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Introduction

In this course, we shall be interested in modelling some stochastic system by a random

quantity X with outcomes x ∈ Ω, where Ω denotes the sample, or outcome, space.

If Ω is finite (or countable) then X is DISCRETE and we write P (X = x) to denote the

probability that the random quantity X is equal to the outcome x. Some examples of discrete

random quantities are as follows.

Example 1 Bernoulli: takes only two values: 0 and 1, so Ω = {0, 1} and

P (X = x) = px(1 − p)1−x.

Example 2 Geometric: series of independent trials, each trial is a “success” with probability

p and X measures the total number of trials up to and including the first success. Thus,

Ω = {1, 2, . . .} and

P (X = x) = p(1 − p)x−1.

Example 3 Binomial: n independent trials, each trial is either a “success” with probability

p or a “failure” with probability 1 − p. X measures the total number of successes, so Ω =

{0, 1, . . . , n} and

P (X = x) =

(

n

x

)

px(1 − p)n−x.

The random quantity X is CONTINUOUS if it can take any value in some (finite or infinite)

interval of real numbers. We denote its probability density function (pdf) by f(x). Some

examples of continuous random quantities are as follows.

Example 4 Uniform: Ω = [a, b], with a < b. This distribution may be thought of as a model

for choosing a number at random between a and b. The pdf is given by

f(x) =

{

1
b−a a ≤ x ≤ b,

0 otherwise.
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Example 5 Exponential: often used to model lifetimes or waiting times. Ω = [0,∞) with

f(x) =

{

λ exp(−λx) x ≥ 0,

0 otherwise.

Example 6 Normal: plays a central role in statistics, also known as the Gaussian distribu-

tion. Ω = (−∞,∞) and

f(x) =
1√
2πσ

exp

{

− 1

2σ2
(x − µ)2

}

.

Each of these examples denotes a FAMILY OF DISTRIBUTIONS, varying in scale/location/

shape. The family is indexed by some parameter θ ∈ Θ; θ may be univariate or multivariate.

• The Bernoulli and Geometric, Examples 1 and 2, are both indexed by the parameter

p ∈ (0, 1).

• The Binomial, Example 3, has two parameters: p ∈ (0, 1) and n, the sample size which

is a positive integer. In most cases, n is known.

• In Example 4, the Uniform has two parameters a and b where a < b are real numbers.

• The Exponential, Example 5, has a single parameter, λ ∈ (0,∞).

• Finally, in Example 6, the Normal has two: µ ∈ (−∞,∞) and σ2 ∈ (0,∞).

We could choose to make this “family behaviour” explicit by writing Pθ(X = x) or P (X =

x | θ) for discrete distributions and fθ(x) and f(x | θ) in the continuous setting. In this course,

we shall use the second of these two conventions. This choice also avoids confusion when we

wish to make the random quantity over which the distribution is specified explicit.

Example 7 If X ∼ N(µ, σ2) then X = σZ + µ where Z ∼ N(0, 1) and we write

fX(x |µ, σ2) =
1

σ
fZ(x−µ

σ )

where

fZ(z) =
1√
2π

exp

{

−z2

2

}

.

Often θ may be unknown and learning about it, that is making INFERENCES about it, is

the key issue. The course begins by discussing how we can estimate θ based upon a sample

x1, . . . , xn of observations believed to come from the underlying distribution f(x | θ). That

is, we are interested in PARAMETRIC INFERENCE assuming a known particular family.
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Chapter 1

Point Estimation

1.1 Introduction

Let X1, . . . , Xn be independent and identically distributed random quantities. Each Xi has

probability density function fXi
(x | θ) = f(x | θ) if continuous and probability mass function

P (Xi = x | θ) if discrete, where θ ∈ Θ is a parameter indexing a family of distributions.

Example 8 We are interested in whether a coin is fair. If we judge tossing a head to be a

success then each toss of the coin constitutes a Bernoulli trial with parameter p unknown.

The coin is fair if p equals one half.

We take a sample of observations x1, . . . , xn where each xi ∈ Ω and our aim is to determine

from this data a number that can be taken to be an estimate of θ.

1.2 Estimators and estimates

It is important to distinguish between the method or rule of estimation, which is the ESTI-

MATOR, and the value to which it gives rise to in a particular case, the ESTIMATE.

Example 9 Recall Example 8. The parameter p is the probability of tossing a head on a

single toss. Suppose we observe n tosses, so X1 = x1, . . . , Xn = xn where

xi =

{

1 if ith toss is a head,

0 if ith toss is a tail.

The observed sample mean

x =
1

n

n
∑

i=1

xi

is an intuitive way to estimate p. Prior to observing the data,

X =
1

n

n
∑

i=1

Xi

6



is unknown and is thus a random quantity. It is the estimator of p.

Definition 1 (Estimator, Estimate)

The estimator for θ is a function of the random quantities, X1, . . . , Xn, denoted T (X1, . . . ,

Xn), and is thus itself a random quantity. For a specific set of observations x1, . . . , xn, the

observed value of the estimator, T (x1, . . . , xn), is the point estimate of θ.

Our aim in this course is to find estimators: we do not choose/reject an estimator because

it gives a good/bad result in a particular case. Rather, we should choose an estimator that

gives good results in the long run. In particular, we look at properties of its SAMPLING

DISTRIBUTION. The sampling distribution is the probability distribution of the estimator

T (X1, . . . , Xn).

Example 10 Recall Examples 8 and 9. We observe X1 = x1, . . . , Xn = xn. Prior to

observing the data, the probability, or likelihood, of the data taking this form is

P (X1 = x1, . . . , Xn = xn | p) =
n
∏

i=1

P (Xi = xi | p)

=

n
∏

i=1

pxi(1 − p)1−xi

= p
∑

n

i=1
xi(1 − p)n−

∑

n

i=1
xi

= pnx(1 − p)n−nx.

Note that to calculate this probability, n and x are sufficient for x1, . . . , xn. If p is unknown,

we could regard this probability as a function of p,

L(p) = P (X1 = x1, . . . , Xn = xn | p) = pnx(1 − p)n−nx. (1.1)

We could then choose p to make L(p) as large as possible, that is to maximise the probabil-

ity, or likelihood, of observing the data. This is the method of MAXIMUM LIKELIHOOD

ESTIMATION.

1.3 Maximum likelihood estimation

The principle of maximum likelihood estimation is to choose the value of θ which makes the

observed set of data most likely to occur. For ease of notation, we denote the probability

density function by f(x | θ) indifferently for a discrete or continuous random quantity. The

joint probability distribution, fX1...Xn
(x1, . . . , xn | θ), of the n random quantities X1, . . . , Xn

is , for fixed θ, a function of the observations, x1, . . . , xn. If θ is unknown but the observations

known then we may regard it as a function of θ.
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Definition 2 (Likelihood function)

The joint probability distribution of X1, . . . , Xn,

L(θ) = fX1...Xn
(x1, . . . , xn | θ) =

n
∏

i=1

f(xi | θ), (1.2)

regarded as a function of θ for given observations x1, . . . , xn is the likelihood function.

Note that the simplification in equation (1.2) follows as the Xi are independent and identi-

cally distributed.

Definition 3 (Maximum likelihood estimate/estimator)

For a given set of observations, the maximum likelihood estimate is the value θ̂ ∈ Θ which

maximises L(θ). If each x1, . . . , xn leads to a unique value of θ̂, then the procedure defines a

function

θ̂ = T (x1, . . . , xn)

and the corresponding random quantity T (X1, . . . , Xn) is the maximum likelihood estimator.

Example 11 Recall the coin tossing example, see Example 10, which utilises the Bernoulli

distribution. From equation (1.1), the likelihood function is

L(θ) = L(p) = pnx(1 − p)n−nx.

Notice that L(0) = 0 = L(1) and that the likelihood is always nonnegative as it is a probability

and continuous. Thus, L(p) has a maximum in (0, 1). Differentiating L(p) with respect to p

gives

L′(p) = {nx(1 − p) − (n − nx)p}pnx−1(1 − p)n−nx−1

= n(x − p)pnx−1(1 − p)n−nx−1.

Hence, solving L′(p) = 0 for p ∈ (0, 1) gives p̂ = x. The maximum likelihood estimate is

p̂ = T (x1, . . . , xn) = x.

The maximum likelihood estimator is

T (X1, . . . , Xn) =
1

n

n
∑

i=1

Xi = X.

The sampling distribution of the maximum likelihood estimator is easy to obtain as
∑n

i=1 Xi

∼ Bin(n, p). Thus,

P (X = x | p) =

(

n

nx

)

pnx(1 − p)n−nx,

for x = 0, 1/n, 2/n, . . . , 1.

We now generalise the approach this example, firstly for the case when θ is univariate and

then for the multivariate case.
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1.3.1 Maximum likelihood estimation when θ is univariate

If L(θ) is a twice-differentiable function of θ then stationary values of θ will be given by the

roots of

L′(θ) =
∂L

∂θ
= 0.

A sufficient condition that a stationary value, θ̂, be a local maximum is that

L′′(θ̂) < 0.

The maximum likelihood estimate is the point at which the global maximum is attained

which is either at a stationary value, or is at an extreme permissible value of θ. An example

of this latter case can be seen in Question 2 of Question Sheet Two.

In practice, it is often simpler to work with the LOG-LIKELIHOOD,

l(θ) = log L(θ).

Note that, as the logarithm is a monotonically increasing function, the likelihood, L(θ), and

the log-likelihood, l(θ), have the same maxima.

Alternatively note that

l′(θ) =
L′(θ)

L(θ)

and L(θ) > 0 so that l(θ) and L(θ) have the same stationary points. If θ̂ is such

a stationary point then l′′(θ̂) = L′′(θ̂)/L(θ̂) so L′′(θ̂) and l′′(θ̂) share the same

sign.

The principle reason for working with the log-likelihood is that the differentiation will typ-

ically be easier as it avoids having to differentiate a product. From equation (1.2), the

likelihood function is

L(θ) =

n
∏

i=1

f(xi | θ).

Noting that the ‘log of a product is the sum of the logs’ then the log-likelihood is given by

l(θ) =
n
∑

i=1

log{f(xi | θ)},

so that

l′(θ) =

n
∑

i=1

f ′(xi | θ)
f(xi | θ)

.

Many distributions also involve exponentials so the taking of logs help remove these and

simplify the differentiation further. The Poisson distribution provides an example of this in

action.
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Example 12 Consider X ∼ Po(λ). Then, P (X = x |λ) = λx exp(−λ)/x! for x = 0, 1, . . ..

Suppose x1, . . . , xn are a random sample from Po(λ). The likelihood function is

L(λ) =
n
∏

i=1

λxi exp(−λ)

xi!
.

To find the maximum likelihood estimator of λ we work with the corresponding log-likelihood,

l(λ) =

n
∑

i=1

log

{

λxi exp(−λ)

xi!

}

= (

n
∑

i=1

xi) log λ − nλ −
n
∑

i=1

log xi!

= nx log λ − nλ −
n
∑

i=1

log xi!

Differentiating with respect to λ gives

l′(λ) =
nx

λ
− n.

So, solving l′(λ) = 0 gives λ̂ = x. Note that L(0) = 0 = L(∞) and l′′(λ) = −nx/λ2 < 0

for all λ > 0, so that x is the maximum likelihood estimate and X the maximum likelihood

estimator for λ.

1.3.2 Maximum likelihood estimation when θ is multivariate

We now consider the general case when more than one parameter is required to be estimated

simultaneously. Let θ = {θ1, . . . , θk}, where each θr is univariate. We wish to choose the

θ1, . . . , θk which make the likelihood function an absolute maximum. A necessary condition

for a local turning point in the likelihood function is that

∂

∂θr
log L(θ1, . . . , θk) =

∂l

∂θr
= 0, for each r = 1, . . . , k.

In this case, a sufficient condition that a solution θ = θ̂ is a maximum is that the matrix

A =

(

∂2l

∂θr∂θs

)
∣

∣

∣

∣

θ=θ̂

,

so A is the k×k matrix whose (r, s)th entry is ∂2l
∂θr∂θs

evaluated at θ = θ̂, is negative definite.

That is, for all nonzero vectors y = [y1 . . . yk]T ,

yT Ay < 0.

Example 13 Consider the normal distribution with θ = {µ, σ2}. If the independent obser-

vations x1, . . . , xn are assumed to come from a N(µ, σ2) then the likelihood function is

L(θ) = L(µ, σ2) =

n
∏

i=1

1√
2πσ

exp

{

− 1

2σ2
(xi − µ)2

}

=
1

(2π)n/2(σ2)n/2
exp

{

− 1

2σ2

n
∑

i=1

(xi − µ)2

}

.
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The log-likelihood is then

l(µ, σ2) = −n

2
log 2π − n

2
log σ2 − 1

2σ2

n
∑

i=1

(xi − µ)2.

The first order partial derivatives are

∂l

∂µ
=

1

σ2

n
∑

i=1

(xi − µ);

∂l

∂σ2
= − n

2σ2
+

1

2(σ2)2

n
∑

i=1

(xi − µ)2.

Solving ∂l
∂µ = 0 we find that, for σ2 > 0, µ̂ = 1

n

∑n
i=1 xi = x. Substituting this into ∂l

∂σ2 = 0

gives

− n

2σ2
+

1

2(σ2)2

n
∑

i=1

(xi − x)2 = 0,

so that σ̂2 = 1
n

∑n
i=1(xi − x)2. The second order partial derivatives are

∂2l

∂µ2
= − n

σ2
;

∂2l

∂(σ2)2
=

n

2(σ2)2
− 1

(σ2)3

n
∑

i=1

(xi − µ)2;

∂2l

∂µ∂σ2
= − 1

(σ2)2

n
∑

i=1

(xi − µ) =
∂2l

∂σ2∂µ
.

