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SV MBI M N sA  Overview of Lecture Six

Overview of Lecture Six

The key idea from Lecture Five is:

@ Wald's Complete Class Theorem, CCT. A decision rule is admissible if
and only if it is a Bayes rule for some prior distribution.
In this lecture we will consider use of loss functions for point estimation,
set estimation and hypothesis testing.

@ For quadratic loss, a point estimator for 6 is admissible if and only if
it is the conditional expectation with respect to some positive prior
distribution ().

o Level set property (LSP): a set d C © is a level set of the posterior
distribution exactly when d = {6 : w(0|x) > k} for some k.

o If % is a Bayes rule for L(0,d) = |d|+ k(1 — 1pey) then it is a level
set of the posterior distribution.
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Statistical Decision Theory Point estimation

Point estimation

@ We now look at possible choices of loss functions for different types of
inference.

@ For point estimation the decision space is D = ©, and the loss
function L(0, d) represents the (negative) consequence of choosing d
as a point estimate of 6.

@ It will not be often that an obvious loss function L : © x © — R
presents itself. There is a need for a generic loss function which is
acceptable over a wide range of applications.

Suppose that © is a convex subset of RP. A natural choice is a convex loss
function,

L(0,d) = h(d—0)

where h: RP — R is a smooth non-negative convex function with
h(0) = 0.
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Statistical Decision Theory Point estimation

@ This type of loss function asserts that small errors are much more
tolerable than large ones.

@ One possible further restriction is that h is an even function,

h(d — 0) = h(0 — d).

@ In this case, L(0,6 + ¢) = L(0,60 — ¢) so that under-estimation incurs
the same loss as over-estimation.

e We saw previously, that for quadratic loss © C R, L(6,d) = (0 — d)?,
the Bayes rule was the expectation of (). As we will see, this
attractive feature can be extended to more dimensions.

@ There are many situations where this is not appropriate and the loss

function should be asymmetric and a generic loss function should be
replaced by a more specific one.
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The bilinear loss function for © C R is, for o, 8 > 0,

[ alb-d) fd<b,
Lo, d) = {B(d&) if d > 0.

o The Bayes rule is a {-fractile of m(0).

o Ifa=p=1then L(f,d) = |0 — d|, the absolute loss which gives a
Bayes rule of the median of 7(#).

e |0 — d| is smaller that (§ — d)? for |# — d| > 1 and so absolute loss is
smaller than quadratic loss for large deviations. Thus, it takes less
account of the tails of 7(€) leading to the choice of the median.

o Ifa>f3, so ﬁ > 0.5, then under-estimation is penalised more than
over-estimation and so that Bayes rule is more likely to be an
over-estimate.
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Statistical Decision Theory Point estimation

Example

If © € RP, the Bayes rule 0* associated with the distribution 7(6) and the
quadratic loss

L(O,d) = (d—60)TQ(d—¥0)

is the expectation [£()(¢) for every positive-definite symmetric p x p
matrix Q.

Example (Robert, 2007), @ = !

Suppose X ~ N,(6,%) where the known variance matrix X is diagonal
with elements o2 for each i. Then D = RP. A possible loss function is

L0.d) — i(d;;gi)z

i=1

so that the total loss is the sum of the squared component-wise errors.

v
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Statistical Decision Theory Point estimation

@ As the Bayes rule for L(0,d) = (d — )" Q (d — 0) does not depend
upon @, it is the same for an uncountably large class of loss functions.

o If we apply the Complete Class Theorem to this result we see that for
quadratic loss, a point estimator for 6 is admissible if and only if it is
the conditional expectation with respect to some positive prior
distribution 7(0).

@ The value, and interpretability, of the quadratic loss can be further
observed by noting that, from a Taylor series expansion, an even,
differentiable and strictly convex loss function can be approximated by
a quadratic loss function.
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Set estimation

@ For set estimation the decision space is a set of subsets of © so that
each d C ©.

@ There are two contradictory requirements for set estimators of ©.

@ We want the sets to be small.
@ We also want them to contain 6.

@ A simple way to represent these two requirements is to consider the
loss function

L(0,d) = |d|+ k(1 — Lgeq)

for some x > 0 where |d| is the volume of d.
@ The value of x controls the trade-off between the two requirements.

