Statistical Inference Lecture Three https://people.bath.ac.uk/masss/APTS/apts.html

Simon Shaw

University of Bath

APTS, 14-18 December 2020

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

э

Overview of Lecture Three

So far we have explored a number of principles for statistical inference.

- Weak Conditionality Principle, WCP: if *E*^{*} is the mixture of the experiments *E*₁, *E*₂ according to mixture probabilities *p*₁, *p*₂ = 1 − *p*₁. then Ev (*E*^{*}, (*i*, *x_i*)) = Ev(*E_i*, *x_i*).
- Strong Likelihood Principle, SLP: if $f_{X_1}(x_1 | \theta) = c(x_1, x_2) f_{X_2}(x_2 | \theta)$, for some function c > 0 for all $\theta \in \Theta$ then $Ev(\mathcal{E}_1, x_1) = Ev(\mathcal{E}_2, x_2)$.

In this lecture we will introduce a final principle, and consider the likelihood principle in practice.

- Y is ancillary if $f_{X,Y}(x, y | \theta) = f_Y(y)f_{X|Y}(x | y, \theta)$.
- Strong Conditionality Principle, SCP: If Y is ancillary then $Ev(\mathcal{E}, (x, y)) = Ev(\mathcal{E}^{X|y}, x).$
- Two Bayesian models with the same prior distribution, $\mathcal{E}_{B,1} = \{\mathcal{X}_1, \Theta, f_{X_1}(x_1 \mid \theta), \pi(\theta)\}$ and $\mathcal{E}_{B,2} = \{\mathcal{X}_2, \Theta, f_{X_2}(x_2 \mid \theta), \pi(\theta)\}$ have the same posterior distribution when $f_{X_1}(x_1 \mid \theta) = c(x_1, x_2)f_{X_2}(x_2 \mid \theta)$. Hence, the Bayesian approach satisfies the SLP.

A stronger form of the WCP

- We consider the concept of ancillarity.
- This has several different definitions in the Statistics literature; the one we use is close to that of Cox and Hinkley (1974, Section 2.2).

Definition (Ancillarity)

Y is ancillary in the experiment $\mathcal{E} = \{\mathcal{X} \times \mathcal{Y}, \Theta, f_{X,Y}(x, y | \theta)\}$ exactly when $f_{X,Y}$ factorises as

 $f_{X,Y}(x,y \mid \theta) = f_Y(y) f_{X|Y}(x \mid y, \theta).$

- The marginal distribution of Y is completely specified: it does not depend on θ .
- We could extend this to consider an extended parameter set, say (λ, θ) where λ is a nuisance parameter and θ is the parameter of interest.
- Ancillarity would be that f_Y doesn't depend on θ but may on λ whilst $f_{X|Y}$ depends on θ but doesn't depend on λ .

Simon Shaw (University of Bath)

- Not all families of distributions will factorise in this way, but when they do, there are new possibilities for inference, based around stronger forms of the WCP.
- A familiar example is that of a random sample size: in a sample $x = (x_1, ..., x_n)$, *n* may be the outcome of a random variable *N*.
- We seldom concern ourselves with the distribution of *N* when we evaluate *x*; instead we treat *N* as known.
- Equivalently, we treat N as ancillary and condition on N = n.
- In this case, we might think that inferences drawn from observing (n, x) should be the same as those for x conditioned on N = n.

A B A A B A

• When Y is ancillary, we can consider the conditional experiment

 $\mathcal{E}^{X|y} = \{\mathcal{X}, \Theta, f_{X|Y}(x|y,\theta)\}.$

• That is, we treat Y as known, and treat X (conditional on Y = y) as the only random variable.

Principle 9: Strong Conditionality Principle, SCP

If Y is ancillary in \mathcal{E} , then $Ev(\mathcal{E}, (x, y)) = Ev(\mathcal{E}^{X|y}, x)$.

- The SCP is invoked (implicitly) when we perform a regression of Y on X: (X, Y) is random, but X is treated as ancillary for the parameters in f_{Y|X}. We model Y conditionally on X, treating X as known.
- Clearly the SCP implies the WCP, with the experiment indicator $l \in \{1, 2\}$ being ancillary, since p is known.

Theorem

 $\mathsf{SLP} \to \mathsf{SCP}.$

Proof

Suppose that Y is ancillary in $\mathcal{E} = \{\mathcal{X} \times \mathcal{Y}, \Theta, f_{X,Y}(x, y | \theta)\}$. Thus, for all $\theta \in \Theta$,

$$f_{X,Y}(x,y \mid \theta) = f_{Y}(y)f_{X|Y}(x \mid y, \theta)$$
$$= c(y)f_{X|Y}(x \mid y, \theta)$$

Then the SLP implies that

$$\mathsf{Ev}(\mathcal{E},(x,y)) = \mathsf{Ev}(\mathcal{E}^{X|y},x),$$

as required.

• From Birnbaum's Theorem, (WIP \land WCP) \leftrightarrow SLP so, as SLP \rightarrow SCP, the WIP allows us to 'upgrade' the WCP to the SCP.

Simon Shaw (University of Bath)

Statistical Inference Lecture Three

The Likelihood Principle in practice

- We consider whether there is any inferential approach which respects the SLP? Or do all inferential approaches respect it?
- A Bayesian statistical model is the collection

 $\mathcal{E}_B = \{\mathcal{X}, \Theta, f_X(x \mid \theta), \pi(\theta)\}.$

The posterior distribution is $\pi(\theta | x) = c(x)f_X(x | \theta)\pi(\theta)$ where c(x) is the normalising constant,

$$c(x) = \left\{ \int_{\Theta} f_X(x \mid \theta) \pi(\theta) \, d\theta \right\}^{-1}.$$

- All knowledge about θ given the data x are represented by $\pi(\theta | x)$.
- Any inferences made about θ are derived from this distribution.