Evaluating these at µ̂ = x, σ̂2 = 1
n

∑n
i=1(xi − x)2 gives

∂2l

∂µ2

∣

∣

∣

∣

µ=µ̂,σ2=σ̂2

= − n

σ̂2
;

∂2l

∂(σ2)2

∣

∣

∣

∣

µ=µ̂,σ2=σ̂2

=
n

2(σ̂2)2
− 1

(σ̂2)3

n
∑

i=1

(xi − x)2 = − n

2(σ̂2)2
;

∂2l

∂µ∂σ2

∣

∣

∣

∣

µ=µ̂,σ2=σ̂2

= − 1

(σ̂2)2

n
∑

i=1

(xi − x) = 0.

A sufficient condition for L(µ̂, σ̂2) to be a maximum is that the matrix

A =

(

∂2l
∂µ2

∂2l
∂µ∂σ2

∂2l
∂σ2∂µ

∂2l
∂(σ2)2

)∣

∣

∣

∣

∣

µ=µ̂,σ2=σ̂2

=

(

− n
σ̂2 0

0 − n
2(σ̂2)2

)

is negative definite. For any vector y = [y1 y2]
T we have

yT Ay = −ny2
1

σ̂2
− ny2

2

2(σ̂2)2
< 0

so that A is negative definite. The maximum likelihood estimates are µ̂ = x and σ̂2 =
1
n

∑n
i=1(xi−x)2. The corresponding maximum likelihood estimators are X and 1

n

∑n
i=1(Xi−

X)2 for µ and σ2 respectively.
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Chapter 2

Evaluating point estimates

2.1 Bias

Definition 4 (Biased/unbiased estimator)

An estimator T (X1, . . . , Xn) for parameter θ has bias defined by

b(T ) = E(T | θ) − θ.

If b(T ) = 0 then T is an unbiased estimator of θ; otherwise it is biased.

Thus, if T is unbiased it is “correct in expectation”. If we know the sampling distribution,

that is the pdf of T , f(t | θ) then

b(T ) =

∫ ∞

−∞
tf(t | θ) dt − θ.

Example 14 If X1, . . . , Xn are iid U(0, θ) where θ is unknown, then the maximum likelihood

estimator of θ is M = max{X1, . . . , Xn}. On Question 2 of Question Sheet Two, we find

the sampling distribution of M to be

fM (m | θ) =

{

nmn−1

θn m ≤ θ,

0 otherwise,

Hence,

E(M | θ) =

∫ θ

0

m

(

n
mn−1

θn

)

dm =

(

1 − 1

n + 1

)

θ

so that b(M) = − 1
n+1θ. M is thus a biased estimator of θ: it underestimates θ which is not

surprising as we would not expect the observed sample maximum to be the global maximum.

An unbiased estimator is n+1
n M .

In many situations, however, we do not need to know the full sampling distribution to

determine whether or not an estimator is biased. Two important examples are the sample

mean and the sample variance.

12



Example 15 The sample mean. Suppose X1, . . . , Xn are iid with pdf f(x | θ) where pa-

rameter θ1 ⊆ θ is such that E(Xi | θ) = θ1. Then, the estimator T = X is unbiased as

E(T | θ) = E

(

1

n

n
∑

i=1

Xi

∣

∣

∣

∣

∣

θ

)

=
1

n

n
∑

i=1

E(Xi | θ)

=
1

n

n
∑

i=1

θ1 = θ1.

An important example of this is when Xi ∼ N(µ, σ2), θ1 = µ, θ2 = σ2 and θ = {µ, σ2}.

Example 16 The sample variance. Let the parameter θ2 ⊆ θ be such that V ar(Xi | θ) =

θ2. The estimator T = 1
n

∑n
i=1(Xi − X)2 is not an unbiased estimator for θ2.

E(T | θ) = E

(

1

n

n
∑

i=1

(Xi − X)2

∣

∣

∣

∣

∣

θ

)

=
1

n

n
∑

i=1

E((Xi − X)2 | θ).

Now, from Example 15, E(Xi | θ) = E(X | θ) so that E(Xi − X | θ) = 0 whence V ar(Xi −
X | θ) = E((Xi − X)2 | θ). Thus,

E(T | θ) =
1

n

n
∑

i=1

V ar(Xi − X | θ)

=
1

n

n
∑

i=1

{

V ar(Xi | θ) − 2Cov(Xi, X | θ) + V ar(X | θ)
}

. (2.1)

Now, V ar(Xi | θ) = θ2 and, as the Xis are iid,

V ar(X | θ) =
1

n2

n
∑

j=1

V ar(Xj | θ) =
θ2

n
.

Using the properties of covariance1 we have that

Cov(Xi, X | θ) =
1

n

n
∑

j=1

Cov(Xi, Xj | θ)

=
1

n







Cov(Xi, Xi | θ) +

n
∑

j 6=i

Cov(Xi, Xj | θ)







=
1

n







V ar(Xi | θ) +

n
∑

j 6=i

0







=
θ2

n
.

1For random quantities X, Y and Z, constants a and b, note that V ar(X) = Cov(X, X), Cov(X, Y ) =

Cov(Y, X) and Cov(X, aY + bZ) = aCov(X, Y ) + bCov(X, Z).

13



Substituting these three results into (2.1) gives

E(T | θ) =
1

n

n
∑

i=1

(

θ2 −
2θ2

n
+

θ2

n

)

=

(

1 − 1

n

)

θ2 =
n − 1

n
θ2.

An unbiased estimator of θ2 is thus n
n−1T which is2

S2 =
1

n − 1

n
∑

i=1

(Xi − X)2.

Example 17 Let X1, . . . , Xn be iid N(µ, σ2) with µ and σ2 both unknown. From Examples

15 and 16 (consider θ = {µ, σ2}; so θ1 = µ and θ2 = σ2) we observe that the maximum

likelihood estimator of µ, X, is unbiased whereas the maximum likelihood estimator of σ2

(with µ unknown), 1
n

∑n
i=1(Xi − X)2, is biased. An unbiased estimator of σ2 is S2 =

1
n−1

∑n
i=1(Xi − X)2.

2.2 Mean square error

Bias is just one facet of an estimator. Consider the following two scenarios.

1. The estimator T may be unbiased but the sampling distribution, f(t | θ), may be quite

disperse: there is a large probability of being far away from θ, so for any ǫ > 0 the

probability that P (θ − ǫ < T < θ + ǫ | θ) is small.

2. The estimator T may be biased but the sampling distribution, f(t | θ), may be quite

concentrated. So, for any ǫ > 0 the probability that P (θ − ǫ < T < θ + ǫ | θ) is large.

In these cases, the biased estimator may be preferable to the unbiased one. We would like

to know more than whether or not an estimator is biased. In particular, we wish to capture

some idea of how concentrated the sampling distribution of the estimator T is around θ.

Ideally we would like

P (|T − θ| < ǫ | θ) = P (θ − ǫ < T < θ + ǫ | θ)

to be large for all ǫ > 0. This probability may be hard to evaluate, but we may make use of

Chebyshev’s inequality.

Theorem 1 (Chebyshev’s inequality)

For any random quantity X and any t > 0,

P (|X − E(X)| ≥ t) ≤ V ar(X)

t2

so that P (|X − E(X)| < t) ≥ 1 − V ar(X)
t2 .

2In the same way as using X to denote 1

n

∑

n

i=1
Xi it is common notation to use S2 to denote

1

n−1

∑

n

i=1
(Xi − X)2.

14



Proof - (For completeness; not examinable) Let R = {x : |x−E(X)| ≥ t}. Then, for x ∈ R,

(x − E(X))2

t2
≥ 1 (2.2)

and

P (|X − E(X)| ≥ t) =

∫

R

f(x) dx ≤
∫

R

(x − E(X))2

t2
f(x) dx (2.3)

where the inequality follows from (2.2). Since R ⊆ Ω then

∫

R

(x − E(X))2

t2
f(x) dx ≤

∫ ∞

−∞

(x − E(X))2

t2
f(x) dx =

V ar(X)

t2
. (2.4)

The result follows by joining (2.3) and (2.4). 2

Suppose that T is an unbiased estimator of θ, so that E(T | θ) = θ, then from an application

of Chebyshev’s inequality we have

P (|T − θ| < ǫ | θ) ≥ 1 − V ar(T | θ)
ǫ2

= 1 − E{(T − θ)2 | θ}
ǫ2

so that if T is an unbiased estimator of θ then a small value of E{(T −θ)2 | θ} implies a large

value of P (|T − θ| < ǫ | θ). A simple extension of Chebyshev’s inequality (repeat the proof

but with R = {x : |x − θ| ≥ ǫ}) shows that, for all T ,

P (|T − θ| < ǫ | θ) ≥ 1 − E{(T − θ)2 | θ}
ǫ2

. (2.5)

Definition 5 (Mean Square Error)

The mean square error (MSE) of the estimator T is defined to be

MSE(T ) = E{(T − θ)2 | θ}.

By considering equation (2.5), we see that we may use the MSE as a measure of the con-

centration of the estimator T = T (X1, . . . , Xn) around θ. Note that if T is unbiased then

MSE(T ) = V ar(T | θ).

If we have a choice between estimators then we might prefer to use the estimator with the

smallest MSE.

Definition 6 (Relative Efficiency)

Suppose that T1 = T1(X1, . . . , Xn) and T2 = T2(X1, . . . , Xn) are two estimators for θ. The

efficiency of T1 relative to T2 is

RelEff(T1, T2) =
MSE(T2)

MSE(T1)
.

15



Values of RelEff(T1, T2) close to 0 suggest a preference for the estimator T2 over T1 while

large values (> 1) of RelEff(T1, T2) suggest a preference for T1. Notice that if T1 and T2 are

unbiased estimators then

RelEff(T1, T2) =
V ar(T2 | θ)
V ar(T1 | θ)

and we choose the estimator with the smallest variance.

Example 18 Suppose X1, . . . , Xn are iid N(µ, σ2). Two unbiased estimators of µ are T1 =

X and T2 = median{X1, . . . , Xn}. We have shown that X ∼ N(µ, σ2/n). The sample

median, T2, is asymptotically normal with mean µ and variance πσ2/2n. Consequently,

RelEff(T1, T2) =
V ar(median{X1, . . . , Xn} | θ)

V ar(X | θ)

=
πσ2/2n

σ2/n
=

π

2
.

Thus, we prefer T1 to T2 as it is more concentrated around θ: we’d prefer to use the sample

mean rather than the sample median as an estimator of θ under this criterion. Note that if

we calculate the sample mean of n individuals, then we would have to calculate the median

of a sample of size nπ/2 for the two estimators to have the same variance.

How do we calculate the MSE, E{(T − θ)2 | θ}, when T is biased? We use the result

that

MSE(T ) = E{(T − θ)2 | θ} = V ar(T | θ) + b2(T ). (2.6)

To derive this result note that, as we assuming θ is known, then

V ar(T | θ) = V ar(T − θ | θ)
= E{(T − θ)2 | θ} − E2(T − θ | θ)
= E{(T − θ)2 | θ} − {E(T | θ) − θ}2

= MSE(T )− b2(T ).

Example 19 Suppose that X1, . . . , Xn are iid N(µ, σ2). Letting θ = {µ, σ2}, T1 = 1
n

∑n
i=1(Xi−

X)2 is a biased estimator of σ2 with

E(T1 | θ) =
(n − 1)σ2

n
; V ar(T1 | θ) =

2(n − 1)σ4

n2
.

Thus,

b(T1) =
(n − 1)σ2

n
− σ2 = −σ2

n
.

Hence,

MSE(T1) = V ar(T1 | θ) + b2(T1)

=
2(n − 1)σ4

n2
+

σ4

n2
=

(2n − 1)σ4

n2
.

16
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Figure 2.1: The pdf of Tn ∼ N(µ, σ2/n) for three values of n: n3 < n2 < n1. As n increases,

the distribution becomes more and more concentrated around µ.

An unbiased estimator of σ2 is T2 = 1
n−1

∑n
i=1(Xi −X)2 and its second-order properties are

E(T2 | θ) = σ2; V ar(T2 | θ) =
2σ4

n − 1
.

Thus, MSE(T2) = V ar(T2 | θ) and the relative efficiency of T1 to T2 is

RelEff(T1, T2) =
MSE(T2)

MSE(T1)

=
2σ4/(n − 1)

(2n − 1)σ4/n2

=
2n2

(2n − 1)(n − 1)
> 1 if n > 1/3.

Although T1 is biased, it is more concentrated around σ2 than T2.

2.3 Consistency

Bias and MSE are criteria for a fixed sample size n. We might also be interested in large

sample properties. Let Tn = Tn(X1, . . . , Xn) be an estimator for θ based on a sample of

size n, X1, . . . , Xn. What can we say about Tn as n → ∞? It might be desirable if, roughly

speaking, the larger n is, the ‘closer’ Tn is to θ.

Example 20 The maximum likelihood estimator for the parameter µ when the Xi are iid

N(µ, σ2) is Tn = X = 1
n

∑n
i=1 Xi and the sampling distribution of Tn ∼ N(µ, σ2/n) (see

Q2 of Question Sheet One). As Figure 2.1 shows, as n increases, the probability that Tn ∈
(µ − ǫ, µ + ǫ) gets large for any ǫ > 0: the larger n is, the ‘closer’ Tn = X is to µ.

