
Statistical Inference
Lecture Six

https://people.bath.ac.uk/masss/APTS/apts.html

Simon Shaw

University of Bath

APTS, 14-18 December 2020

Simon Shaw (University of Bath) Statistical Inference Lecture Six APTS, 14-18 December 2020 1 / 14

https://people.bath.ac.uk/masss/APTS/apts.html


Statistical Decision Theory Overview of Lecture Six

Overview of Lecture Six

The key idea from Lecture Five is:

Wald’s Complete Class Theorem, CCT. A decision rule is admissible if
and only if it is a Bayes rule for some prior distribution.

In this lecture we will consider use of loss functions for point estimation,
set estimation and hypothesis testing.

For quadratic loss, a point estimator for θ is admissible if and only if
it is the conditional expectation with respect to some positive prior
distribution π(θ).

Level set property (LSP): a set d ⊂ Θ is a level set of the posterior
distribution exactly when d = {θ : π(θ | x) ≥ k} for some k.

If δ∗ is a Bayes rule for L(θ, d) = |d |+ κ(1− 1θ∈d) then it is a level
set of the posterior distribution.
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Statistical Decision Theory Point estimation

Point estimation

We now look at possible choices of loss functions for different types of
inference.

For point estimation the decision space is D = Θ, and the loss
function L(θ, d) represents the (negative) consequence of choosing d
as a point estimate of θ.

It will not be often that an obvious loss function L : Θ×Θ→ R
presents itself. There is a need for a generic loss function which is
acceptable over a wide range of applications.

Suppose that Θ is a convex subset of Rp. A natural choice is a convex loss
function,

L(θ, d) = h(d − θ)

where h : Rp → R is a smooth non-negative convex function with
h(0) = 0.
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Statistical Decision Theory Point estimation

This type of loss function asserts that small errors are much more
tolerable than large ones.

One possible further restriction is that h is an even function,
h(d − θ) = h(θ − d).

In this case, L(θ, θ + ε) = L(θ, θ − ε) so that under-estimation incurs
the same loss as over-estimation.

We saw previously, that for quadratic loss Θ ⊂ R, L(θ, d) = (θ − d)2,
the Bayes rule was the expectation of π(θ). As we will see, this
attractive feature can be extended to more dimensions.

There are many situations where this is not appropriate and the loss
function should be asymmetric and a generic loss function should be
replaced by a more specific one.
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Statistical Decision Theory Point estimation

The bilinear loss function for Θ ⊂ R is, for α, β > 0,

L(θ, d) =

{
α(θ − d) if d ≤ θ,
β(d − θ) if d ≥ θ.

The Bayes rule is a α
α+β -fractile of π(θ).

If α = β = 1 then L(θ, d) = |θ − d |, the absolute loss which gives a
Bayes rule of the median of π(θ).

|θ − d | is smaller that (θ − d)2 for |θ − d | > 1 and so absolute loss is
smaller than quadratic loss for large deviations. Thus, it takes less
account of the tails of π(θ) leading to the choice of the median.

If α > β, so α
α+β > 0.5, then under-estimation is penalised more than

over-estimation and so that Bayes rule is more likely to be an
over-estimate.
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Statistical Decision Theory Point estimation

Example

If Θ ∈ Rp, the Bayes rule δ∗ associated with the distribution π(θ) and the
quadratic loss

L(θ, d) = (d − θ)TQ (d − θ)

is the expectation E(π)(θ) for every positive-definite symmetric p × p
matrix Q.

Example (Robert, 2007), Q = Σ−1

Suppose X ∼ Np(θ,Σ) where the known variance matrix Σ is diagonal
with elements σ2i for each i . Then D = Rp. A possible loss function is

L(θ, d) =

p∑
i=1

(
di − θi
σi

)2

so that the total loss is the sum of the squared component-wise errors.
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Statistical Decision Theory Point estimation

As the Bayes rule for L(θ, d) = (d − θ)TQ (d − θ) does not depend
upon Q, it is the same for an uncountably large class of loss functions.

If we apply the Complete Class Theorem to this result we see that for
quadratic loss, a point estimator for θ is admissible if and only if it is
the conditional expectation with respect to some positive prior
distribution π(θ).

The value, and interpretability, of the quadratic loss can be further
observed by noting that, from a Taylor series expansion, an even,
differentiable and strictly convex loss function can be approximated by
a quadratic loss function.
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Statistical Decision Theory Set estimation

Set estimation

For set estimation the decision space is a set of subsets of Θ so that
each d ⊂ Θ.

There are two contradictory requirements for set estimators of Θ.
1 We want the sets to be small.
2 We also want them to contain θ.

A simple way to represent these two requirements is to consider the
loss function

L(θ, d) = |d |+ κ(1− 1θ∈d)

for some κ > 0 where |d | is the volume of d .

