MA20226 - Feedback on Question Sheet Two

Simon Shaw, s.shaw@bath.ac.uk http://people.bath.ac.uk/masss/ma20226.html

2011/12 Semester I

1. Almost everyone showed that \overline{X} was the maximum likelihood estimator for μ (when σ^2 is known) and most people derived that $\frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$ was the maximum likelihood estimate of σ^2 (when μ is known) as this satisfied $l'(\sigma^2) = 0$. However, a common mistake was to claim that the corresponding maximum likelihood estimator was $\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$ which is not true. The table below summaries the maximum likelihood estimators for the parameters μ , σ^2 when X_1, \ldots, X_n are iid $N(\mu, \sigma^2)$.

Parameters	Maximum likelihood estimator	Biased or unbiased?
μ unknown σ^2 known	\overline{X} for μ	unbiased
μ known σ^2 unknown	$\frac{1}{n}\sum_{i=1}^{n}(X_i-\mu)^2 \text{ for } \sigma^2$	unbiased
μ unknown σ^2 unknown	$\frac{\overline{X} \text{ for } \mu}{\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2 \text{ for } \sigma^2}$	unbiased biased

The essence of this question was that when μ is known, the maximum likelihood estimator of σ^2 depends upon μ . If μ is additionally unknown then the maximum likelihood approach essentially replaces μ in the estimator of σ^2 by its estimator \overline{X} . One effect of this is that the estimator of σ^2 is no longer unbiased.

- 2. In order to get the solution for this question, you have to take care with the sample space. If $X \sim U(0, \theta)$ then the pdf is zero outside of $(0, \theta)$. Consequently, the likelihood function is only non-zero when $\theta \geq x_i \ \forall i = 1, ..., n$. This is equivalent to $\theta \geq m$ where $m = \max\{x_1, ..., x_n\}$. This makes sense: if you are trying to estimate θ , the maximum possible value, then having observed $x_1, ..., x_n$ you know that θ can not be less than $\max\{x_1, ..., x_n\}$.
- 3. Overall, this question was well done and most people found that $\alpha = \frac{n-1}{n+1}$. The corresponding estimator was thus $\frac{1}{n+1} \sum_{i=1}^{n} (X_i \overline{X})^2$. Putting together this question with question 1. we note that if we consider estimating σ^2 using the estimator $T(\delta) = \frac{1}{\delta} \sum_{i=1}^{n} (X_i \overline{X})^2$ then:
 - Choosing $\delta = n$ gives $\frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})^2$, the maximum likelihood estimator of σ^2 (assuming μ is also unknown).
 - Choosing $\delta = n 1$ gives $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$, the unbiased estimator of σ^2 .
 - Choosing $\delta = n+1$ gives $\frac{1}{n+1} \sum_{i=1}^{n} (X_i \overline{X})^2$ which has the smallest mean square error amongst estimators of the form $T(\delta)$.