Definition 7 (Consistent)

Let {Tn} denote the sequence of estimators T1, T2, . . .. The sequence is consistent for θ if

lim
n→∞

P (|Tn − θ| < ǫ | θ) = 1 ∀ ǫ > 0.

17



Thus, an estimator is consistent if it is possible to get arbitrarily close to θ by taking the

sample size n sufficiently large. Now, from (2.5), we have a lower bound for P (|Tn−θ| < ǫ | θ),
while 1 is an upper bound, so that

1 ≥ P (|Tn − θ| < ǫ | θ) ≥ 1 − MSE(Tn)

ǫ2
.

Hence, a sufficient condition for consistency of the estimator Tn is that

lim
n→∞

MSE(Tn) = 0.

If Tn is an unbiased estimator of θ then MSE(Tn) = V ar(Tn | θ) so that the sufficient

condition for consistency reduces to limn→∞ V ar(Tn | θ) = 0. For Tn biased, then, from

(2.6), a sufficient condition that limn→∞ MSE(Tn) = 0 is that both

lim
n→∞

b(Tn) = 0 and lim
n→∞

V ar(Tn | θ) = 0.

Example 21 For X1, . . . , Xn iid N(µ, σ2), intuition suggests that X is a consistent estima-

tor for µ. We can now confirm this intuition by noting that X is an unbiased estimator of

µ with

lim
n→∞

V ar(X |µ, σ2) = lim
n→∞

σ2

n
= 0,

so that the sufficient conditions for consistency are met.

2.4 Robustness

If X1, . . . , Xn are iid N(µ, σ2) then X and median{X1, . . . , Xn} are both unbiased estimators

of µ. In Example 18, we showed that X was more efficient than median{X1, . . . , Xn}. Are

there situations where we would ever use the median? The comparison in Example 18

depends upon the judgement that the Xi are iid N(µ, σ2). What happens if this judgement

of normality is flawed?

The sample mean and median are both examples of measures of location. If the observa-

tions x1, . . . , xn are believed to be different measurements of the same quantity, a measure

of location - a measure of the centre of the observations - is often used as an estimate of the

quantity.

An estimator which is fairly good (in some sense) in a wide range of situations is said to

be robust. The median is more robust than the mean to ‘outlying’ values.

Example 22 Suppose that we are interested in the ‘true’ heat of sublimation of platinum.

Our strategy might be to perform an experiment n times and record the observed temperature

of the sublimation and use this to estimate the ‘true’ heat. Our model may be

Xi = µ + ǫi

18



where µ denotes the true heat of sublimation and the ǫi represent random errors (typically,

the ǫi are assumed to be iid N(0, σ2) so that the Xi are iid N(µ, σ2).) 26 observations are

taken and the measurements displayed in the following stem-and-leaf plot (the decimal point

is at the colon)

133 : 7

134 : 1 3 4

134 : 5 7 8 8 8 9 9

135 : 0 0 2 2 4 4

135 : 8 8

136 : 3

136 : 6

High/Outliers: 141.2 143.3 146.5 147.8 148.8

For this data, we have

x =
3563.2

26
= 137.05,

median(x1, . . . , x26) =
135.0 + 135.2

2
= 135.1.

The median seems a more reasonable measure of the true heat: it is more robust than the

mean to outlying values.

2.4.1 Trimmed mean

The sample mean is more efficient than the sample median but the sample median is more

robust. The trimmed mean is an attempt to capture the efficiency of the sample mean while

also improving its robustness to outlying values.

Definition 8 (α-trimmed mean)

If x1, . . . , xn are a series of measurements ordered as

x(1) ≤ x(2) ≤ · · · ≤ x(α) · · · ≤ x(α+1) ≤ · · · ≤ x(n−α) ≤ x(n−α+1) ≤ · · · ≤ α(n)

and we discard α observations at both extremes then the α-trimmed mean,

xα =
1

n − 2α

n−α
∑

i=α+1

x(i),

is defined to be the mean of the remaining n − 2α values.

Note that if n is odd then the median is the n−1
2 -trimmed mean while for n even, the median

is the (n
2 − 1)-trimmed mean.

Example 23 We return to Example 22 and the sublimation of platinum. We find the 5-

trimmed mean which discards the lower 19% and upper 19% of observations. It is

x5 =
2164.6

16
= 135.29.
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Chapter 3

Interval estimation

3.1 Principle of interval estimation

A simple point estimate θ̂ = T (x1, . . . , xn) gives us no information about how accurate

the corresponding estimator T (X1, . . . , Xn) of θ is. However, sometimes, we can utilise

information from the estimator’s sampling distribution to help in this goal.

Example 24 In Subsection 2.2 we looked at the mean square error of T (X1, . . . ,

Xn).

Example 25 Suppose that X1, . . . , Xn are iid N(µ, σ2) and that σ2 is known

and we are interested in estimating µ. X is an unbiased estimator of µ with

X ∼ N(µ, σ2/n). Thus,

P

(

−1.96 <
X − µ

σ/
√

n
< 1.96

∣

∣

∣

∣

µ, σ2

)

= 0.95. (3.1)

Equation (3.1) is a probability statement about X. Rearranging we have that

P

(

X − 1.96
σ√
n

< µ < X + 1.96
σ√
n

∣

∣

∣

∣

µ, σ2

)

= 0.95. (3.2)

Equation (3.2) states that the RANDOM interval (X − 1.96 σ√
n
, X + 1.96 σ√

n
)

contains µ with probability 0.95. For observation X = x, we say we have 95%

confidence that µ is in the interval (x − 1.96 σ√
n
, x + 1.96 σ√

n
).

Construction of intervals like that in Example 25 is the goal of this chapter.

Definition 9 (Pivot)

Suppose X1, . . . , Xn are random quantities whose distribution has parameter θ. A function

φ(X1, . . . , Xn, θ)

is called a pivot if its distribution, given θ, does not depend upon θ.
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1−α

φ

f (φ)

c c1 2

Figure 3.1: The probability density function f(φ) for a pivot φ. The probability of φ being

between c1 and c2 is 1 − α.

Example 26 Suppose that X1, . . . , Xn are iid N(µ, σ2). There are (at most) two parame-

ters: µ and σ2. Note that, given µ and σ2,

X − µ

σ/
√

n
∼ N(0, 1)

and N(0, 1) does not depend upon either µ or σ2. Thus, X−µ
σ/

√
n

is a pivot.

If we have a pivot, φ, for θ, we can find its pdf f(φ). Moreover, see Figure 3.1, we can think

of finding quantities c1 and c2 such that

P{c1 < φ(X1, . . . , Xn, θ) < c2 | θ} = 1 − α.

If we can solve this for φ to get

P{g1(X1, . . . , Xn, c1, c2) < θ < g2(X1, . . . , Xn, c1, c2) | θ} = 1 − α.

then the random interval (g1(X1, . . . , Xn, c1, c2), g2(X1, . . . , Xn, c1, c2)) contains θ with prob-

ability 1 − α. Moreover, having observed the data, we may compute a realisation of this

interval.

Definition 10 (Confidence interval)

Suppose that the random interval (g1(X1, . . . , Xn, c1, c2), g2(X1, . . . , Xn, c1, c2)) contains θ

with probability 1−α. A realisation of this random interval (g1(x1, . . . , xn, c1, c2), g2(x1, . . . ,

xn, c1, c2)) is called a 100(1− α)% confidence interval for θ.

It is important to note the following.

1. A confidence interval is NOT random; either it does or does not contain θ.

2. Thus, we MUST NOT talk about the probability that a confidence interval contains

θ.

3. In the long run, 100(1− α)% of confidence intervals will contain θ.

21



3.2 Normal theory: confidence interval for µ when σ2 is

known

We now formalise Example 25. Let X1, . . . , Xn be iid N(µ, σ2) where σ2 is assumed to be

known. X is an unbiased estimator of µ with sampling distribution N(µ, σ2/n). Hence,

given both µ and σ2,

X − µ

σ/
√

n
∼ N(0, 1)

is a pivot. We may find constants c1 and c2 so that

P

(

c1 <
X − µ

σ/
√

n
< c2

∣

∣

∣

∣

µ, σ2

)

= 1 − α.

Rearranging the inequality statement gives

P

(

X − c2
σ√
n

< µ < X − c1
σ√
n

∣

∣

∣

∣

µ, σ2

)

= 1 − α.

Thus, (x − c2
σ√
n
, x − c1

σ√
n
) is a 100(1 − α)% confidence interval for µ. Note that this only

works if σ2 (and hence σ) is known so that both x−c2
σ√
n

and x−c1
σ√
n

are computable once

we have observed the data. In the case when σ2 is unknown, we construct an alternative

confidence interval. We will tackle this in Section 3.4.

How do we choose c1, c2?

Let Z ∼ N(0, 1). Typically, we choose c1 and c2 to form a symmetric interval around 0 so

that c1 = −c2 with c2 = z(1−α
2
) where

P (Z ≤ z(1−α
2
)) = 1 − α

2
.

Example 27 α = 0.05 to give a 95% confidence interval for µ. We have

P (Z ≤ 1.96) = 0.975 = 1 − 0.05

2

(so z0.975 = 1.96) and the 95% confidence interval for µ is
(

x − 1.96
σ√
n

, x + 1.96
σ√
n

)

.

Example 28 α = 0.10 to give a 90% confidence interval for µ. We have

P (Z ≤ 1.645) = 0.95 = 1 − 0.10

2

(so z0.95 = 1.645) and the 90% confidence interval for µ is
(

x − 1.645
σ√
n

, x + 1.645
σ√
n

)

.
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Example 29 If n = 20 and σ2 = 10 and we observe x = 107 then a 95% confidence interval

for µ is

(

107 − 1.96

√

10

20
, 107 + 1.96

√

10

20

)

= (105.61, 108.39),

while a 90% confidence interval for µ is

(

107 − 1.645

√

10

20
, 107 + 1.645

√

10

20

)

= (105.84, 108.16).

3.3 Normal theory: confidence interval for σ2

The confidence interval for σ2 derives from the unbiased estimtor

S2 =
1

n − 1

n
∑

i=1

(Xi − X)2

for σ2.

Theorem 2 If X1, . . . , Xn are iid N(µ, σ2) then X and S2 are independent.

Proof - It is beyond the scope of this course. The result essentially follows because X and,

for each i, Xi − X are independent. You may verify that Cov(X, Xi − X |µ, σ2) = 0. 2

Definition 11 (Chi-squared distribution)

If Z is a standard normal random quantity, then the distribution of U = Z2 is called the chi-

squared distribution with 1 degree of freedom. If U1, U2, . . . , Un are independent chi-squared

random quantities with 1 degree of freedom then V =
∑n

i=1 Ui is called the chi-squared

distribution with n degrees of freedom and is denoted χ2
n.

Some properties of the chi-squared distribution

1. E(χ2
n) = n and V ar(χ2

n) = 2n. (We won’t derive these: for future reference you may

wish to note that χ2
n may also be viewed as a Gamma distribution with parameters

n/2 and 1/2.)

2. If X1, . . . , Xn are iid N(µ, σ2) then X1−µ
σ , . . . , Xn−µ

σ are iid N(0, 1) so that

1

σ2

n
∑

i=1

(Xi − µ)2 ∼ χ2
n.

Theorem 3 If X1, . . . , Xn are iid N(µ, σ2) then

(n − 1)S2

σ2
∼ χ2

n−1.
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Proof - Once again, the proof is omitted. If you want some insight into why this result is

true note that

1

σ2

n
∑

i=1

(Xi − µ)2 =
1

σ2

n
∑

i=1

{(Xi − X) + (X − µ)}2

=
1

σ2

n
∑

i=1

(Xi − X)2 +

(

X − µ

σ/
√

n

)2

.

The left hand side is χ2
n and

(

X−µ
σ/

√
n

)2

is χ2
1. The two components on the right hand side

are, from Theorem 2, independent. 2

Note that, from this result, we have

E(S2 |µ, σ2) =
σ2

n − 1
E(χ2

n−1) = σ2

which verifies that S2 is an unbiased estimator of σ2 while

V ar(S2 |µ, σ2) =
σ4

(n − 1)2
V ar(χ2

n−1) =
2σ4

n − 1

which derives the variances used in Example 19.

From Theorem 3 we have that given σ2, the distribution of (n−1)S2

σ2 ∼ χ2
n−1 does not depend

upon σ2, so that it is a pivot for σ2. We may find quantities c1 and c2 such that

P (c1 < χ2
n−1 < c2) = 1 − α

and then using the pivot we have

P

(

c1 <
(n − 1)S2

σ2
< c2

∣

∣

∣

∣

µ, σ2

)

= 1 − α.

Rearranging gives

P

(

(n − 1)S2

c2
< σ2 <

(n − 1)S2

c1

∣

∣

∣

∣

µ, σ2

)

= 1 − α.

Hence, ( (n−1)S2

c2

, (n−1)S2

c1

) is a random interval which contains σ2 with probability 1 − α so

that a realisation of this interval,
(

(n − 1)s2

c2
,
(n − 1)s2

c1

)

,

where s2 = 1
n−1

∑n
i=1(xi − x)2, is a 100(1 − α)% confidence interval for σ2.

How do we choose c1 and c2?

χ2
n−1 denotes the chi-squared distribution with n − 1 degrees of freedom. The chi-squared
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f(x)

xc1 c2

1−α

Figure 3.2: The probability density function for a chi-squared distribution. The probability

of being between c1 and c2 is 1 − α.

distribution is not symmetric, see Figure 3.2. The standard approach is to choose c1 and c2

such that

P (χ2
n−1 < c1) =

α

2
= P (χ2

n−1 > c2).