The value of κ controls the trade-off between the two requirements.
I If κ ↓ 0 then minimising the expected loss will always produce the

empty set.
I If κ ↑ ∞ then minimising the expected loss will always produce Θ.
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Statistical Decision Theory Set estimation

For loss functions of the form L(θ, d) = |d |+ κ(1− 1θ∈d) we’ll show
there is a a simple necessary condition for a rule to be a Bayes rule.

Definition (Level set)

A set d ⊂ Θ is a level set of the posterior distribution exactly when
d = {θ : π(θ | x) ≥ k} for some k.

Theorem (Level set property, LSP)

If δ∗ is a Bayes rule for L(θ, d) = |d |+ κ(1− 1θ∈d) then it is a level set
of the posterior distribution.

Proof

Note that

E{L(θ, d) |X} = |d |+ κ(1− E(1θ∈d |X ))

= |d |+ κP(θ /∈ d |X ).
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Statistical Decision Theory Set estimation

Proof continued

For fixed x , we show that if d is not a level set of the posterior
distribution then there is a d ′ 6= d which has a smaller expected loss
so that δ∗(x) 6= d .

Suppose that d is not a level set of π(θ | x). Then there is a θ ∈ d
and θ′ /∈ d for which π(θ′ | x) > π(θ | x).

Let d ′ = d ∪ dθ′ \ dθ where dθ is the tiny region of Θ around θ and
dθ′ is the tiny region of Θ around θ′ for which |dθ| = |dθ′|.
Then |d ′| = |d | but

P(θ /∈ d ′ |X ) < P(θ /∈ d |X )

Thus, E{L(θ, d ′) |X} < E{L(θ, d) |X} showing that δ∗(x) 6= d . 2
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Statistical Decision Theory Set estimation

The Level Set Property Theorem states that δ having the level set
property is necessary for δ to be a Bayes rule for loss functions of the
form L(θ, d) = |d |+ κ(1− 1θ∈d).

The Complete Class Theorem states that being a Bayes rule is a
necessary condition for δ to be admissible.

Being a level set of a posterior distribution for some prior distribution
π(θ) is a necessary condition for being admissible for loss functions of
this form.

Bayesian HPD regions satisfy the necessary condition for being a set
estimator.

Classical set estimators achieve a similar outcome if they are level sets
of the likelihood function, because the posterior is proportional to the
likelihood under a uniform prior distribution.1

1In the case where Θ is unbounded, this prior distribution may have to be truncated
to be proper.
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Statistical Decision Theory Hypothesis tests

Hypothesis tests

For hypothesis tests, the decision space is a partition of Θ, denoted

H := {H0,H1, . . . ,Hd}.

Each element of H is termed a hypothesis.

The loss function L(θ,Hi ) represents the (negative) consequences of
choosing element Hi , when the true value of the parameter is θ.

It would be usual for the loss function to satisfy

θ ∈ Hi =⇒ L(θ,Hi ) = min
j

L(θ,Hj)

on the grounds that an incorrect choice of element should never incur
a smaller loss than the correct choice.
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Statistical Decision Theory Hypothesis tests

Consider the test of H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1 where
Θ1 = Θ \Θ0. Let D = {d0, d1} where di corresponds to accepting
Hi . A generic loss function is the 0-1 (’zero-one’) loss function

L(θ, di ) =

{
0 if θ ∈ Θi ,
1 if θ /∈ Θi .

The classical risk is the probability of making a wrong decision,

R(θ, δ) =

{
P(δ(X ) = d1 | θ) if θ ∈ Θ0,
P(δ(X ) = d0 | θ) if θ ∈ Θ1,

which correspond to the familiar Type I and Type II errors.

The Bayes rule is to choose H0 if Pπ(θ ∈ Θ0) > Pπ(θ ∈ Θ1) and H1

otherwise, where Pπ(·) is the probability when θ ∼ π(θ).

Hence, if π(θ) = f (θ | x), the Bayes rule is to choose the hypothesis
with the largest posterior probability.
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Statistical Decision Theory Hypothesis tests

This approach can be naturally extended to multiple hypotheses
H = {H0,H1, . . . ,Hd} which partition Θ by taking

L(θ,Hi ) = 1− 1{θ∈Hi}.

i.e., zero if θ ∈ Hi , and one if it is not.

For the posterior decision, the Bayes rule is to select the hypothesis
with the largest posterior probability.

However, this loss function is hard to defend as being realistic.

If we choose Hi and it turns out that θ /∈ Hi then the inference is
wrong and the loss is the same irrespective of where θ lies.

An alternative approach is to co-opt the theory of set estimators.

The statistician can use her set estimator δ to make at least some
distinctions between the members of H:

I Accept Hi exactly when δ(x) ⊂ Hi ,
I Reject Hi exactly when δ(x) ∩ Hi = ∅,
I Undecided about Hi otherwise.
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