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Statistical Decision Theory Overview of Lecture Five

Overview of Lecture Five
In Lecture Four we considered a Bayesian statistical decision problem,
[Θ,D, π(θ), L(θ, d)].

The risk of decision d ∈ D under the distribution π(θ) is
ρ(π(θ), d) =

∫
θ L(θ, d)π(θ) dθ.

A decision d∗ ∈ D for which ρ(π, d∗) = ρ∗(π) is a Bayes rule.
The Bayes rule for the posterior decision respects the strong
likelihood principle.

Today, we’ll look at decision theory from a classical perspective.

The classical risk for the model E = {X ,Θ, fX (x | θ)} is

R(θ, δ) =

∫
X
L(θ, δ(x))fX (x | θ) dx .

A decision rule δ0 is admissible if there is no decision rule δ1 which
dominates it.
Wald’s Complete Class Theorem, CCT: a decision rule is admissible if
and only if it is a Bayes rule for some prior distribution.
Admissible decision rules respect the SLP.
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Statistical Decision Theory Admissible rules

Admissible rules

Bayes rules rely upon a prior distribution for θ: the risk is a function
of d only.

In classical statistics, there is no distribution for θ and so another
approach is needed.

Definition (The classical risk)

For a decision rule δ(x), the classical risk for the model
E = {X ,Θ, fX (x | θ)} is

R(θ, δ) =

∫
X
L(θ, δ(x))fX (x | θ) dx .

The classical risk is thus, for each δ, a function of θ.
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Statistical Decision Theory Admissible rules

Example

Let X = (X1, . . . ,Xn) where Xi ∼ N(θ, σ2) and σ2 is known. Suppose that
L(θ, d) = (θ − d)2 and consider a conjugate prior θ ∼ N(µ0, σ

2
0). Possible

decision functions include:

1 δ1(x) = x , the sample mean.

2 δ2(x) = med{x1, . . . , xn} = x̃ , the sample median.

3 δ3(x) = µ0, the prior mean.

4 δ4(x) = µn, the posterior mean where

µn =

(
1

σ20
+

n

σ2

)−1(µ0
σ20

+
nx

σ2

)
,

the weighted average of the prior and sample mean accorded to their
respective precisions.
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Statistical Decision Theory Admissible rules

Example - continued

The respective classical risks are

1 R(θ, δ1) = σ2

n , a constant for θ, since X ∼ N(θ, σ2/n).

2 R(θ, δ2) = πσ2

2n , a constant for θ, since X̃ ∼ N(θ, πσ2/2n)
(approximately).

3 R(θ, δ3) = (θ − µ0)2 = σ20

(
θ−µ0
σ0

)2
.

4 R(θ, δ4) =
(

1
σ2
0

+ n
σ2

)−2
{

1
σ2
0

(
θ−µ0
σ0

)2
+ n

σ2

}
.

Which decision do we choose? We observe that R(θ, δ1) < R(θ, δ2) for all
θ ∈ Θ but other comparisons depend upon θ.

The accepted approach for classical statisticians is to narrow the set
of possible decision rules by ruling out those that are obviously bad.
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Statistical Decision Theory Admissible rules

Definition (Admissible decision rule)

A decision rule δ0 is inadmissible if there exists a decision rule δ1 which
dominates it, that is

R(θ, δ1) ≤ R(θ, δ0)

for all θ ∈ Θ with R(θ, δ1) < R(θ, δ0) for at least one value θ0 ∈ Θ. If no
such δ1 exists then δ0 is admissible.

If δ0 is dominated by δ1 then the classical risk of δ0 is never smaller
than that of δ1 and δ1 has a smaller risk for θ0.

Thus, you would never want to use δ0.1

The accepted approach is to reduce the set of possible decision rules
under consideration by only using admissible rules.

1Here I am assuming that all other considerations are the same in the two cases: e.g.
for all x ∈ X , δ1(x) and δ0(x) take about the same amount of resource to compute.
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Statistical Decision Theory Admissible rules

We now show that admissible rules can be related to a Bayes rule δ∗

for a prior distribution π(θ).

Theorem

If a prior distribution π(θ) is strictly positive for all Θ with finite Bayes risk
and the classical risk, R(θ, δ), is a continuous function of θ for all δ, then
the Bayes rule δ∗ is admissible.

Proof (Robert, 2007)

Letting f (θ, x) = fX (x | θ)π(θ) we have

E{L(θ, δ(X ))} =

∫
x

∫
θ
L(θ, δ(x))f (θ, x) dθdx

=

∫
θ

{∫
x
L(θ, δ(x))fX (x | θ) dx

}
π(θ) dθ

=

∫
θ
R(θ, δ)π(θ) dθ
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Statistical Decision Theory Admissible rules

Proof continued

Suppose that the Bayes rule δ∗ is inadmissible and dominated by δ1.

Thus, in an open set C of θ, R(θ, δ1) < R(θ, δ∗) with
R(θ, δ1) ≤ R(θ, δ∗) elsewhere.

Consequently, E{L(θ, δ1(X ))} < E{L(θ, δ∗(X ))} which is a
contradiction to δ∗ being the Bayes rule. 2

The relationship between a Bayes rule with prior π(θ) and an
admissible decision rule is even stronger.

The following result was derived by Abraham Wald (1902-1950)

Wald’s Complete Class Theorem, CCT

In the case where the parameter space Θ and sample space X are finite, a
decision rule δ is admissible if and only if it is a Bayes rule for some prior
distribution π(θ) with strictly positive values.
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Statistical Decision Theory Admissible rules

An illuminating blackboard proof of this result can be found in Cox
and Hinkley (1974, Section 11.6).

There are generalisations of this theorem to non-finite decision sets,
parameter spaces, and sample spaces but the results are highly
technical.

We’ll proceed assuming the more general result, which is that a
decision rule is admissible if and only if it is a Bayes rule for some
prior distribution π(θ), which holds for practical purposes.

So what does the CCT say?

1 Admissible decision rules respect the SLP. This follows from the fact
that admissible rules are Bayes rules which respect the SLP. This
provides support for using admissible decision rules.

2 If you select a Bayes rule according to some positive prior distribution
π(θ) then you cannot ever choose an inadmissible decision rule.
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