The chi-squared tables gives values χ2
ν,α where P (χ2

ν > χ2
ν,α) = α for the chi-squared distri-

bution with ν degrees of freedom. Thus, we choose

c1 = χ2
n−1,1−α

2

, c2 = χ2
n−1, α

2

and our 100(1 − α)% confidence interval for σ2 is
(

(n − 1)s2

χ2
n−1, α

2

,
(n − 1)s2

χ2
n−1,1−α

2

)

.

Example 30 If n = 11 then χ2
10,0.95 = 3.940 and χ2

10,0.05 = 18.307. A 90% confidence

interval for σ2 is
(

10s2

18.307
,

10s2

3.940

)

.

Example 31 In the production of synthetic fibres it is important that the fibres produced

are consistent in quality. One aspect is that the tensile strength of the fibres should not vary

too much. A sample of 8 pieces of fibre is taken and the tensile strength (in kg) of each fibre

is tested. We find that x = 150.72kg, s2 = 37.75kg2. Under the assumption that X1, . . . , X8

are iid N(µ, σ2) then 7S2

σ2 ∼ χ2
7. We construct a 95% confidence interval for σ2. Note that

χ2
7,0.975 = 1.690 and χ2

7,0.025 = 16.013 so that a 95% confidence interval for σ2 is
(

7s2

χ2
7,0.025

,
7s2

χ2
7,0.975

)

=

(

7(37.75)

16.013
,
7(37.75)

1.690

)

= (16.502, 156.361)kg2.

Note that this interval is very wide.
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3.4 Normal theory: confidence interval for µ when σ2 is

unknown

In Section 3.2 we constructed a 100(1− α)% confidence interval for µ of the form

(

x − z(1−α
2
)

σ√
n

, x + z(1−α
2
)

σ√
n

)

.

When σ2 (and hence σ) is unknown an alternative approach is required as we cannot compute

this interval.

Definition 12 (t-distribution)

If Z ∼ N(0, 1) and U ∼ χ2
n and Z and U are independent, then the distribution of Z/

√

U/n

is called the t-distribution with n degrees of freedom.

Note that

(

X − µ

σ/
√

n

)/

√

S2

σ2
=

X − µ

S/
√

n

and X−µ
σ/

√
n
∼ N(0, 1) while

√

S2

σ2 =

√

χ2

n−1

n−1 . Also X and S2 are independent (see Theorem

2). Consequently,

X − µ

S/
√

n
∼ tn−1

We may use this as a pivot for µ. In particular, we may find constants c1 and c2 such that

P (c1 < tn−1 < c2) = 1 − α

so that

P

(

c1 <
X − µ

S/
√

n
< c2

∣

∣

∣

∣

µ, σ2

)

= 1 − α.

Rearranging, we have

P

(

X − c2
S√
n

< µ < X − c1
S√
n

∣

∣

∣

∣

µ, σ2

)

= 1 − α.

Hence, (X − c2
S√
n
, X − c1

S√
n
) is a random interval which contains µ with probability 1−α.

A realisation of this,

(

x − c2
s√
n

, x − c1
s√
n

)

is a 100(1 − α)% confidence interval for µ.

How do we choose c1 and c2?
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The t-distribution is symmetric around 0 and so we may choose c1 = −c2. Tables for the

t-distribution give the value tν,α where P (tν > tν,α) = α for the t-distribution with ν degrees

of freedom. We choose c2 = tn−1, α
2

so that our 100(1 − α)% confidence interval for µ is

(

x − tn−1, α
2

s√
n

, x + tn−1, α
2

s√
n

)

.

Example 32 Suppose that n = 15. Note that t14,0.05 = 1.761 so that (x − 1.761 s√
15

, x +

1.761 s√
15

) is a 90% confidence interval for µ.

Example 33 Return to the synthetic fibre example, Example 31. Note that t7,0.025 = 2.365.

A 95% interval for the fibre strength is

(

x − 2.365
s√
8
, x + 2.365

s√
8

)

=

(

150.72− 2.365

√

37.75

8
, 150.72 + 2.365

√

37.75

8

)

= (145.583, 155.857)kg.
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Chapter 4

Hypothesis testing

4.1 Introduction

Statistical hypothesis testing is a formal means of distinguishing between probability distri-

butions on the basis of observing random quantities generated from one of the distributions.

Example 34 Suppose X1, . . . , Xn are iid normal with known variance and mean either equal

to µ0 or µ1. We must decide whether µ = µ0 or µ = µ1.

The formal framework we discuss was developed by Neyman and Pearson. The ingredients

are as follows.

NULL HYPOTHESIS, H0

This represents the status quo. H0 will be assumed to be true unless the data indicates

otherwise.

versus

ALTERNATIVE HYPOTHESIS, H1

This represents a change to the status quo. If the data suggests against H0, we reject H0 in

favour of H1.

Example 35 In the case discussed in Example 34, H0 might state that the distribution was

N(µ0, σ
2) with H1 being that the distribution was N(µ1, σ

2).

TEST STATISTIC

We make a decision about whether or not to reject H0 in favour of H1 based on the value of

a test statistic, T (X1, . . . , Xn). A test statistic is just a function of the observations.
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Example 36 You have met two common examples of statistics: an estimator for a param-

eter θ (e.g. X for parameter µ when X1, . . . , Xn are iid N(µ, σ2)) and a pivot for θ (e.g.
X−µ
σ/

√
n

for µ when σ2 is known and the Xi are iid N(µ, σ2)).

We will need to know the sampling distribution of T in the case when H0 is true and also

when H1 is true.

CRITICAL REGION

We may determine the values of the test statistic for which we reject H0 in favour of H1.

These values form the critical region which we now define in a slightly more formal way.

Definition 13 (Critical Region)

Let Ω denote the sample space of the test statistic T . The region C ⊆ Ω for which H0 is

rejected in favour of H1 is termed the critical (or rejection) region while the region Ω \ C,

where we accept H0, is called the acceptance region.

4.2 Type I and Type II errors

Under this approach, two types of error may be incurred.

ACCEPT H0 REJECT H0

H0 TRUE GOOD BAD

H1 TRUE BAD GOOD

Definition 14 (Type I and Type II errors)

A type I error occurs when H0 is rejected when it is true. The probability of such an error

is denoted by α so that

α = P (Type I error) = P (Reject H0 |H0 true).

A type II error occurs when H0 is accepted when it is false. The probability of such an error

is denoted by β so that

β = P (Type II error) = P (Accept H0 |H1 true).

Example 37 We return to Example 34 and assume µ1 > µ0. Under H0, X ∼ N(µ0, σ
2/n)

while under H1, X ∼ N(µ1, σ
2/n). A large value of X may indicate that H1 rather than H0

is true. Intuitively, we may consider a critical region of the form

C = {(x1, . . . , xn) : x ≥ c}.

This critical region is shown in Figure 4.1 There are a number of immediate questions.

1. How do we pick the constant c?
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critical region

00Accept H Reject H

critical value

xc

Figure 4.1: An illustration of the critical region C = {(x1, . . . , xn) : x ≥ c}.

xc µµ0 1

probability of type I error

distribution
when H  true

distribution
when H  true

probability of type II error

0 1

Figure 4.2: The errors resulting from the test with critical region C = {(x1, . . . , xn) : x ≥ c}
of H0 : µ = µ0 versus H1 : µ = µ1 where µ1 > µ0.

2. What if, by chance, H0 is true but we happen to get a large value of x?

3. What if, by chance, H1 is true but we happen to get a small value of x?

4. Was X the best test statistic to use anyway?

We shall consider the middle two questions first. They help answer the first question. The

answer to the fourth question will come later when we study a result known as the Neyman-

Pearson Lemma.

We’d like to make the probability of either of these errors as small as possible. A possible

scenario is shown in Figure 4.2.

• If we INCREASE c then the probability of a type I error DECREASES but the proba-

bility of a type II error INCREASES.

• If we DECREASE c then the probability of a type I error INCREASES but the proba-

bility of a type II error DECREASES.

It turns out, in practice, that this is always the case: in order to decrease the probability

of a type I error, we must increase the probability of a type II error and vice versa. Recall

that H0 is the hypothesis which is taken to be true UNLESS the data suggests otherwise.

We usually choose to fix α, the probability of a type I error, at some small value in advance.

e.g. α = 0.1, 0.05, 0.01, . . .
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α is also known as the size or SIGNIFICANCE LEVEL of the test. Given a test statistic,

fixing α determines the critical region.

Example 38 In Example 37 we considered a critical region of the form

C = {(x1, . . . , xn) : x ≥ c}.

Now,

α = P (Type I error) = P (Reject H0 |H0 true)

= P{X ≥ c |X ∼ N(µ0, σ
2/n)}

= P

(

Z ≥ c − µ0

σ/
√

n

)

,

where Z ∼ N(0, 1).

Once α, the significance level, has been chosen, β is determined. It typically depends upon

the sample size.

Example 39 Using the critical region given in Example 38 we find

β = P (Type II error) = P (Accept H0 |H1 true)

= P{X < c |X ∼ N(µ1, σ
2/n)}

= P

(

Z <
c − µ1

σ/
√

n

)

.

Suppose we choose α = 0.05. Then

P

(

Z ≥ c − µ0

σ/
√

n

)

= 0.05 ⇒

c − µ0

σ/
√

n
= 1.645 ⇒

c = µ0 + 1.645
σ√
n

.

Notice that as n increases then c tends towards µ0. The corresponding value of β is

β = P

(

Z <
c − µ1

σ/
√

n

)

= p

(

Z <
(µ0 − µ1) + 1.645σ/

√
n

σ/
√

n

)

= Φ

(

1.645 −
√

n(µ1 − µ0)

σ

)

where P (Z < z) = Φ(z). Note that as n increases then β decreases to zero.

Definition 15 (Power)

The probability that H0 is rejected when it is false is called the power of the test. Thus,

Power = P (Reject H0 |H1 true) = 1 − β.
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An important question In Examples 37 - 39, we worked with the test statistic X as the

test statistic and C = {(x1, . . . , xn) : x ≥ c} as the critical region. Can we find a different

test statistic T ∗ and critical region which, for the same sample size n, has the same value of

α = P (Type I error) but a SMALLER β = P (Type II error), equivalently, can we find the

test with the largest power?

4.3 The Neyman-Pearson lemma

Consider the test of the hypotheses

H0 : θ = θ0 versus H1 : θ = θ1

A ‘best test’ at significance level α would be the test with the greatest power. Our quest is

to find such a test.

Suppose that X1, . . . , Xn have joint pdf f(x1, . . . , xn | θ0) under H0 and f(x1, . . . , xn | θ1)

under H1. Define

λ(x1, . . . , xn; θ0, θ1) =
f(x1, . . . , xn | θ0)

f(x1, . . . , xn | θ1)
. (4.1)

Then λ(x1, . . . , xn; θ0, θ1) is the ratio of the likelihoods under H0 and H1. Let the critical

region C∗ ⊆ Ω be

C∗ = {(x1, . . . , xn) : λ(x1, . . . , xn; θ0, θ1) ≤ k} (4.2)

where k is a constant chosen to make the test have significance level α, that is

P{(X1, . . . , Xn) ∈ C∗ |H0 true} = α.

Lemma 1 (The Neyman-Pearson lemma)

The test based on the critical region C∗ = {(x1, . . . , xn) : λ(x1, . . . , xn; θ0, θ1) ≤ k} has the

largest power (smallest type II error) of all tests with significance level α.

Proof - You will not be required to prove this lemma. If you want to see how to prove it

then see Question Sheet Seven. 2

Thus, among all tests with a given probability of a type I error, the likelihood ratio test

minimises the probability of a type II error.

4.3.1 Worked example: Normal mean, variance known

Suppose that X1, . . . , Xn are iid N(µ, σ2) random quantities with σ2 known. We shall apply

the Neyman-Pearson lemma to construct the best test of the hypotheses

H0 : µ = µ0 versus H1 : µ = µ1
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where µ1 > µ0. From equation (4.1) we have that

λ(x1, . . . , xn; µ0, µ1) =
f(x1, . . . , xn | θ0)

f(x1, . . . , xn | θ1)

=
L(µ0)

L(µ1)

=
exp

{

− 1
2σ2

∑n
i=1(xi − µ0)

2
}

exp
{

− 1
2σ2

∑n
i=1(xi − µ1)2

}

= exp

{

1

2σ2

(

n
∑

i=1

(xi − µ1)
2 −

n
∑

i=1

(xi − µ0)
2

)}

. (4.3)

Now,

n
∑

i=1

(xi − µ1)
2 −

n
∑

i=1

(xi − µ0)
2 =

n
∑

i=1

(x2
i − 2µ1xi + µ2

1) −
n
∑

i=1

(x2
i − 2µ0xi + µ2

0)

= −2µ1nx + nµ2
1 + 2µ0nx − nµ2

0

= n(µ2
1 − µ2

0) − 2nx(µ1 − µ0). (4.4)

Substituting equation (4.4) into (4.3) gives

λ(x1, . . . , xn; µ0, µ1) = exp

{

1

2σ2

(

n(µ2
1 − µ2

0) − 2nx(µ1 − µ0)
)

}

.