» If x | 0 then minimising the expected loss will always produce the
empty set.
» If k1 oo then minimising the expected loss will always produce ©.
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@ For loss functions of the form L(0,d) = |d|+ k(1 — Lpeq) we'll show
there is a a simple necessary condition for a rule to be a Bayes rule.

Definition (Level set)

A set d C © is a level set of the posterior distribution exactly when
d={0: (0| x) > k} for some k.

Theorem (Level set property, LSP)

If * is a Bayes rule for L(0,d) = |d|+ k(1 — lpeq) then it is a level set
of the posterior distribution.

Proof
Note that

E{L(0,d) | X} = [d]+&(1—E(Lged]|X))
= |d|+ kP60 & d| X).

v
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Proof continued

@ For fixed x, we show that if d is not a level set of the posterior
distribution then there is a d’ # d which has a smaller expected loss
so that 6*(x) # d.

@ Suppose that d is not a level set of 7(6 | x). Then thereis a 0 € d
and 0" ¢ d for which 7(6' | x) > 7(6 | x).

o Let d' =dUdb \ df where df is the tiny region of © around 6 and
df’ is the tiny region of © around &’ for which |df| = |d¢/'|.

@ Then |d'| = |d| but

PO ¢ d'| X) < B(6 ¢ d| X)

Thus, E{L(6,d")| X} < E{L(0,d)| X} showing that 6*(x) #d. O

v
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@ The Level Set Property Theorem states that ¢ having the level set
property is necessary for § to be a Bayes rule for loss functions of the
form L(6,d) = |d|+ k(1 — Lgeq).

@ The Complete Class Theorem states that being a Bayes rule is a
necessary condition for § to be admissible.

@ Being a level set of a posterior distribution for some prior distribution
7(0) is a necessary condition for being admissible for loss functions of
this form.

@ Bayesian HPD regions satisfy the necessary condition for being a set
estimator.

@ Classical set estimators achieve a similar outcome if they are level sets
of the likelihood function, because the posterior is proportional to the
likelihood under a uniform prior distribution.!

Yn the case where © is unbounded, this prior distribution may have to be truncated
to be proper.
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D
Hypothesis tests

@ For hypothesis tests, the decision space is a partition of ©, denoted
H = {Ho, Hl, ooy Hd}

@ Each element of H is termed a hypothesis.

@ The loss function L(6, H;) represents the (negative) consequences of
choosing element H;, when the true value of the parameter is 6.

@ It would be usual for the loss function to satisfy

0 cH = L(O,H;) = minL(6,H;)
J

on the grounds that an incorrect choice of element should never incur
a smaller loss than the correct choice.
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Statistical Decision Theory Hypothesis tests

Consider the test of Hp : 6 € ©g versus Hy : 0 € ©1 where
©1 =0\ 0. Let D = {dp, d1} where d; corresponds to accepting
H;. A generic loss function is the 0-1 ('zero-one’) loss function

0 ifdeo,
Lo, di) = {1 if 0 ¢ ©;.

The classical risk is the probability of making a wrong decision,

_ [ POO(X)=dv[0) if0 €O,
R(6,0) = {IP’((S(X)ZO'O‘Q) if9€@(1)7

which correspond to the familiar Type | and Type Il errors.

The Bayes rule is to choose Hp if P (0 € ©g) > P,(0 € ©1) and H;
otherwise, where P (-) is the probability when 6 ~ 7(9).

Hence, if 7(0) = f(0|x), the Bayes rule is to choose the hypothesis
with the largest posterior probability.
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Statistical Decision Theory Hypothesis tests

@ This approach can be naturally extended to multiple hypotheses
H = {Ho, H1,...,Hq} which partition © by taking

L(97 H,') = 1- H{QGH;}'

i.e., zero if @ € H;, and one if it is not.

@ For the posterior decision, the Bayes rule is to select the hypothesis
with the largest posterior probability.

@ However, this loss function is hard to defend as being realistic.

o If we choose H; and it turns out that 6 ¢ H; then the inference is
wrong and the loss is the same irrespective of where 6 lies.

@ An alternative approach is to co-opt the theory of set estimators.

@ The statistician can use her set estimator § to make at least some
distinctions between the members of #:
> Accept H; exactly when d(x) C H;,
> Reject H; exactly when 6(x) N H; = ),
» Undecided about H; otherwise.
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