Notes to accompany Lecture Seven.

Cis a resting family $\alpha < \alpha'$ Here $((x; \alpha') \in ((x; \alpha))$ As $\alpha < \alpha'$ Hen $1-\alpha' < 1-\alpha'$ so the coverage of $((\alpha; \alpha'))$ is lower than that of $((\alpha; \alpha))$ ie. To increase the coverage, un increase the width. $[\leftarrow ((x; z') \rightarrow)]$ $[\leftarrow ((x; z') \rightarrow)]$ A PIVOT for the model $S = \{X, \emptyset, f_X(x, |0)\}$ is a random variable $Q(X, \emptyset)$ for which the distribution of Q does not depend on \emptyset . $P(a \leq Q(X, A) \leq 5 | 0) \geq 1 - \infty$ Here won't depend on 0if Q(X, A) is a pivot ((x)= 30: ~ = Q(x,0) = b3. Iden of PINOTAL INFERENCE. $Q(X,Q) = \frac{\overline{X} - Q}{\sigma / \sigma_n}$ is a pivot for $X = (X_1, \dots, X_n)$ $P\left(-\frac{2}{2}\frac{2}{x} \leq \frac{x-0}{\sqrt{1-x}} \leq \frac{2}{\sqrt{2}}\frac{1}{\sqrt{1-x}}\right) = 1-\alpha$ $P\left(x-\frac{2}{\sqrt{1-x}} \leq 0 \leq x+\frac{2}{\sqrt{1-x}}\frac{1}{\sqrt{1-x}}\right) = 1-\alpha$ $P\left(x-\frac{2}{\sqrt{1-x}} \leq 0 \leq x+\frac{2}{\sqrt{1-x}}\frac{1}{\sqrt{1-x}}\right) = 1-\alpha$