Using the Neyman-Pearson Lemma, see Lemma 1, the critical region of the most powerful

test of significance level α for the test H0 : µ = µ0versusH1 : µ = µ1 (µ1 > µ0) is

C∗ =

{

(x1, . . . , xn) : exp

{

1

2σ2

(

n(µ2
1 − µ2

0) − 2nx(µ1 − µ0)
)

}

≤ k

}

=
{

(x1, . . . , xn) : n(µ2
1 − µ2

0) − 2nx(µ1 − µ0) ≤ 2σ2 log k
}

=
{

(x1, . . . , xn) : −2nx(µ1 − µ0) ≤ 2σ2 log k + n(µ2
0 − µ2

1)
}

=

{

(x1, . . . , xn) : x ≥ −σ2

n(µ1 − µ0)
log k +

(µ0 + µ1)

2

}

(4.5)

= {(x1, . . . , xn) : x ≥ k∗}. (4.6)

Note that, in equation (4.5), we have utilised the fact that µ1 − µ0 > 0. The critical region

given in equation (4.6) is identical to our intuitive interval derived in Example 37. For the

test to be of significance α we choose (see Example 39)

k∗ = µ0 + z(1−α)
σ√
n

,

where P (Z < z(1−α)) = 1−α. This is also written as Φ−1(1−α). z(1−α) is the (1−α)-quantile

of Z, the standard normal distribution.
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4.4 A Practical Example of the Neyman-Pearson lemma

Suppose that the distribution of lifetimes of TV tubes can be adequately modelled by an

exponential distribution with mean θ so

f(x | θ) =
1

θ
exp

(

−x

θ

)

for x ≥ 0 and 0 otherwise. Under usual production conditions, the mean lifetime is 2000

hours but if a fault occurs in the process, the mean lifetime drops to 1000 hours. A random

sample of 20 tube lifetimes is to taken in order to test the hypotheses

H0 : θ = 2000 versus H1 : θ = 1000.

Use the Neyman-Pearson lemma to find the most powerful test with significance level α.

Note that

L(θ) =

20
∏

i=1

f(xi | θ) =
1

θ20
exp

(

−1

θ

20
∑

i=1

xi

)

=
1

θ20
exp

(

−20x

θ

)

.

Thus,

λ(x1, . . . , x20; θ0, θ1) =
L(2000)

L(1000)

=
1

200020 exp
(

− 20x
2000

)

1
100020 exp

(

− 20x
1000

)

=

(

1000

2000

)20

exp

(

− 20x

2000
+

20x

1000

)

=
1

220
exp

(

x

100

)

.

Using the Neyman-Pearson lemma, the most powerful test of significance α has critical region

C∗ =

{

(x1, . . . , x2) :
1

220
exp

(

x

100

)

≤ k

}

=

{

(x1, . . . , x2) :
x

100
≤ log 220k

}

= {(x1, . . . , x2) : x ≤ k∗} .

That is, a test of the form reject H0 if x ≤ k1. To find k∗, we need to know the sampling

distribution of X when X1, . . . , X20 are iid exponentials with mean θ = 2000 as

P (X ≤ k∗ | θ = 2000) = α.
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It turns out that the sum of n independent exponential random quantities with mean θ

follows a distribution called the Gamma distribution with parameters n and 1
θ . We may use

this to deduce k∗: 20k∗ is the α-quantile of the Gamma(20, 1
2000 ) distribution.

4.5 One-sided and two-sided tests

So far, we have been concerned with testing the hypotheses

H0 : θ = θ0 versus H1 : θ = θ1.

Each of these hypotheses completely specifies the probability distribution and we can com-

pute the corresponding values of α, the probability of a type I error, and β, the probability

of a type II error.

Example 40 In the Normal example, see Subsection 4.3.1, we wish to test the hypotheses

H0 : µ = µ0 versus H1 : µ = µ1

where µ1 > µ0 and σ2 is known. Under H0 the distribution of each Xi is completely specified

as N(µ0, σ
2) while under H1 the distribution of each Xi is completely specified as N(µ1, σ

2).

Example 41 In the exponential example, see Section 4.4, we test the hypotheses

H0 : θ = 2000 versus H1 : θ = 1000.

Under H0 the distribution of each Xi is completely specified as the exponential with mean

2000 while under H1 the distribution of each Xi is completely specified as the exponential

with mean 1000.

Definition 16 (Simple/Composite hypothesis)

If a hypothesis completely specifies the probability distribution of each Xi then it is said to

be a simple hypothesis. If the hypothesis is not simple then it is said to be composite.

We shall consider examples when a hypothesis might only partially specify the value of a

parameter of a known probability distribution. There are three particular tests of interest.

1. H0 : θ = θ0 versus H1 : θ > θ0

2. H0 : θ = θ0 versus H1 : θ < θ0

3. H0 : θ = θ0 versus H1 : θ 6= θ0

In each case, the alternative hypothesis is not simple. In the first two cases, we have a

one-sided alternative whilst in the latter case we have a two-sided alternative. The Neyman-

Pearson lemma applies for a test of two simple hypotheses. How can we construct tests for

the above three scenarios?
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Example 42 In the Normal example, see Subsection 4.3.1, the critical region of the most

powerful test of the hypotheses

H0 : µ = µ0 versus H1 : µ = µ1

where µ1 > µ0 and σ2 is known is

C∗ = {(x1, . . . , xn) : x ≥ c}

This region holds for all µ1 > µ0 and so is the most powerful test for every simple hypothesis

of the form H1 : µ = µ1, µ1 > µ0. The value of µ1 only affects the power of the test. If µ1 is

close to µ0 then we have a small power. The power increases as µ1 increases: see Question

4 on Question Sheet Six for an example of this. We will explore this feature further in the

next section.

Example 43 The critical region

C∗ = {(x1, . . . , xn) : x ≤ c}

for the exponential hypotheses in Section 4.4 is the most powerful test for all θ1 < θ0 and

not just θ0 = 2000 and θ1 = 1000. Question 5 on Question Sheet Six demonstrates this.

Definition 17 (Uniformly Most Powerful Test)

Suppose that H1 is composite. A test that is most powerful for every simple hypothesis in

H1 is said to be uniformly most powerful.

Uniformly most powerful tests exist for some common one-sided alternatives.

Example 44 If the Xi are iid N(µ, σ2) with σ2 known, then the test (see Example 42)

C∗ = {(x1, . . . , xn) : x ≥ c}

is the most powerful for every H0 : µ = µ0 versus H1 : µ = µ1 with µ1 > µ0. For a test with

significance α we choose

c = µ0 + z(1−α)
σ√
n

.

This test is uniformly most powerful for testing the hypotheses

H0 : µ = µ0 versus H1 : µ > µ0,

with significance level α.

Example 45 In a similar way to Subsection 4.3.1, we may show that if the Xi are iid

N(µ, σ2) with σ2 known, then the test

C∗ = {(x1, . . . , xn) : x ≤ c}
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is the most powerful for every H0 : µ = µ0 versus H1 : µ = µ1 with µ1 < µ0. For a test with

significance α we choose

c = µ0 − z(1−α)
σ√
n

.

This test is uniformly most powerful for testing the hypotheses

H0 : µ = µ0 versus H1 : µ < µ0,

with significance level α.

Examples 44 and 45 provide uniformly most powerful tests for the two one-sided alternatives.

Note that both of these tests are not the most powerful test for the two-sided alternative.

How could we construct a test for the two-sided alternative?

One approach is to combine the critical regions for testing the two one-sided alternatives.

We shall develop this using the normal example but the approach is easily generalised for

other parametric families. We consider that X1, . . . , Xn are iid N(µ, σ2) with σ2 known. We

wish to test the hypotheses

H0 : µ = µ0 versus H1 : µ 6= µ0

We combine the two one-sided tests to form a critical region of the form

C = {(x1, . . . , xn) : x ≤ k2, x ≥ k1}.

Notice that

α = P ({X ≤ k2} ∪ {X ≥ k1} |X ∼ N(µ0, σ
2/n))

= P{X ≤ k2 |X ∼ N(µ0, σ
2/n)} + P{X ≥ k1 |X ∼ N(µ0, σ

2/n)}

One way to select k1 and k2 is to place α/2 into each tail as shown in Figure 4.3. Then we

have

k1 = µ0 + z(1−α
2
)

σ√
n

,

k2 = µ0 − z(1−α
2
)

σ√
n

,

Thus, the test rejects for

x − µ0

σ/
√

n
≤ −z(1−α

2
) or

x − µ0

σ/
√

n
≥ z(1−α

2
)

which is equivalent to

|x − µ0|
σ/

√
n

≥ z(1−α
2
).
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µ0 xk1k2

RejectReject

α/2 α/2

Figure 4.3: The critical region C = {(x1, . . . , xn) : x ≤ k2, x ≥ k1} for testing the hypotheses

H0 : µ = µ0 versus H1 : µ 6= µ0.

Hence, under H0,

P

( |X − µ0|
σ/

√
n

≥ z(1−α
2
)

∣

∣

∣

∣

µ0, σ
2

)

= α ⇒

P

{

(

X − µ0

σ/
√

n

)2

≥ z2
(1−α

2
)

∣

∣

∣

∣

∣

µ0, σ
2

}

= α ⇒

P (χ2
1 ≥ z2

(1−α
2
)) = α.

It is equivalent to reject for

n

σ2
(x − µ0)

2 ≥ χ2
1,α = z2

(1−α
2
).

We accept H0 if

k2 < x < k1 ⇒
µ0 − z(1−α

2
)

σ√
n

< x < µ0 + z(1−α
2
)

σ√
n

⇒
x − z(1−α

2
)

σ√
n

< µ0 < x + z(1−α
2
)

σ√
n

⇒
µ0 ∈ (x − z(1−α

2
)

σ√
n
, x + z(1−α

2
)

σ√
n
).

Recall, from Section 3.2, that (x − z(1−α
2
)

σ√
n
, x + z(1−α

2
)

σ√
n
) is a 100(1 − α)% confidence

interval for µ. We see that µ0 lies in the confidence interval if and only if the hypothesis

test accepts H0. Or, the confidence interval contains exactly those values of µ0 for which

we accept H0. We have shown a duality between the hypothesis test and the confidence

interval: the latter may be obtained by inverting the former and vice versa. The duality

holds not just for this example but in all cases.

4.6 Power functions

Recall, from Definition 15, that the power of a test, 1 − β = P (Reject H0 |H1 true). When

the alternative hypothesis is composite, the power will depend upon θ.
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Figure 4.4: The power function, π(µ), for the uniformly most powerful test of H0 : µ = µ0

versus H1 : µ > µ0.

Example 46 Recall Example 44. If the Xi are iid N(µ, σ2) with σ2 known, then the test

C∗ = {(x1, . . . , xn) : x ≥ c}

with

c = µ0 + z(1−α)
σ√
n

,

is uniformly most powerful for testing the hypotheses

H0 : µ = µ0 versus H1 : µ > µ0,

with significance level α. In this case,

β = P

{

X < µ0 + z(1−α)
σ√
n

∣

∣

∣

∣

X ∼ N(µ, σ2/n)

}

= Φ

(

µ0 − µ

σ/
√

n
+ z(1−α)

)

.

This is a function of µ. The corresponding power is also a function of µ, π(µ) say, where

µ > µ0. We have

π(µ) = 1 − Φ

(

µ0 − µ

σ/
√

n
+ z(1−α)

)

.

Figure 4.4 shows a sketch of π(µ). For µ arbitrarily close to µ0 we have

π(µ0) = 1 − Φ(z(1−α)) = α.

As µ increases, Φ
(

µ0−µ
σ/

√
n

+ z(1−α)

)

decreases so that π(µ) is an increasing function which

tends to 1 as µ → ∞. Note that as µ → µ0 it is very hard to distinguish between the two

hypotheses. Consequently, some authors talk of ‘not rejecting H0’ rather than ‘accepting H0’.

Definition 18 (Power function)

The power function π(θ) of a test of H0 : θ = θ0 is

π(θ) = P (Reject H0 |True value of θ)

= 1 − P (Type II error at θ).
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Figure 4.5: The power function, π(µ), for the test of H0 : µ = µ0 versus H1 : µ 6= µ0.

described in Example 47

Example 47 A two-sided test of the hypotheses

H0 : µ = µ0 versus H1 : µ 6= µ0

where the Xi are iid N(µ, σ2) with σ2 known may be constructed, at significance level α,

using the critical region

C = {(x1, . . . , xn) : x ≤ k2, x ≥ k1}

where

k1 = µ0 + z(1−α
2
)

σ√
n

,

k2 = µ0 − z(1−α
2
)

σ√
n

.

The corresponding power function is

π(µ) = P (Reject H0 |True value is µ)

= P{X ≤ k2 |X ∼ N(µ, σ2/n)} + P{X ≥ k1 |X ∼ N(µ, σ2/n)}

= Φ

(

µ0 − µ

σ/
√

n
− z(1−α

2
)

)

+ 1 − Φ

(

µ0 − µ

σ/
√

n
+ z(1−α

2
)

)

.

The power function is shown in Figure 4.5. Notice that the power function is symmetric

about µ0. To see this explicitly note that, for ǫ > 0, we have

π(µ0 + ǫσ/
√

n) = Φ(−ǫ − z(1−α
2
)) + 1 − Φ(−ǫ + z(1−α

2
))

while

π(µ0 − ǫσ/
√

n) = Φ(ǫ − z(1−α
2
)) + 1 − Φ(ǫ + z(1−α

2
))

= {1 − Φ(−ǫ + z(1−α
2
))} + 1 − {1 − Φ(−ǫ − z(1−α

2
))}

= π(µ0 + ǫσ/
√

n).
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As µ → µ0 then π(µ) → π(µ0) where

π(µ0) = Φ(−z(1−α
2
)) + 1 − Φ(z(1−α

2
))

= 1 −
(

1 − α

2

)

+ 1 −
(

1 − α

2

)

= α

while π(µ) → 1 as both µ → ∞ and µ → −∞.
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Chapter 5

Inference for normal data

In this chapter we shall assume that our observations come from normal distributions. In

Sections 5.1 and 5.2 we consider data from a single sample before going on to compare paired

and unpaired samples.

