Note to encompany Letter For.
Suppose that
$$X = t_{1,..., X_n}$$
 and that $H_n X_{1,5}$ on conditionally independent given Q
with each $X_1 = t_{1,..., X_n}$ and that $H_n X_{1,5}$ on conditionally independent given Q
with each $X_1 = t_{1,..., X_n}$ and that $Q \sim Q_{QMONE}(Z_1, B)$. Consider a pair or brack
of Q noing the loss function $L(Q, A) = (Q - A)^n$.
For the inversitive problem, $[Q, P = Q, f(Q), L(Q, A) = (Q - A)^n]$
The Bacyco rule is $A^n = E(Q) = \infty$ with corresponding Bayes risk
 $P^n(f(Q)) = Var_n(Q) = \infty$.
 B^n
Solve for the devision after A sumple, $[Q, Q] = Q$, $f(Q|X)$, $L(Q, A) = (Q - A)^n$.
 $f(Q|X) \propto f(X|Q)f(Q)$
 $\propto (\prod_{i=1}^{N} Q^{X_i} - \alpha) Q^{X_{i-1}} - B^Q$
 $= Q(-n + \prod_{i=1}^{N} n_i)^{-1} e^{-(B+n)Q}$
Backs rule between
Horse, $Q|Z \sim Q_{QMONEN}(-(n + \prod_{i=1}^{N} X_i, B+n))$
The Backs rule is $A^n = E(Q|X) = \alpha + \prod_{i=1}^{N} Z_i$
 $H_i = \frac{B^n}{B^n} (\frac{1}{B^n}) (\frac{X}{B}) + (\frac{n}{B^n}) (\frac{X}{B})$
The Backs rule is a verient over Q the Backs risk for the invertent division and
A verter Hole that as a inversion A to posterior devision is dominable by A data.
The Back rule is a verient of X is Y or $(Q|X) = \alpha + \prod_{i=1}^{N} Z_i = (N) (\frac{X}{B^n}) (\frac{X}{B^n})$

In this can,
$$5^{*} = \alpha + \frac{2}{12} Y_{i}$$

The risk of the sampling providen is
 $E[Var(O|X)] = E\left(\frac{\alpha + \frac{2}{12}X_{i}}{(\beta + n)^{2}}\right) = \frac{\alpha + \frac{2}{12}E(X_{i})}{(\beta + n)^{2}}$
Now, $E(X_{i}) = E(E(X_{i}|O)) = E(O) = \alpha$ as $O \sim \int_{Originan} (x, \beta)$.
 $X_{i} = \frac{10 \cdot PO(O)}{B}$
Thus, $E[Var(O|X)] = \alpha + n\alpha = \alpha$
 $\frac{B}{B} = \frac{P(\beta + n)}{(\beta + n)^{2}}$
Note that this decreases as n instructes (and $n = 0$ gives $\frac{\alpha}{P^{2}}$, the risk of the
immediate heighter)