\overline{-4}$

Note that we do not calculate the values corresponding to u_1 as we do not intend to reintroduce this variable. We now remove u_2 and can introduce either x_2 or s_2 . We introduce x_2 and, performing row operations on T_2 , obtain the tableau T_3 .

T	3	z'					s_2		_	
\bar{s}	1	0	0	0	0	1	$-1/6 \\ -1/6$	_	_	2/3
x	1	0	0	1	0	0	-1/6	_	_	8/3
x	2	0	0	0	1	0	1/3	_	_	8/3
\overline{I}	Ι	0	1	0	0	0	-1/6	_	_	32/3
	I	1	0	0	0	0	0	_	_	0

We have now moved u_1 and u_2 out of the basis. We have z'=0 and have a basic feasible solution $(x_1,x_2,s_1,s_2)^T=(8/3,8/3,2/3,0)^T$.

Phase II

We can reduce T_3 to remove reference to the Phase I variables.

	T_3	z	x_1	x_2	s_1	s_2	
	s_1	0	0	0	1	-1/6	2/3
	x_1	0	1	0	0	-1/6	8/3
	x_2	0	0	1	0	$1/3_{[8]}$	8/3
_		1	0	0	0	-1/6	32/3

Introducing s_2 into the basis will improve the objective. We remove x_2 from the basis to obtain the tableau T_4 .

T_4	z	x_1		s_1	s_2	
s_1	0	0	1/2	1	0	2
x_1	0	1	1/2	0	0	4
s_2	0	0	3	0	1	8
	1	0	1/2	0	0	12

Reading the bottom row we have $z = 12 - \frac{1}{2}x_2$. The basic feasible solution $(x_1, x_2, s_1, s_2)^T = (4, 0, 2, 8)^T$ is optimal with z = 12.

¹It can be readily checked that we have not made a mistake in our algebra by checking that (1) is satisfied at this solution: $\frac{8}{3} + \frac{8}{3} + \frac{2}{3} = 6$, $4\frac{8}{3} - \frac{8}{3} = 8$ and $2\frac{8}{3} + \frac{8}{3} = 8$. Also $z = 3\frac{8}{3} + \frac{8}{3} = \frac{32}{3}$ which verifies our final equation.