- Consider two Bayesian models with the same prior distribution, $\mathcal{E}_{B,1} = \{\mathcal{X}_1, \Theta, f_{X_1}(x_1 \mid \theta), \pi(\theta)\}$ and $\mathcal{E}_{B,2} = \{\mathcal{X}_2, \Theta, f_{X_2}(x_2 \mid \theta), \pi(\theta)\}$
- Suppose that $f_{X_1}(x_1 | \theta) = c(x_1, x_2) f_{X_2}(x_2 | \theta)$. Then

$$\pi_{1}(\theta | x_{1}) = c(x_{1})f_{X_{1}}(x_{1} | \theta)\pi(\theta) = c(x_{1})c(x_{1}, x_{2})f_{X_{2}}(x_{2} | \theta)\pi(\theta)$$

= $\pi_{2}(\theta | x_{2})$

- Hence, the posterior distributions are the same. Consequently, the same inferences are drawn from either model and so the Bayesian approach satisfies the SLP.
- This assumes that $\pi(\theta)$ does not depend upon the form of the data.
- Some methods for making default choices for $\pi(\theta)$ depend on $f_X(x | \theta)$, notably Jeffreys priors and reference priors. These methods violate the SLP.

- Maximum likelihood estimation clearly satisfies the SLP and methods, such as penalised likelihood theory, have been generated to satisfy the SLP.
- However, inference tools used in the classical approach typically violate the SLP.
- Inference techniques depend upon the sampling distribution and so they depend on the whole sample space X and not just the observed x ∈ X.
- Sampling distribution depends on values of f_X other than $L(\theta; x) = f_X(x | \theta)$.
- For a statistic T(X), $MSE(T | \theta) = Var(T | \theta) + bias(T | \theta)^2$ depends upon the first and second moments of the distribution of $T | \theta$.

Example, Robert (2007)

• Suppose that X_1, X_2 are iid $N(\theta, 1)$ so that

$$f(x_1, x_2 \mid \theta) \propto \exp\left\{-(\overline{x} - \theta)^2\right\}.$$

• Consider the alternate model for the same parameter $\boldsymbol{\theta}$

$$g(x_1, x_2 | \theta) = \pi^{-\frac{3}{2}} \frac{\exp \left\{-(\overline{x} - \theta)^2\right\}}{1 + (x_1 - x_2)^2}$$

- Thus, $f(x_1, x_2 | \theta) \propto g(x_1, x_2 | \theta)$ as a function of θ . If the SLP is applied, then inference about θ should be the same in both models.
- The distribution of g is quite different from that of f and so estimators of θ will have different classical properties if they do not depend only on $\overline{\mathbf{x}}$.
- For example, g has heavier tails than f and so respective confidence intervals may differ between the two.

- Suppose that $Ev(\mathcal{E}, x)$ depends on the value of $f_X(x' | \theta)$ for some $x' \neq x$. Then, typically, Ev does not respect the SLP.
- We could create an alternate experiment $\mathcal{E}_1 = \{\mathcal{X}, \Theta, f_1(x | \theta)\}$ where:
 - $f_1(x \mid \theta) = f_X(x \mid \theta)$ for the observed x.
 - $f_1(x \mid \theta) \neq f_X(x \mid \theta)$ for all $x \in \mathcal{X}$.
- In particular, that $f_1(x' | \theta) \neq f_X(x' | \theta)$.
 - Let $\tilde{x} \neq x, x'$ and set

$$f_{1}(x' \mid \theta) = \alpha f_{X}(x' \mid \theta) + \beta f_{X}(\tilde{x} \mid \theta)$$

$$f_{1}(\tilde{x} \mid \theta) = (1 - \alpha) f_{X}(x' \mid \theta) + (1 - \beta) f_{X}(\tilde{x} \mid \theta)$$

- ▶ By suitable choice of α , β we can redistribute the mass to ensure $f_1(x' | \theta) \neq f_X(x' | \theta)$. We then let $f_1 = f_X$ elsewhere.
- Consequently, whilst $f_1(x | \theta) = f_X(x | \theta)$ we will not have that $Ev(\mathcal{E}, x) = Ev(\mathcal{E}_1, x)$ and so will violate the SLP.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

The two main difficulties with violating the SLP are:

- To reject the SLP is to reject at least one of the WIP and the WCP. Yet both of these principles seem self-evident. Therefore violating the SLP is either illogical or obtuse.
- In their everyday practice, statisticians use the SRP (ignoring the intentions of the experimenter) which is not self-evident, but is implied by the SLP. If the SLP is violated, it needs an alternative justification which has not yet been forthcoming.

<日

<</p>

Reflections

- This chapter does not explain how to choose Ev but instead describes desirable properties of Ev.
- What is evaluated is the algorithm, the method by which (\mathcal{E}, x) is turned into an inference about the parameter θ .
- It is quite possible that statisticians of quite different persuasions will produce effectively identical inferences from different algorithms.
- A Bayesian statistician might produce a 95% High Density Region, and a classical statistician a 95% confidence set, but they might be effectively the same set.
- Primary concern for the auditor is why the particular inference method was chosen and they might also ask if the statistician is worried about the SLP.
- Classical statistician might argue a long-run frequency property but the client might wonder about their interval.

- 4 回 ト - 4 三 ト