Statistical Inference Lecture Seven https://people.bath.ac.uk/masss/APTS/apts.html

Simon Shaw

University of Bath

APTS, 14-18 December 2020

4 1 1 1 4 1 1 1

1/13

Overview of Lecture Seven

- Confidence procedure: A random set $C(X) \subset \Theta$ is a level- (1α) confidence procedure exactly when $\mathbb{P}(\theta \in C(X) | \theta) \geq 1 \alpha$.
- Family of confidence procedures: occurs when C(X; α) is a level-(1 − α) confidence procedure for every α ∈ [0, 1].
- C is a nesting family if $\alpha < \alpha'$ implies that $C(x; \alpha') \subset C(x; \alpha)$.
- The general approach to construct a confidence procedure is to invert a test statistic.
- Consider the likelihood ratio test (LRT) statistic

$$\lambda(x) = \frac{\sup_{\theta \in \Theta_0} L_X(\theta; x)}{\sup_{\theta \in \Theta} L_X(\theta; x)}.$$

• Duality of acceptance regions and confidence sets.

Confidence procedures and confidence sets

- We consider interval estimation, or more generally set estimation.
- Under the model $\mathcal{E} = \{\mathcal{X}, \Theta, f_X(x \mid \theta)\}$, for given data X = x, we wish to construct a set $C = C(x) \subset \Theta$ and the inference is the statement that $\theta \in C$.
- If $\theta \in \mathbb{R}$ then the set estimate is typically an interval.

Definition (Confidence procedure)

A random set C(X) is a level- $(1 - \alpha)$ confidence procedure exactly when

 $\mathbb{P}(\theta \in C(X) \,|\, \theta) \geq 1 - \alpha$

for all $\theta \in \Theta$. *C* is an exact level- $(1 - \alpha)$ confidence procedure if the probability equals $(1 - \alpha)$ for all θ .

- The value $\mathbb{P}(\theta \in C(X) | \theta)$ is termed the coverage of C at θ .
- Exact is a special case: typically $\mathbb{P}(\theta \in C(X) | \theta)$ will depend upon θ .
- The procedure is thus conservative: for a given θ_0 the coverage may be much higher than (1α) .

Uniform example

- Let X_1, \ldots, X_n be independent and identically distributed Unif $(0, \theta)$ random variables where $\theta > 0$. Let $Y = \max\{X_1, \ldots, X_n\}$.
- We consider two possible sets: (aY, bY) where 1 ≤ a < b and (Y + c, Y + d) where 0 ≤ c < d.
 - $\mathbb{P}(\theta \in (aY, bY) | \theta) = (\frac{1}{a})^n (\frac{1}{b})^n$. Thus, the coverage probability of the interval does not depend upon θ .

 We distinguish between the confidence procedure C, which is a random interval and so a function for each possible x, and the result when C is evaluated at the observation x, which is a set in Θ.

Definition (Confidence set)

The observed C(x) is a level- $(1 - \alpha)$ confidence set exactly when the random C(X) is a level- $(1 - \alpha)$ confidence procedure.

- If ⊖ ⊂ ℝ and C(x) is convex, i.e. an interval, then a confidence set (interval) is represented by a lower and upper value.
- The challenge with confidence procedures is to construct one with a specified level: to do this we start with the level and then construct a *C* guaranteed to have this level.

Definition (Family of confidence procedures)

- C(X; α) is a family of confidence procedures exactly when C(X; α) is a level-(1 − α) confidence procedure for every α ∈ [0, 1].
- C is a nesting family exactly when $\alpha < \alpha'$ implies that $C(x; \alpha') \subset C(x; \alpha)$.
- If we start with a family of confidence procedures for a specified model, then we can compute a confidence set for any level we choose.

・ 同 ト ・ ヨ ト ・ ヨ ト

Constructing confidence procedures

- The general approach to construct a confidence procedure is to invert a test statistic.
- In the Uniform example, the coverage of the procedure (aY, bY) does not depend upon θ because the coverage probability could be expressed in terms of $T = Y/\theta$ where the distribution of T did not depend upon θ .
 - ► *T* is an example of a pivot and confidence procedures are straightforward to compute from a pivot.
 - However, a drawback to this approach in general is that there is no hard and fast method for finding a pivot.
- An alternate method which does work generally is to exploit the property that *every* confidence procedure corresponds to a hypothesis test and vice versa.

Consider a hypothesis test where we have to decide either to accept that an hypothesis H_0 is true or to reject H_0 in favour of an alternative hypothesis H_1 based on a sample $x \in \mathcal{X}$.

- The set of x for which H_0 is rejected is called the rejection region.
- The complement, where H_0 is accepted, is the acceptance region.
- A hypothesis test can be constructed from any statistic T = T(X).

Definition (Likelihood Ratio Test, LRT)

The likelihood ratio test (LRT) statistic for testing $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_0^c$, where $\Theta_0 \cup \Theta_0^c = \Theta$, is

$$\lambda(x) = \frac{\sup_{\theta \in \Theta_0} L_X(\theta; x)}{\sup_{\theta \in \Theta} L_X(\theta; x)}.$$

A LRT at significance level α has a rejection region of the form $\{x : \lambda(x) \leq c\}$ where $0 \leq c \leq 1$ is chosen so that $\mathbb{P}(\text{Reject } H_0 | \theta) \leq \alpha$ for all $\theta \in \Theta_0$.