5.1 σ2 in one sample problems

We assume that X1, . . . , Xn are iid N(µ, σ2) where both µ and σ2 are unknown. An unbiased

point estimator of σ2 is

S2 =
1

n − 1

n
∑

i=1

(Xi − X)2

with

(n − 1)S2

σ2
∼ χ2

n−1.

In Section 3.3, we constructed a confidence interval for σ2. Using the pivot (n−1)S2

σ2 for σ2

we have that

P

(

χ2
n−1,1−α

2

<
(n − 1)S2

σ2
< χ2

n−1, α
2

∣

∣

∣

∣

µ, σ2

)

= 1 − α

so that

(

(n−1)S2

χ2

n−1, α
2

, (n−1)S2

χ2

n−1,1− α
2

)

is a random interval which contains σ2 with probability 1− α.

Our 100(1 − α)% confidence interval for σ2 is a realisation of this random interval,
(

(n − 1)s2

χ2
n−1, α

2

,
(n − 1)s2

χ2
n−1,1−α

2

)

.

Let’s consider hypothesis testing for σ2. Suppose we want to test hypotheses of the form

H0 : σ2 = σ2
0 versus











H1 : σ2 > σ2
0

H1 : σ2 < σ2
0

H1 : σ2 6= σ2
0 .
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Notice that H0 is not simple as we don’t know µ. We will base tests on the statistic S2.

5.1.1 H0 : σ2
= σ2

0 versus H1 : σ2 > σ2
0

Relative to σ2
0 , small values of s2 support H0 and large values H1. We set a critical region

of the form

C = {(x1, . . . , xn) : s2 ≥ k1}

where k1 is chosen such that

α = P (S2 ≥ k1 | H0 true)

= P

(

(n − 1)S2

σ2
0

≥ (n − 1)k1

σ2
0

∣

∣

∣

∣

H0 true

)

= P

(

χ2
n−1 ≥ (n − 1)k1

σ2
0

)

to give a test of significance α. Thus,

(n − 1)k1

σ2
0

= χ2
n−1,α ⇒ k1 =

σ2
0

n − 1
χ2

n−1,α.

5.1.2 H0 : σ2
= σ2

0 versus H1 : σ2 < σ2
0

Relative to σ2
0 , large values of s2 support H0 and small values H1. We set a critical region

of the form

C = {(x1, . . . , xn) : s2 ≤ k2}

where k2 is chosen such that

α = P (S2 ≤ k2 | H0 true)

= P

(

(n − 1)S2

σ2
0

≤ (n − 1)k2

σ2
0

∣

∣

∣

∣

H0 true

)

= P

(

χ2
n−1 ≤ (n − 1)k2

σ2
0

)

to give a test of significance α. Thus,

(n − 1)k2

σ2
0

= χ2
n−1,1−α ⇒ k2 =

σ2
0

n − 1
χ2

n−1,1−α.

5.1.3 H0 : σ2
= σ2

0 versus H1 : σ2 6= σ2
0

If s2 is ‘close’ to σ2
0 then we have evidence for H0. If s2 is too small or too large, relative to

σ2
0 , then we favour H1. We combine the critical regions discussed in Subsections 5.1.1 and

5.1.2 to set a critical region of the form

C = {(x1, . . . , xn) : s2 ≤ k2, s
2 ≥ k1}

43



where k2 and k1 are chosen to give a test of significance α, that is so that

α = P (S2 ≤ k2 |H0 true) + P (S2 ≥ k1 |H0 true).

In the same way as the two-sided test in Section 4.5, we place α/2 in each tail so that

α

2
= P (S2 ≤ k2 |H0 true) = P (S2 ≥ k1 |H0 true).

Thus,

k1 =
σ2

0

n − 1
χ2

n−1, α
2

;

k2 =
σ2

0

n − 1
χ2

n−1,1−α
2

.

Notice that we accept H0 if

σ2

0

n−1χ2
n−1,1−α

2

< s2 <
σ2

0

n−1χ2
n−1, α

2

⇒
(n−1)s2

χ2

n−1, α
2

< σ2
0 < (n−1)s2

χ2

n−1,1− α
2

That is we accept H0 if σ2
0 is in the corresponding 100(1− α)% confidence interval for σ2; a

further illustration of the duality between hypothesis testing and confidence intervals.

5.1.4 Worked example

The weight of the contents of boxes of ‘Honey Nut Loops’ cereal is monitored by measuring

101 randomly selected boxes. The variance of the weight of the boxes was known to be 25g2

but Eagle-eyed Joe believes this is no longer the case and so wishes to test the hypotheses

H0 : σ2 = 25 versus H1 : σ2 6= 25

at the 5% level. The critical region is, from Subsection 5.1.3,

C =

{

(x1, . . . , x101) : s2 ≤ 25

101 − 1
χ2

101−1,1− 0.05
2

, s2 ≥ 25

101 − 1
χ2

101−1, 0.05
2

}

=

{

(x1, . . . , x101) : s2 ≤ 1

4
(74.222), s2 ≥ 1

4
(129.561)

}

=
{

(x1, . . . , x101) : s2 ≤ 18.5555, s2 ≥ 32.39025
}

.

Joe observes s2 = 31 which does not lie in C. There is insufficient evidence to reject H0 at

the 5% level. Notice that the corresponding 95% confidence interval for σ2 is
(

100s2

χ2
100,0.025

,
100s2

χ2
100,0.975

)

=

(

100(31)

129.561
,
100(31)

74.222

)

= (23.9270, 41.7666)

which contains σ2
0 = 25.

It is important to note that the decision to use a one-sided or two-sided test alternative

must be made in light of the question of interest and before the test statistic is calculated.
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e.g. You can’t observe s2 > 25 and then say right, I’ll test H0 : σ2 = 25 versus

H1 : σ2 > 25 as this affects the probability statements.

5.2 µ in one sample problems

We shall assume that X1, . . . , Xn are iid N(µ, σ2). An unbiased point estimator of µ is

X = 1
n

∑n
i=1 Xi and the sampling distribution of X is N(µ, σ2/n).

5.2.1 σ2 known

In Section 4.5 we have constructed hypothesis tests under this scenario. We considered

testing the hypotheses

H0 : µ = µ0 versus











H1 : µ > µ0

H1 : µ < µ0

H1 : µ 6= µ0

and used the respective critical regions

C∗ = {(x1, . . . , xn) : x ≥ µ0 + z(1−α)
σ√
n
}

C∗ = {(x1, . . . , xn) : x ≤ µ0 − z(1−α)
σ√
n
}

C = {(x1, . . . , xn) : x ≤ µ0 − z(1−α
2
)

σ√
n
, x ≥ µ0 + z(1−α

2
)

σ√
n
}

for tests with significance level α.

Example 48 A nutritionist thinks that the average person on low income gets less than

the RDA of 800mg of calcium. To test this hypothesis, a random sample of 35 people with

low income are monitored. With Xi denoting the calcium intake of the ith such person, we

assume that X1, . . . , X35 are iid N(µ, 2502) and test the hypotheses

H0 : µ = 800 versus H1 : µ < 800.

We reject H0 if

x ≤ 800 − z(1−α)
250√

35
.

For α = 0.1, z(1−α) = z0.9 = 1.282 and we reject H0 for x ≤ 745.826. For α = 0.05,

z(1−α) = z0.95 = 1.645 and reject for x ≤ 730.486. Suppose we observe x = 740. There is

sufficient evidence to reject the null hypothesis at the 10% level BUT insufficient evidence

to reject H0 at the 5% level. We might ask “At what level would our observed value

have been on the reject/don’t reject borderline?” This value is termed the p-value.
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105 c

α%
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108

2.87%

x

Figure 5.1: Illustration of the p-value corresponding to an observed value of x = 108 in the

test H0 : µ = 105 versus H0 : µ > 105. For all tests with significance level α% larger than

2.87% we reject H0 in favour of H1.

5.2.2 The p-value

For any hypothesis test, rather than testing at significance level α, we could find the p-value

of the test. The p-value enables us to determine at just what significance level our observed

value of the test statistic would have been on the reject/don’t reject borderline.

Definition 19 (p-value)

Suppose that T (X1, . . . , Xn) is our test statistic for a hypothesis test and we observe T (x1, . . .,

xn). The p-value is the probability that, if H0 is true, we observe a value that is more extreme

than T (x1, . . . , xn).

Example 49 Suppose that X1, . . . , X10 are iid N(µ, σ2 = 25) and we wish to test the hy-

potheses

H0 : µ = 105 versus H1 : µ > 105.

Our test statistic is X. Suppose we observe x = 108. The p-value for this test is

P{X ≥ 108 |X ∼ N(105, 2.5)} = P

{

X − 105

5/
√

10
≥ 108 − 105

5/
√

10

∣

∣

∣

∣

X − 105

5/
√

10
∼ N(0, 1)

}

= 1 − Φ

(

108 − 105

5/
√

10

}

= 1 − Φ(1.90) = 0.0287.

If we have a test at the 2.87% significance level, then x = 108 is on the critical boundary.

As Figure 5.1 illustrates, for all tests with significance level larger than 2.87% we reject H0

in favour of H1.
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Example 50 We compute the p-value corresponding to Example 48. It is

P{X ≤ 740 |X ∼ N(800, 2502/35)} = P

{

X − 800

250/
√

35
≤ 740 − 800

250/
√

35

∣

∣

∣

∣

X − 800

250/
√

35
∼ N(0, 1)

}

= Φ(−1.42)

= 1 − 0.9222 = 0.0778.

For all tests with significance level larger than 7.78% we reject H0 in favour of H1 which

agrees with our finding in Example 48.

How do we compute the p-value in two-sided tests? Notice that we will observe a single value

which will either be in the upper or lower tail of the distribution assumed true under H0.

Suppose we observe a value in the upper tail. We must also consider the corresponding ex-

treme value in the lower tail. The p-value will be twice that to the corresponding observation

in the one-sided test.

Example 51 Suppose that X1, . . . , X10 are iid N(µ, σ2 = 25) and we wish to test the hy-

potheses

H0 : µ = 105 versus H1 : µ 6= 105.

Our test statistic is X. Suppose we observe x = 108. This value is in the upper tail of

X ∼ N(105, 25/10). We consider that it would just be as likely to observe the value 102 and

p = P{X ≤ 102 |X ∼ N(105, 2.5)}+ P{X ≥ 108 |X ∼ N(105, 2.5)}
= 2(0.0287) = 0.0574.

If we had a two-sided test of 5.74%, then our critical region would be

C = {(x1, . . . , x10) : x ≤ 102, x ≥ 108}.

For all tests with significance level larger than 5.74% we reject H0 in favour of H1.

Notice that the symmetry of the Normal distribution makes it easy to find the equivalent

extreme value in the opposite tail to the value we observed. For a general two-sided Normal

hypothesis test we note that if we observe x and H0 is true, then x is a realisation from a

N(0, 1) distribution. The p-value is given by

p = P

{ |X − µ0|
σ/

√
n

≥ |x − µ0|
σ/

√
n

∣

∣

∣

∣

X − µ0

σ/
√

n
∼ N(0, 1)

}

However, if the underlying sampling distribution is not symmetric it is harder to find the

equivalent extreme value. However, we do not need this if we only require the p-value: we

just use the observation that the p-value for the two-sided test will be double the p-value for

the corresponding observation in a one-sided test.
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Example 52 On question 3. of Question Sheet 8 you consider the test of the hypotheses

H0 : σ2 = 10 versus H1 : σ2 6= 10

The test statistic is s2 and E(S2 |H0 true) = 10. You observe s2 = 9.506 < 10 so s2 is in

the lower tail. The p-value for this two-sided test is twice that of the p-value corresponding

to the test of the hypotheses

H0 : σ2 = 10 versus H1 : σ2 < 10

That is

p = 2P (S2 ≤ 9.506 |H0 true).

5.2.3 σ2 unknown

If the variance σ2 is unknown to us then we cannot use the approach of Subsection 5.2.1

as σ is explicitly required when computing the critical values. We mirror the approach of

Section 3.4 and use the pivot

X − µ

S/
√

n
∼ tn−1,

the t-distribution with n− 1 degrees of freedom. We are interested in testing the hypotheses

H0 : µ = µ0 versus











H1 : µ > µ0

H1 : µ < µ0

H1 : µ 6= µ0

and we’ll let

t(X1, . . . , Xn) =
X − µ0

S/
√

n

be our test statistic. If H0 is true then t(x1, . . . , xn) should be an observation from a t-

distribution with n − 1 degrees of freedom. Recall that t-tables give the value tν,α where

P (tν > tν,α) = α.

H0 : µ = µ0 versus H1 : µ > µ0

If H0 is true then t should be close to zero, while large values support H1. We set a critical

region of the form

C =

{

(x1, . . . , xn) : t =
x − µ0

s/
√

n
≥ k1

}

where k1 is chosen such that

α = P

(

X − µ0

S/
√

n
≥ k1

∣

∣

∣

∣

H0 true

)

= P

(

X − µ0

S/
√

n
≥ k1

∣

∣

∣

∣

X − µ0

S/
√

n
∼ tn−1

)
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to give a test of significance α. Thus,

k1 = tn−1,α.

H0 : µ = µ0 versus H1 : µ < µ0

If H0 is true then t should be close to zero, while small values support H1. We set a critical

region of the form

C =

{

(x1, . . . , xn) : t =
x − µ0

s/
√

n
≤ k2

}

where k2 is chosen such that

α = P

(

X − µ0

S/
√

n
≤ k2

∣

∣

∣

∣

H0 true

)

= P

(

X − µ0

S/
√

n
≤ k2

∣

∣

∣

∣

X − µ0

S/
√

n
∼ tn−1

)

to give a test of significance α. Thus,

k2 = −tn−1,α.

