Statistical Inference Lecture Five https://people.bath.ac.uk/masss/APTS/apts.html

Simon Shaw

University of Bath

APTS, 14-18 December 2020

Overview of Lecture Five

In Lecture Four we considered a Bayesian statistical decision problem, $[\Theta, \mathcal{D}, \pi(\theta), L(\theta, d)].$

- The risk of decision $d \in \mathcal{D}$ under the distribution $\pi(\theta)$ is $\rho(\pi(\theta), d) = \int_{\theta} L(\theta, d) \pi(\theta) d\theta$.
- A decision $d^* \in \mathcal{D}$ for which $\rho(\pi, d^*) = \rho^*(\pi)$ is a Bayes rule.
- The Bayes rule for the posterior decision respects the strong likelihood principle.

Today, we'll look at decision theory from a classical perspective.

• The classical risk for the model $\mathcal{E} = \{\mathcal{X}, \Theta, f_X(x \mid \theta)\}$ is

$$R(\theta,\delta) = \int_X L(\theta,\delta(x))f_X(x \mid \theta) dx.$$

- A decision rule δ_0 is admissible if there is no decision rule δ_1 which dominates it.
- Wald's Complete Class Theorem, CCT: a decision rule is admissible if and only if it is a Bayes rule for some prior distribution.
- Admissible decision rules respect the SLP.

Simon Shaw (University of Bath)

Statistical Inference Lecture Fiv

Admissible rules

- Bayes rules rely upon a prior distribution for θ : the risk is a function of *d* only.
- In classical statistics, there is no distribution for θ and so another approach is needed.

Definition (The classical risk)

For a decision rule $\delta(x)$, the classical risk for the model $\mathcal{E} = \{\mathcal{X}, \Theta, f_X(x \mid \theta)\}$ is

$$R(\theta, \delta) = \int_X L(\theta, \delta(x)) f_X(x \mid \theta) dx.$$

• The classical risk is thus, for each δ , a function of θ .

< □ > < □ > < □ > < □ > < □ > < □ >

Example

Let $X = (X_1, ..., X_n)$ where $X_i \sim N(\theta, \sigma^2)$ and σ^2 is known. Suppose that $L(\theta, d) = (\theta - d)^2$ and consider a conjugate prior $\theta \sim N(\mu_0, \sigma_0^2)$. Possible decision functions include:

- $\delta_1(x) = \overline{x}$, the sample mean.
- $\delta_2(x) = \text{med}\{x_1, \dots, x_n\} = \tilde{x}$, the sample median.
- $\delta_3(x) = \mu_0$, the prior mean.
- $\delta_4(x) = \mu_n$, the posterior mean where

$$\mu_n = \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right)^{-1} \left(\frac{\mu_0}{\sigma_0^2} + \frac{n\overline{\mathbf{x}}}{\sigma^2}\right),$$

the weighted average of the prior and sample mean accorded to their respective precisions.

Example - continued

The respective classical risks are

- $R(\theta, \delta_1) = \frac{\sigma^2}{n}$, a constant for θ , since $\overline{X} \sim N(\theta, \sigma^2/n)$.
- **2** $R(\theta, \delta_2) = \frac{\pi \sigma^2}{2n}$, a constant for θ , since $\tilde{X} \sim N(\theta, \pi \sigma^2/2n)$ (approximately).

$$R(\theta, \delta_3) = (\theta - \mu_0)^2 = \sigma_0^2 \left(\frac{\theta - \mu_0}{\sigma_0}\right)^2.$$

•
$$R(\theta, \delta_4) = \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right)^{-2} \left\{ \frac{1}{\sigma_0^2} \left(\frac{\theta - \mu_0}{\sigma_0}\right)^2 + \frac{n}{\sigma^2} \right\}.$$

Which decision do we choose? We observe that $R(\theta, \delta_1) < R(\theta, \delta_2)$ for all $\theta \in \Theta$ but other comparisons depend upon θ .

• The accepted approach for classical statisticians is to narrow the set of possible decision rules by ruling out those that are obviously bad.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Definition (Admissible decision rule)

A decision rule δ_0 is inadmissible if there exists a decision rule δ_1 which dominates it, that is

 $R(\theta, \delta_1) \leq R(\theta, \delta_0)$

for all $\theta \in \Theta$ with $R(\theta, \delta_1) < R(\theta, \delta_0)$ for at least one value $\theta_0 \in \Theta$. If no such δ_1 exists then δ_0 is admissible.

- If δ_0 is dominated by δ_1 then the classical risk of δ_0 is never smaller than that of δ_1 and δ_1 has a smaller risk for θ_0 .
- Thus, you would never want to use δ_0 .¹
- The accepted approach is to reduce the set of possible decision rules under consideration by only using admissible rules.

¹Here I am assuming that all other considerations are the same in the two cases: e.g. for all $x \in \mathcal{X}$, $\delta_1(x)$ and $\delta_0(x)$ take about the same amount of resource to compute.

• We now show that admissible rules can be related to a Bayes rule δ^* for a prior distribution $\pi(\theta)$.

Theorem

If a prior distribution $\pi(\theta)$ is strictly positive for all Θ with finite Bayes risk and the classical risk, $R(\theta, \delta)$, is a continuous function of θ for all δ , then the Bayes rule δ^* is admissible.

Proof (Robert, 2007)

Letting $f(\theta, x) = f_X(x \mid \theta) \pi(\theta)$ we have

$$\mathbb{E}\{L(\theta,\delta(X))\} = \int_{X} \int_{\theta} L(\theta,\delta(x))f(\theta,x) d\theta dx$$

=
$$\int_{\theta} \left\{ \int_{X} L(\theta,\delta(x))f_{X}(x \mid \theta) dx \right\} \pi(\theta) d\theta$$

=
$$\int_{\theta} R(\theta,\delta)\pi(\theta) d\theta$$

Proof continued

- Suppose that the Bayes rule δ^* is inadmissible and dominated by δ_1 .
- Thus, in an open set C of θ , $R(\theta, \delta_1) < R(\theta, \delta^*)$ with $R(\theta, \delta_1) \le R(\theta, \delta^*)$ elsewhere.
- Consequently, E{L(θ, δ₁(X))} < E{L(θ, δ^{*}(X))} which is a contradiction to δ^{*} being the Bayes rule.
- The relationship between a Bayes rule with prior $\pi(\theta)$ and an admissible decision rule is even stronger.
- The following result was derived by Abraham Wald (1902-1950)

Wald's Complete Class Theorem, CCT

In the case where the parameter space Θ and sample space \mathcal{X} are finite, a decision rule δ is admissible if and only if it is a Bayes rule for some prior distribution $\pi(\theta)$ with strictly positive values.

(日)

- An illuminating blackboard proof of this result can be found in Cox and Hinkley (1974, Section 11.6).
- There are generalisations of this theorem to non-finite decision sets, parameter spaces, and sample spaces but the results are highly technical.
- We'll proceed assuming the more general result, which is that a decision rule is admissible if and only if it is a Bayes rule for some prior distribution $\pi(\theta)$, which holds for practical purposes.

So what does the CCT say?

- Admissible decision rules respect the SLP. This follows from the fact that admissible rules are Bayes rules which respect the SLP. This provides support for using admissible decision rules.
- **2** If you select a Bayes rule according to some positive prior distribution $\pi(\theta)$ then you cannot ever choose an inadmissible decision rule.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト