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Statistical Decision Theory Overview of Lecture Four

Overview of Lecture Four

Bayesian statistical decision problem, [Θ,D, π(θ), L(θ, d)].

The risk of decision d ∈ D under the distribution π(θ) is
ρ(π(θ), d) =

∫
θ L(θ, d)π(θ) dθ.

The Bayes risk ρ∗(π) minimises the expected loss,

ρ∗(π) = inf
d∈D

ρ(π, d)

with respect to π(θ).

A decision d∗ ∈ D for which ρ(π, d∗) = ρ∗(π) is a Bayes rule against
π(θ).

A decision rule δ(x) is a function from X into D,

We view the set of decision rules, to be our possible set of inferences
about θ when the sample is observed so that Ev(E , x) is δ∗(x)

The Bayes rule for the posterior decision respects the strong
likelihood principle.
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Statistical Decision Theory Introduction

Introduction

Statistical Decision Theory allows us to consider ways to construct
the Ev function that reflects our needs, which will vary from
application to application, and which assesses the consequences of
making a good or bad inference.

The set of possible inferences, or decisions, is termed the decision
space, denoted D.

For each d ∈ D, we want a way to assess the consequence of how
good or bad the choice of decision d was under the event θ.

Definition (Loss function)

A loss function is any function L from Θ×D to [0,∞).

The loss function measures the penalty or error, L(θ, d) of the
decision d when the parameter takes the value θ.

Thus, larger values indicate worse consequences.
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Statistical Decision Theory Introduction

The three main types of inference about θ are

1 point estimation,

2 set estimation,

3 hypothesis testing.

It is a great conceptual and practical simplification that Statistical
Decision Theory distinguishes between these three types simply according
to their decision spaces.

Type of inference Decision space D
Point estimation The parameter space, Θ.

Set estimation A set of subsets of Θ.

Hypothesis testing A specified partition of Θ, denoted H.
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Statistical Decision Theory Bayesian statistical decision theory

Bayesian statistical decision theory

In a Bayesian approach, a statistical decision problem [Θ,D, π(θ), L(θ, d)]
has the following ingredients.

1 The possible values of the parameter: Θ, the parameter space.

2 The set of possible decisions: D, the decision space.
3 The probability distribution on Θ, π(θ). For example,

1 this could be a prior distribution, π(θ) = f (θ).
2 this could be a posterior distribution, π(θ) = f (θ | x) following the

receipt of some data x .
3 this could be a posterior distribution π(θ) = f (θ | x , y) following the

receipt of some data x ,y .

4 The loss function L(θ, d).

In this setting, only θ is random and we can calculate the expected loss, or
risk.
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Statistical Decision Theory Bayesian statistical decision theory

Definition (Risk)

The risk of decision d ∈ D under the distribution π(θ) is

ρ(π(θ), d) =

∫
θ
L(θ, d)π(θ) dθ.

We choose d to minimise this risk.

Definition (Bayes rule and Bayes risk)

The Bayes risk ρ∗(π) minimises the expected loss,

ρ∗(π) = inf
d∈D

ρ(π, d)

with respect to π(θ). A decision d∗ ∈ D for which ρ(π, d∗) = ρ∗(π) is a
Bayes rule against π(θ).

The Bayes rule may not be unique, and in weird cases it might not exist.
We solve [Θ,D, π(θ), L(θ, d)] by finding ρ∗(π) and (at least one) d∗.
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Statistical Decision Theory Bayesian statistical decision theory

Example - quadratic loss

Suppose that Θ ⊂ R and we wish to find a point estimate for θ. We
consider the loss function L(θ, d) = (θ − d)2.

The risk of decision d is

ρ(π, d) = E{L(θ, d) | θ ∼ π(θ)} = E(π){(θ − d)2}
= E(π)(θ

2)− 2dE(π)(θ) + d2,

where E(π)(·) denotes the expectation with respect to π(θ).

Differentiating with respect to d we have

∂

∂d
ρ(π, d) = −2E(π)(θ) + 2d .

So, the Bayes rule is d∗ = E(π)(θ).
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Statistical Decision Theory Bayesian statistical decision theory

Example - quadratic loss (continued)

The corresponding Bayes risk is

ρ∗(π) = ρ(π, d∗) = E(π)(θ
2)− 2d∗E(π)(θ) + (d∗)2

= Var(π)(θ) + (d∗ − E(π)(θ))2

= Var(π)(θ)

where Var(π)(θ) is the variance of θ computed with respect to π(θ).

1 If π(θ) = f (θ), a prior for θ, then the Bayes rule of an immediate
decision is d∗ = E(θ) with corresponding Bayes risk ρ∗ = Var(θ).

2 If we observe sample data x then the Bayes rule given this sample
information is d∗ = E(θ |X ) with corresponding Bayes risk
ρ∗ = Var(θ |X ) as π(θ) = f (θ | x).
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Statistical Decision Theory Bayesian statistical decision theory

Typically we solve:
1 [Θ,D, f (θ), L(θ, d)], the immediate decision problem,
2 [Θ,D, f (θ | x), L(θ, d)], the decision problem after sample information.

We may also want to consider the risk of the sampling procedure,
before observing the sample, to decide whether or not to sample.

We now consider both θ and X as random.

For each possible sample, we need to specify which decision to make.

Definition (Decision rule)

A decision rule δ(x) is a function from X into D,

δ : X → D.

If X = x is the observed value of the sample information then δ(x) is the
decision that will be taken. The collection of all decision rules is denoted
by ∆ so that δ ∈ ∆⇒ δ(x) ∈ D ∀x ∈ X .
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Statistical Decision Theory Bayesian statistical decision theory

We wish to solve the problem [Θ,∆, f (θ, x), L(θ, δ(x))].

Definition (Bayes (decision) rule and risk of the sampling procedure)

The decision rule δ∗ is a Bayes (decision) rule exactly when

E{L(θ, δ∗(X ))} ≤ E{L(θ, δ(X ))}

for all δ(x) ∈ D. The corresponding risk ρ∗ = E{L(θ, δ∗(X ))} is termed
the risk of the sampling procedure.

If the sample information consists of X = (X1, . . . ,Xn) then ρ∗ will be
a function of n and so can be used to help determine sample size
choice.
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Statistical Decision Theory Bayesian statistical decision theory

Bayes rule theorem, BRT

Suppose that a Bayes rule exists for [Θ,D, f (θ | x), L(θ, d)]. Then

δ∗(x) = arg min
d∈D

E(L(θ, d) |X = x).

Proof

Let δ be arbitrary. Then

E{L(θ, δ(X ))} =

∫
x

∫
θ
L(θ, δ(x))f (θ, x) dθdx

=

∫
x

∫
θ
L(θ, δ(x))f (θ | x)f (x) dθdx

=

∫
x

{∫
θ
L(θ, δ(x))f (θ | x) dθ

}
f (x) dx

=

∫
x
E{L(θ, δ(x)) |X}f (x) dx
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Statistical Decision Theory Bayesian statistical decision theory

Proof continued

Now, as f (x) > 0, the δ∗ ∈ ∆ which minimises E{L(θ, δ(X ))} may
equivalently be found as the δ∗ which satisfies

ρ(f (θ), δ∗) = inf
δ(x)∈D

E{L(θ, δ(x)) |X},

giving the result. 2

The minimisation of expected loss over the space of all functions from
X to D can be achieved by the pointwise minimisation over D of the
expected loss conditional on X = x .

The risk of the sampling procedure is ρ∗ = E[E{L(θ, δ∗(x)) |X}].

Example - quadratic loss

We have δ∗ = E(θ |X ) and ρ∗ = E{Var(θ |X )}.
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Statistical Decision Theory Bayesian statistical decision theory

We could consider ∆, the set of decision rules, to be our possible set of
inferences about θ when the sample is observed so that Ev(E , x) is δ∗(x).
We thus have the following result.

Theorem

The Bayes rule for the posterior decision respects the strong likelihood
principle.

Proof

If we have two Bayesian models with the same prior distribution then if
fX1(x1 | θ) = c(x1, x2)fX2(x2 | θ) the corresponding posterior distributions
are the same and so the corresponding Bayes rule (and risk) is the same. 2
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