H0 : µ = µ0 versus H1 : µ 6= µ0

If H0 is true then t should be close to zero, while large or small values support H1. We

combine the critical regions of the two one-sided tests and set a critical region of the form

C =

{

(x1, . . . , xn) : t =
x − µ0

s/
√

n
≤ k2, t ≥ k1

}

where k1 and k2 are chosen so that

α = P

(

X − µ0

S/
√

n
≤ k2

∣

∣

∣

∣

H0 true

)

+ P

(

X − µ0

S/
√

n
≥ k1

∣

∣

∣

∣

H0 true

)

= P

(

X − µ0

S/
√

n
≤ k2

∣

∣

∣

∣

X − µ0

S/
√

n
∼ tn−1

)

+ P

(

X − µ0

S/
√

n
≥ k1

∣

∣

∣

∣

X − µ0

S/
√

n
∼ tn−1

)

to give a test of significance α. We place α/2 in each tail so that

k1 = tn−1, α
2
, k2 = −tn−1, α

2
.

Example 53 The manufacturer of a new car claims that a typical car gets 26mpg. Honest

Joe believes that the manufacturer is over egging the pudding and that the true mileage is less

than 26mpg. To test the claim, Joe takes a sample of 1000 cars and denotes by Xi the miles

per gallon (mpg) of the ith car. He assumes that the Xi are iid N(µ, σ2) and he wishes to test

whether the true mean is less than the manufacturers claim. Thus, he tests the hypotheses

H0 : µ = 26 versus H1 : µ < 26.
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Joe will reject H0 at the significance level α if

t =
x − 26

s/
√

1000
≤ −t999,α.

Joe observes x = 25.9 and s2 = 2.25 so that

t =
25.9 − 26
√

2.25/1000
= −2.108.

Now,

−t999,0.025 = −1.962341 (using the R command qt(0.975,999) to find t999,0.025)

−t999,0.01 = −2.330086 (using the R command qt(0.99,999) to find t999,0.01)

We reject H0 at the 2.5% level but not at the 1% level. The p-value is thus between 0.01

and 0.025 and may be found using R: pt(-2.108,999) = 0.0176. There is some evidence to

suggest that these cars achieve less than 26mpg, but the difference is ‘small’. This example

raises the question of

Statistical significance

versus

Practical significance

As the sample size is so large, the sample mean x = 25.9 is probably pretty close to the

population mean. At the 2.5% level we obtained a statistically significant result to reject the

manufacturers claim that µ = 26mpg but how practically significant is the difference between

25.9mpg and 26mpg?

5.3 Comparing paired samples

In many experiments, we may have paired observations.

Example 54 Blood pressure of an individual before and after exercise.

Example 55 We might match subjects by age/weight/condition and ascribe one to a test/treatment

group and the other to a control group.

Suppose we have n pairs and let (Xi, Yi) denote the measurements for the ith pair. Assume

that the Xis are iid with mean µX and variance σ2
X and the Yis are iid with mean µY and

variance σ2
Y . The quantities Xi and Yi are not independent. Suppose that Cov(Xi, Yi) =

σXY and that the pairs (Xi, Yi) are independent, so that Cov(Xi, Yj) = 0 for i 6= j.

Let Di = Xi − Yi, i = 1, . . . , n denote the ith difference. The Di are independent with

E(Di) = µX − µY = µD;

V ar(Di) = V ar(Xi) + V ar(Yi) − 2Cov(Xi, Yi)

= σ2
X + σ2

Y − 2σXY = σ2
D.
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Assume that the Di are iid N(µD, σ2
D).1 Typically, we are concerned as to whether there is a

difference between the two measurements, that is we are interested in testing the hypotheses

H0 : µD = 0 versus











H1 : µD > 0

H1 : µD < 0

H1 : µD 6= 0

Now,

D =
1

n

n
∑

i=1

Di ∼ N(µD, σ2
D/n);

S2
D =

1

n − 1

n
∑

i=1

(Di − D)2 so
(n − 1)S2

D

σ2
D

∼ χ2
n−1.

As D and S2
D are independent then

D − µD

SD/
√

n
∼ tn−1.

To test the hypotheses we may use the t-tests derived in Subsection 5.2.3.

5.3.1 Worked example

A paediatrician measured the blood cholesterol of her patients and was worried to note that

some had levels over 200mg/100ml. To investigate whether dietary regulation would lower

blood cholesterol, the paediatrician selected 10 patients at random. Blood tests were con-

ducted on these patients both before and after they had undertaken a two month nutritional

program. The results are shown below.

Patient 1 2 3 4 5 6 7 8 9 10

(X) Before 210 217 208 215 202 209 207 210 221 218

(Y ) After 212 210 210 213 200 208 203 199 218 214

(D) Difference −2 7 −2 2 2 1 4 11 3 4

For example, (x4, y4) = (215, 213) and d4 = x4 − y4 = 215− 213 = 2. We observe x = 211.7,

s2
x = 34.2, y = 208.7 and s2

y = 38.9. There is lots of variability so it is difficult to tell

from these summaries whether there is a statistically significant difference. The question of

interest is whether dietary regulation lowers blood cholesterol. The paediatrician tests the

hypotheses

H0 : µD = 0 versus H1 : µD > 0

where D1, . . . , D10 are assumed to be iid N(µD, σ2
D). The observed estimates of µD and σ2

D

are d = 3 and s2
d = 15.3 respectively. Under H0,

D−0
SD/

√
n
∼ tn−1 and our critical region is

C =

{

(d1, . . . , d10) : t =
d

sd/
√

10
≥ t9,α

}

1A nonparametric version, where we do not assume normality, is the (Wilcoxon) signed-rank test: see

http://en.wikipedia.org/wiki/Wilcoxon signed-rank test

51



The paediatrician observes

t =
3

√

15.3/10
= 2.425356.

From tables, t9,0.025 = 2.26 and t9,0.01 = 2.82. Hence, we reject H0 at the 2.5% level but not

at the 1% level. The p-value is thus between these values and is about 0.019. (using R: 1 -

pt(2.425356,9))

There is fairly strong evidence to suggest that this dietary program is effective in lowering

blood cholesterol level in these patients.

5.4 Investigating σ2 for unpaired data

In many experiments, the two samples may be regarded as being independent of each other.

Example 56 In a medical study, a random sample of subjects may be assigned to a treatment

group and another independent sample to a control group. There is no pairing in the samples,

indeed the samples may be, and frequently are, of different sizes.

Assume that the sample X1, . . . , Xn is drawn from a normal distribution with mean µX and

variance σ2
X , so the Xis are iid N(µX , σ2

X). Additionally, assume that a second, independent,

sample Y1, . . . , Ym is drawn from a normal distribution with mean µY and variance σ2
Y , so

the Yis are iid N(µY , σ2
Y ). Note:

1. It is assumed that n and m need not be equal.

2. There is no notion of pairing: X1 is no more related to Y1 than to Y37 so that there is

no notion of individual differences.

3. Interest centres upon whether µX differs from µY and whether σ2
X differs from σ2

Y . We

shall tackle the latter question first.

Definition 20 (F -distribution)

Let U and V be independent chi-square random quantities with ν1 and ν2 degrees of freedom

respectively. The distribution of

W =
U/ν1

V/ν2

is called the F -distribution with ν1 and ν2 degrees of freedom, written Fν1,ν2
.

Note that:

if W =
U/ν1

V/ν2
∼ Fν1,ν2

then
1

W
=

V/ν2

U/ν1
∼ Fν2,ν1

.
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For our unpaired data case, the sample variance of the Xis is

S2
X =

1

n − 1

n
∑

i=1

(Xi − X)2 (5.1)

so that

UX =
n − 1

σ2
X

S2
X ∼ χ2

n−1. (5.2)

Similarly, the sample variance of the Yis is

S2
Y =

1

m − 1

m
∑

i=1

(Yi − Y )2 (5.3)

with

VY =
m − 1

σ2
Y

S2
Y ∼ χ2

m−1. (5.4)

Thus, dividing (5.1) by (5.2) and using (5.3) and (5.4) we have that

S2
X

S2
Y

=

(

σ2
X

σ2
Y

)

UX/(n − 1)

VY /(m − 1)
=

σ2
X

σ2
Y

W (5.5)

where, as S2
X and S2

Y are independent and using Definition 20, W ∼ Fn−1,m−1.

Suppose we want to test hypotheses of the form

H0 : σ2
X = σ2

Y versus











H1 : σ2
X > σ2

Y

H1 : σ2
X < σ2

Y

H1 : σ2
X 6= σ2

Y

Let s2
x = 1

n−1

∑n
i=1(xi − x)2 denote the observed value of S2

X and s2
y = 1

m−1

∑m
i=1(yi − y)2

denote the observed value of S2
Y . If H0 is true, then, from (5.5), s2

x/s2
y should be a realisation

from the F -distribution with n−1 and m−1 degrees of freedom. We use S2
X/S2

Y as the test

statistic and under H0,

S2
X

S2
Y

∼ Fn−1,m−1.

5.4.1 H0 : σ2
X = σ2

Y versus H1 : σ2
X > σ2

Y

If H1 is true then σ2
X/σ2

Y > 1 and so, from (5.5), s2
x/s2

y should be large. We set a critical

region of the form

C = {(x1, . . . , xn, y1, . . . , ym) : s2
x/s2

y ≥ k1}

where k1 is chosen such that

P (S2
X/S2

Y ≥ k1 | H0 true) = P (Fn−1,m−1 ≥ k1) = α

for a test of significance α.
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5.4.2 H0 : σ2
X = σ2

Y versus H1 : σ2
X < σ2

Y

If H1 is true then σ2
X/σ2

Y < 1 and so, from (5.5), s2
x/s2

y should be small. We set a critical

region of the form

C = {(x1, . . . , xn, y1, . . . , ym) : s2
x/s2

y ≤ k2}

where k2 is chosen such that

P (S2
X/S2

Y ≤ k2 | H0 true) = P (Fn−1,m−1 ≤ k2) = α

for a test of significance α.

5.4.3 H0 : σ2
X = σ2

Y versus H1 : σ2
X 6= σ2

Y

If H1 is true then, from (5.5), s2
x/s2

y should be either small or large. We set a critical region

of the form

C = {(x1, . . . , xn, y1, . . . , ym) : s2
x/s2

y ≤ k2, s2
x/s2

y ≥ k1}

where k1 and k2 are chosen such that

P (S2
X/S2

Y ≥ k1 | H0 true) = P (Fn−1,m−1 ≥ k1) = α/2

P (S2
X/S2

Y ≤ k2 | H0 true) = P (Fn−1,m−1 ≤ k2) = α/2

for a test of significance α.

F -tables give upper 5%, 2.5%, 1% and 0.5% of the F -distribution, denoted Fn−1,m−1,α for

the requisite degrees of freedom and significance level. These enable us to find the k1 values.

For the k2 values, we note that

P (Fn−1,m−1 ≤ k2) = P (Fm−1,n−1 ≥ 1/k2).

So, in Subsection 5.4.1, k1 = Fn−1,m−1,α. For Subsection 5.4.2, k2 = 1/Fm−1,n−1,α. In

Subsection 5.4.3, k1 = Fn−1,m−1,α/2 and k2 = 1/Fm−1,n−1,α/2.

5.4.4 Worked example

The US National Centre for Health Statistics compiles data on the length of stay by patients

in short-term hospitals. We are interested in whether the variability of stay length is the

same for both men and women. To investigate this, we take independent samples of 41

male patient stay lengths, denoted X1, . . . , X41 and 31 female patient stay lengths, denoted

Y1, . . . , Y31. We assume that the Xis are iid N(µX , σ2
X) and the Yis are iid NµY , σ2

Y ) and

test the hypotheses

H0 : σ2
X = σ2

Y versus H1 : σ2
X 6= σ2

Y
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at the 10% level. From Subsection 5.4.3, the critical region is

C = {(x1, . . . , x41, y1, . . . , y31) : s2
x/s2

y ≤ k2, s2
x/s2

y ≥ k1}

where k1 = F40,30,0.05 = 1.79 and k2 = 1/F30,40,0.05 = 1/1.74 = 0.57. If we observe s2
x =

56.25 and s2
y = 46.24 then s2

x/s2
y = 1.22.

Now, 0.57 < 1.22 < 1.79 so we do not reject H0 at the 10% level (so the p-value is greater

than 0.1). There is insufficient evidence to suggest a difference in variability of stay lengths

for male and female patients.

5.5 Investigating the means for unpaired data when σ2
X

and σ2
Y are known

As the Xis are iid N(µX , σ2
X) then X ∼ N(µX , σ2

X/n). Similarly, since the Yis are iid

N(µY , σ2
Y ) then Y ∼ N(µY , σ2

Y /m). Our question of interest is typically ‘are the means

equal?’. We are interested in testing hypotheses of the form

H0 : µX = µY versus











H1 : µX > µY

H1 : µX < µY

H1 : µX 6= µY

As X and Y are independent then X − Y ∼ N(µX − µY , σ2
X/n + σ2

Y /m). If H0 is true then

Z =
X − Y

√

σ2

X

n +
σ2

Y

m

∼ N(0, 1)

so that the observed value (which we can compute as σ2
X and σ2

Y are known) (x−y)/

√

σ2

X

n +
σ2

Y

m

should be a realisation from a standard normal distribution if H0 is true. We assess how

extreme this observation is to perform the hypothesis tests outlined above.