Example

- Let X = (X₁,..., X_n) and suppose that the X_i are independent and identically distributed N(θ, σ²) random variables where σ² is known.
- Consider the likelihood ratio test for $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$. Then, as the maximum likelihood estimate (mle) of θ is \overline{x} ,

$$\begin{split} \lambda(\mathbf{x}) &= \frac{L_X(\theta_0; \mathbf{x})}{L_X(\overline{\mathbf{x}}; \mathbf{x})} &= \exp\left\{-\frac{1}{2\sigma^2}\sum_{i=1}^n\left((x_i - \theta_0)^2 - (x_i - \overline{\mathbf{x}})^2\right)\right\} \\ &= \exp\left\{-\frac{1}{2\sigma^2}n(\overline{\mathbf{x}} - \theta_0)^2\right\}. \end{split}$$

Notice that, under H_0 , $\frac{\sqrt{n}(\overline{X}-\theta_0)}{\sigma} \sim N(0,1)$ so that

$$-2\log\lambda(X) = \frac{n(\overline{X}- heta_0)^2}{\sigma^2} \sim \chi_1^2,$$

the chi-squared distribution with one degree of freedom.

Example continued

- The rejection region is $\{x : \lambda(x) \le c\} = \{x : -2 \log \lambda(x) \ge k\}.$
- Setting $k = \chi^2_{1,\alpha}$, where $\mathbb{P}(\chi^2_1 \ge \chi^2_{1,\alpha}) = \alpha$, gives a test at the exact significance level α .

The acceptance region of this test is $\{x : -2 \log \lambda(x) < \chi^2_{1,\alpha}\}$ where

$$\mathbb{P}\left(\left.\frac{n(\overline{X}-\theta_0)^2}{\sigma^2} < \chi^2_{1,\alpha} \right| \, \theta = \theta_0\right) = 1-\alpha.$$

This holds for all θ_0 and so, additionally rearranging,

$$\mathbb{P}\left(\left.\overline{X} - \sqrt{\chi_{1,\alpha}^2} \frac{\sigma}{\sqrt{n}} < \theta < \overline{X} + \sqrt{\chi_{1,\alpha}^2} \frac{\sigma}{\sqrt{n}} \right| \theta\right) = 1 - \alpha.$$

Thus, $C(X) = (\overline{X} - \sqrt{\chi_{1,\alpha}^2} \frac{\sigma}{\sqrt{n}}, \overline{X} + \sqrt{\chi_{1,\alpha}^2} \frac{\sigma}{\sqrt{n}})$ is an exact level- $(1 - \alpha)$ confidence procedure with C(x) the corresponding confidence set.

・ 回 ト ・ ヨ ト ・ ヨ ト

10 / 13

- Note that we obtained the level- (1α) confidence procedure by inverting the acceptance region of the level α significance test.
- This correspondence, or duality, between acceptance regions of tests and confidence sets is a general property.

Theorem (Duality of Acceptance Regions and Confidence Sets)

- For each θ₀ ∈ Θ, let A(θ₀) be the acceptance region of a test of H₀ : θ = θ₀ at significance level α. For each x ∈ X, define C(x) = {θ₀ : x ∈ A(θ₀)}. Then C(X) is a level-(1 − α) confidence procedure.
- Let C(X) be a level-(1 − α) confidence procedure and, for any θ₀ ∈ Θ, define A(θ₀) = {x : θ₀ ∈ C(x)}. Then A(θ₀) is the acceptance region of a test of H₀ : θ = θ₀ at significance level α.

イロト 不得 トイラト イラト 一日

Proof

As we have a level α test for each θ₀ ∈ Θ then

 𝒫(𝒴 ∈ 𝔄(θ₀) | θ = θ₀) ≥ 1 − α. Since θ₀ is arbitrary we may write θ
 instead of θ₀ and so, for all θ ∈ Θ,

$$\mathbb{P}(\theta \in C(X) | \theta) = \mathbb{P}(X \in A(\theta) | \theta) \ge 1 - \alpha.$$

Hence, C(X) is a level- $(1 - \alpha)$ confidence procedure.

• For a test of $H_0: \theta = \theta_0$, the probability of a Type I error (rejecting H_0 when it is true) is

 $\mathbb{P}(X \notin A(\theta_0) | \theta = \theta_0) = \mathbb{P}(\theta_0 \notin C(X), | \theta = \theta_0) \leq \alpha$

since C(X) is a level- $(1 - \alpha)$ confidence procedure. Hence, we have a test at significance level α .

イロト 不得 トイヨト イヨト 二日

A possibly easier way to understand the relationship between significance tests and confidence sets is by defining the set $\{(x, \theta) : (x, \theta) \in \tilde{C}\}$ in the space $\mathcal{X} \times \Theta$ where \tilde{C} is also a set in $\mathcal{X} \times \Theta$.

- For fixed x, define the confidence set as $C(x) = \{\theta : (x, \theta) \in \tilde{C}\}.$
- For fixed θ , define the acceptance region as $A(\theta) = \{x : (x, \theta) \in \tilde{C}\}$.

Example revisited

Letting
$$x = (x_1, \ldots, x_n)$$
, with $z_{\alpha/2}^2 = \chi_{1,\alpha}^2$, define the set

$$\{(x,\theta) : (x,\theta) \in \tilde{C}\} = \{(x,\theta) : -z_{\alpha/2}\sigma/\sqrt{n} < \overline{x} - \theta < z_{\alpha/2}\sigma/\sqrt{n}\}.$$

The confidence set is then

$$C(x) = \left\{ \frac{\theta}{\theta} : \overline{x} - z_{\alpha/2}\sigma/\sqrt{n} < \frac{\theta}{\theta} < \overline{x} + z_{\alpha/2}\sigma/\sqrt{n} \right\}$$

and acceptance region

$$A(\theta) = \left\{ \mathbf{x} : \theta - z_{\alpha/2} \sigma / \sqrt{n} < \overline{\mathbf{x}} < \theta + z_{\alpha/2} \sigma / \sqrt{n} \right\}.$$