5.6 Pooled estimator of variance (σ2
X and σ2

Y unknown)

If we accept σ2
X = σ2

Y then we should estimate the common variance σ2. To do this we pool

the two estimates s2
x and s2

y weighting them according to sample size.

N.B. We can’t pool the xi, yj together into one sample of size n + m as the xi

have possibly different means to the yj.

The pooled estimate of variance is the pooled sample variance,

s2
p =

(n − 1)s2
x + (m − 1)s2

y

n + m − 2
. (5.6)
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The corresponding pooled estimator of variance is

S2
p =

(n − 1)S2
X + (m − 1)S2

Y

n + m − 2
.

Note that if σ2
X = σ2 = σ2

Y then n−1
σ2 S2

X ∼ χ2
n−1 and m−1

σ2 S2
Y ∼ χ2

m−1. As S2
X and S2

Y are

independent then

n + m − 2

σ2
S2

p =
n − 1

σ2
S2

X +
m − 1

σ2
S2

Y ∼ χ2
n+m−2.

N.B. As both S2
X and S2

Y are unbiased estimators of σ2 then S2
p is also an unbiased

estimator of σ2.

5.7 Investigating the means for unpaired data when σ2
X

and σ2
Y are unknown

We will restrict attention to the case where we can assume that σ2
X = σ2 = σ2

Y .

e.g. An F -test has not been able to conclude that σ2
X 6= σ2

Y .

In this case, X −Y ∼ N(µX −µY , σ2( 1
n + 1

m )).2 We are interested in testing the hypotheses

H0 : µX = µY versus











H1 : µX > µY

H1 : µX < µY

H1 : µX 6= µY

If H0 is true then (X − Y )/
√

σ2( 1
n + 1

m ) ∼ N(0, 1) and n+m−2
σ2 S2

p ∼ χ2
n+m−2 so that

T =
X − Y

Sp

√

1
n + 1

m

∼ tn+m−2

and t = (x − y)/
√

s2
p(

1
n + 1

m ) should be a realisation from a t-distribution with n + m − 2

degrees of freedom. We may thus use t to perform conventional t-tests, as described in

Subsection 5.2.3.

5.7.1 Worked example

Recall the length of stay in hospital example of Subsection 5.4.4. We have 41 male patients,

with length of stay X1, . . . , X41 and 31 female patients, with length of stay Y1, . . . , Y31. The

observed sample variances were s2
x = 56.25 and s2

y = 46.24. An F -test concluded that there

was no detectable difference in variability of stay lengths for male and female patients. We

2A nonparametric version, where we do not assume normality, is the Mann-Whitney U test: see

http://en.wikipedia.org/wiki/Mann-Whitney U
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may assume that σ2
X = σ2

Y = σ2. We estimate σ2 using the pooled sample variance s2
p as

given by (5.6). We find that

s2
p =

(41 − 1)56.25 + (31 − 1)46.24

41 + 31 − 2
= 51.96

Suppose we test the hypothesis

H0 : µX = µY versus H1 : µX 6= µY

and observe x = 9.075 and y = 7.114. If H0 is true then

t =
9.075 − 7.114
√

51.96( 1
41 + 1

31 )
=

1.961

1.7156
= 1.143

should be a realisation from a t-distribution with 41 + 31 − 2 = 70 degrees of freedom. For

this two-sided test, t = 1.143 corresponds to a p-value of 2{1 − pt(1.143, 70)} = 0.2569.

There is insufficient evidence to suggest a difference between the mean stay lengths of males

and females.
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Chapter 6

Goodness of fit tests

6.1 The multinomial distribution

Suppose that data can be classified into k mutually exclusive classes or categories and that

the class i occurs with probability pi where
∑k

i=1 pi = 1. Suppose we take n observations

and let Xi denote the number of observations in class i. Then

P (X1 = x1, . . . , Xk = xk | p1, . . . , pk) =
n!

x1! . . . xk!
px1

1 . . . pxk

k (6.1)

where
∑k

i=1 xi = n and n!
x1!...xk! is the number of ways that n objects can be grouped into k

classes, with xi in the ith class. The probability in (6.1) represents the probability density

function of the multinomial distribution, a generalisation of the binomial distribution.

6.2 Pearson’s chi-square statistic

In goodness of fit tests, we are interested in whether a given model fits the data. Consider

the following two examples.

1. Is a die fair? We may roll the die n times and count the number of each score observed.

If we let Xi be the number of is observed then we have a multinomial distribution

with six classes, the ith class being that we roll an i and if the die is fair then pi =

P (Roll an i) = 1
6 for each i = 1, . . . , 6: the pis are known if the model is true.

2. Emissions of alpha particles from radioactive sources are often modelled by a Poisson

distribution. Suppose we construct intervals of 1-second length and count the number

of emissions in each interval. We observe a total of n = 12169 such intervals and are

observations are summarised in the following table.

Number of emissions 0 1 2 3 4 5

Observed 5267 4436 1800 534 111 21
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If the model is correct then we may construct a multinomial distribution where the

i + 1st class represents that we observe i emissions in the interval of 1-second length

and p1 = exp(−λ), p2 = λ exp(−λ), p3 = λ2

2! exp(−λ), . . ..

If λ is not given, then the pi are unknown (although we have restricted them to be

Poisson probabilities) and, in order to assess the fit of this model to the data, we must

estimate a value of λ from the observed data. Typically, we use the maximum likelihood

estimate. In this case, the maximum likelihood estimate of λ, λ̂, is the sample mean,

λ̂ =
(0 × 5267) + (1 × 4436) + · · · + (5 × 21)

12169
=

10187

12169
= 0.8371.

The goodness of fit of a model may be assessed by comparing the observed (O) counts with

the expected counts (E) if the model was correct. Consider the two examples discussed

above.

1. If the die was fair, we’d expect to observe npi = n
6 in each of the six classes. If the

actual observed counts differ widely from this, then we’d suspect the die wasn’t fair.

2. In the Poisson model, we’d expect to observe np̂i in each class, where p̂i is our estimated

probability of being in that class assuming the Poisson model. Once again, discrep-

ancies between the observed and expected counts are evidence against the assumed

model.

For each class i, we have an observed value Oi and an expected value Ei. A widely used

measure of the discrepancy between these two (and hence between the assumed model and

the data) is Pearson’s chi-square statistic:

X2 =

k
∑

i=1

(Oi − Ei)
2

Ei
. (6.2)

The larger the value of X2, the worse the fit of the model to the data. It can be shown that if

the model is correct then the distribution of X2 is approximately the chi-square distribution

with ν degrees of freedom where

ν = number of classes− number of parameters fitted − 1.

Intuitively, we can see the degrees of freedom by noting that we are free to obtain the

expected counts in the first k − 1 classes but the count in the final class is fixed as the total

number of observations is n and then we lose a further degree of freedom for each parameter

we fit. In the die example, we fit no parameters as the pi are known under the assumed

model. For the Poisson model, we fit a single parameter, λ.

If X2 is observed to take the value x, then the p-value is

p∗ = P (X2 > x | model is correct) ≈ P (χ2
ν > x).
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The approximation is best if we have large n and, as a rule of thumb, we group categories

together to avoid any classes with Ei < 5.

6.2.1 Worked example

We return to the Poisson example. We have fitted λ̂ = 10187/12169 and

Ei+1 = n
λ̂i

i!
exp(−λ̂) =

λ̂

i
Ei.

E1 = 12169 exp(−10187/12169) = 5268.600

E2 = (10187/12169)E1 = 4410.488

E3 =
10187/12169

2
E2 = 1846.069

E4 =
10187/12169

3
E3 = 515.132

E5 =
10187/12169

4
E4 = 107.808

E6 =
10187/12169

5
E5 = 18.050

E7 =
10187/12169

6
E6 = 2.518

and so on. Note that Ei < 5 for all i ≥ 7. We pool these into the sixth class to ensure

an expected count greater than 5 in all classes. This newly created sixth class corresponds

to number of emissions greater than or equal to 5 so has probability
∑∞

i=5
λ̂i exp(−λ̂)

i! and

expected count 12169 −∑5
i=1 Ei. Hence, our observed and expected counts are as in the

following table.

Number of emissions 0 1 2 3 4 5+

Observed 5267 4436 1800 534 111 21

Expected 5268.600 4410.488 1846.069 515.132 107.808 20.903

Using (6.2), we calculate the observed Pearson’s chi-square statistic as

X2 =
(5267 − 5268.600)2

5268.600
+

(4436− 4410.488)2

4410.488
+ · · · + (21 − 20.903)2

20.903
= 2.0838.

If the Poisson model is true then 2.0838 should (approximately) be a realisation from a

chi-square distribution with 6 − 1 − 1 = 4 (we have 6 cells and have fitted one parameter)

degrees of freedom. Now P (χ2
4 > 2.0838) = 0.72 so that the model fits the data very well.
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Chapter 7

Appendix - Adding Independent

Normals

We directly show that if X ∼ N(µ1, σ
2
1) and Y ∼ N(µ2, σ

2
2) and X and Y are independent

then W = X + Y ∼ N(µ1 + µ2, σ
2
1 + σ2

2). It then follows by induction that the sum of n

independent normal random quantities is also normal. This is for completeness and mirrors

the work you did in §VI.b Distributions of sums of MA10212 when adding standard normal

random quantities.

We shall utilise the following lemma.

Lemma 2 The following identity is true.

1

σ2
1

(x − µ1)
2 +

1

σ2
2

(w − x − µ2)
2 =

1

σ2
3

(x − µ3)
2 +

1

σ2
1 + σ2

2

{w − (µ1 + µ2)}2

where

µ3 =
σ2

2µ1 + σ2
1(w − µ2)

σ2
1 + σ2

2

; (7.1)

σ2
3 =

σ2
1σ2

2

σ2
1 + σ2

2

. (7.2)

Proof -

1

σ2
1

(x − µ1)
2 +

1

σ2
2

(w − x − µ2)
2 =

1

σ2
1

(x − µ1)
2 +

1

σ2
2

{(w − µ2) − x}2

=
(σ2

1 + σ2
2)x

2 − 2{σ2
2µ1 + σ2

1(w − µ2)}x + σ2
2µ2

1 + σ2
1(w − µ2)

2

σ2
1σ2

2

(7.3)

=
σ2

1 + σ2
2

σ2
1σ2

2

[

{

x − σ2
2µ1 + σ2

1(w − µ2)

σ2
1 + σ2

2

}2

+
σ2

2µ
2
1 + σ2

1(w − µ2)
2

σ2
1 + σ2

2

−

{σ2
2µ1 + σ2

1(w − µ2)}2

(σ2
1 + σ2

2)2

]

(7.4)
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where (7.4) follows from (7.3) by completing the square for x. Now,

(σ2
1 + σ2

2){σ2
2µ2

1 + σ2
1(w − µ2)

2} − {σ2
2µ1 + σ2

1(w − µ2)}2 =

σ2
1σ2

2{µ2
1 − 2µ1(w − µ2) + (w − µ2)

2}
= σ2

1σ2
2{w − (µ1 + µ2)}2. (7.5)

Substituting (7.5) into (7.4) and using (7.1) and (7.2) gives the result. 2

Theorem 4 If X ∼ N(µ1, σ
2
1) and Y ∼ N(µ2, σ

2
2) and X and Y are independent then

W = X + Y ∼ N(µ1 + µ2, σ
2
1 + σ2

2).

Proof - We consider the region R where W ≤ w. For a given X = x, W ≤ w provided

Y ≤ w − x. Thus, R = {−∞ ≤ x ≤ ∞,−∞ ≤ y ≤ w − x} and

P (W ≤ w) =

∫ ∞

−∞

∫ w−x

−∞
fX,Y (x, y) dy dx, (7.6)

where fX,Y (x, y) is the joint pdf of X and Y . Since X and Y are independent then

fX,Y (x, y) = fX(x)fY (y). Using this and making the change of variables y = v − x we

may write (7.6) as

P (W ≤ w) =

∫ ∞

−∞

∫ w

−∞
fX(x)fY (v − x) dv dx =

∫ w

−∞

∫ ∞

−∞
fX(x)fY (v − x) dx dv.

Differentiating both sides with respect to w gives

fW (w) =

∫ ∞

−∞
fX(x)fY (w − x) dx

=

∫ ∞

−∞

1

2πσ1σ2
exp

[

−1

2

{

1

σ2
1

(x − µ1)
2 +

1

σ2
2

(w − x − µ2)
2

}]

dx (7.7)

where (7.7) follows since X ∼ N(µ1, σ
2
1) and Y ∼ N(µ2, σ

2
2). From Lemma 2, (7.7) becomes

fW (w) =

∫ ∞

−∞

1

2πσ1σ2
exp

[

− (x − µ3)
2

2σ2
3

− {w − (µ1 + µ2)}2

2(σ2
1 + σ2

2)

]

dx

=
1

√

2π(σ2
1 + σ2

2)
exp

[

−{w − (µ1 + µ2)}2

2(σ2
1 + σ2

2)

]
∫ ∞

−∞

1√
2πσ3

exp

{

− (x − µ3)
2

2σ2
3

}

dx(7.8)

=
1

√

2π(σ2
1 + σ2

2)
exp

[

−{w − (µ1 + µ2)}2

2(σ2
1 + σ2

2)

]

(7.9)

where (7.9) follows from (7.8) as the integral is over the pdf of a N(µ3, σ
2
3) random quantity

and thus is equal to 1. We immediately identify (7.9) as the pdf of a N(µ1 + µ2, σ
2
1 + σ2

2)

random quantity. 2
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