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Abstract
In this paper we consider the numerical computation

of band gaps in photonic crystal fibres. We approximate
the solution to a variational eigenvalue problem using the
planewave expansion method (spectral Galerkin method).
As well as presenting implementation and error analysis
results we consider solving a modified problem where the
piecewise constant coefficient function is replaced with
a smooth function. The error analysis for the smooth
problem is also presented and we answer the question:
Is smoothing worth it?

Introduction
Photonic Crystal Fibres (PCFs) [1] are optical fibres

that have a core surrounded by cladding. The structure
of a PCF is described by its refractive indexn. n is con-
stant along the length of the fibre (z-axis) and we write
n = n(x, y). The functionn(x, y) is a piecewise constant
function representing the refractive index of two materi-
als. Light will be described by its frequencyω and its
propagation constant in thez-directionβ.

For certain designs of cladding and fixedω, light prop-
agation in the cladding may be forbidden for some values
of β. These values ofβ are called ‘band gaps’. Our task
is to approximate the band gaps of a particular PCF and
ω by approximating the solution to Maxwell’s equations.

We will restrict ourselves to the case wheren =
n(x). Physically, this is the case of a radially symmet-
ric PCF or a planar PCF. Using time harmonic, source
free Maxwell’s equations for a non-magnetic material the
problem decouples into two eigenvalue problems
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hx is thex-component of the magnetic field,hy is they-
component of the magnetic field,Λ is the period of the
microstucture in the cladding andλ0 is the wavelength
of light relative to Λ. The remaining components of
the magnetic and electric fields are uniquely determined
givenβ, hx andhy.

We will work with the TE mode problem multiplied by
−1 and shifted byK (making the operator positive defi-
nite). Similar numerical results are observed with the TM
mode problem, however, we have not obtained any theo-
retical results for the TM mode problem. We apply the su-
percell method [2], [3] followed by the Floquet transform.
Let Q = [−1

2
, 1

2
]. The variational form of the problem is:

For a fixedξ ∈ [−π, π], find an eigenpair(λ, u) where
λ ∈ C and0 6= u ∈ H1

p(Q) = {u ∈ H1(Q) : u( 1

2
) =

u(− 1

2
)} with ‖u‖H1 = 1 such that

a(u, v) = λb(u, v) ∀v ∈ H1
p(Q) (1)

where
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∫

Q
uv.

It is sufficient to solve (1) forξ = 0 andπ [4]. We want
to find a few of the smallest eigenvalues of (1).

In this work we try two methods to solve (1). Method 1
applies the planewave expansion method. In Method 2 we
modify the problem so thatγ(x) is smooth and then apply
the planewave expansion method. We try this because the
planewave expansion method is expected to perform bet-
ter when the eigenfunctions are smooth. We present the
error analysis for both of these methods together a corol-
lary that considers the case where we must approximate
the fourier coefficients ofγ(x) in Method 1.

For details and proofs of the implementation and error
analysis please refer to our paper in preparation [5].

In the following, C . D (for two quantitiesC,D)
means thatC/D is bounded above independent of the dis-
cretisation parametersN , M and∆ (defined below).



Methods and Convergence Analysis
Method 1 - discontinuous refractive index

We approximate (1) by using the planewave expan-
sion (spectral Galerkin) method. We replaceH1

p(Q) in
(1) with a finite dimensional spaceSN = span{ei2πnx :
|n| ≤ N} to get the following problem:

For a fixedξ ∈ [−π, π], find an eigenpair(λN , uN )
whereλ ∈ C and0 6= u ∈ SN with ‖uN‖H1 = 1 such
that

a(uN , vN ) = λb(uN , vN ) ∀vN ∈ SN . (2)

This problem is equivalent to the following(2N +1)×
(2N + 1) matrix eigenvalue problem

Au = λNu

whereu is a vector of Fourier coefficients ofuN . Accord-
ing to the definition ofa(·, ·) we can writeA as

A = D − V + KI

where D is a diagonal matrix (derivative contributions
from a(·, ·)), V is a Toeplitz matrix with entries that are
the fourier coefficients ofγ(x) andI is the identity ma-
trix. The smallest few eigenvalues ofA are found us-
ing a subspace iteration method where linear systems
are solved using the preconditioned conjugate gradient
method (PCG). Matrix-vector products can be computed
in O(N log N) operations using two fast fourier trans-
forms (FFTs).

Theorem. Let C > 1 and DA = diag(A). Then there
exists aK such thatκ(D−1

A A) ≤ C.

The error analysis results are expressed in the following
theorem.

Theorem. Let (λ, u) be an eigenpair of (1) and
(λN , uN ) be an eigenpair of(2) with ‖u − uN‖H1 <
‖u + uN‖H1 . Then

‖u − uN‖H1 . N−3/2

|λ − λN | . N−3

In the method above we use the exact Fourier coeffi-
cients ofγ(x). In practice we may need to approximate
the Fourier coefficients ofγ(x). A method for approx-
imating the Fourier coefficients is to sampleγ(x) on a
uniform grid and then compute the discrete Fourier trans-
form of the samples (using FFT). The error analysis is
expressed in the following corollary.

Corollary. Let M be the number of samples taken of
γ(x), (λ, u) be an eigenpair of(1) and (λN , uN ) be an
eigenpair of (2) (computed using approximate Fourier
coefficients ofγ(x)) with ‖u − uN‖H1 < ‖u + uN‖H1 .
Then

‖u − uN‖H1 . N−3/2 + M−1

|λ − λN | . N−3 + M−1

In practice we chooseM = O(N) and this reduces
the rate of convergence for the method toO(N) for both
eigenfunction and eigenvalue error. We do not choose
M = O(N r) for r > 1 since the computational cost of
the method isO(N log N) + O(M log M).

Method 2 - smoothed refractive index

It has been proposed [6] that smoothingγ(x) before
applying the planewave expansion method may improve
Method 1. Our error analysis shows that the rate of con-
vergence is no better than Method 1.

The method for smoothing is to replaceγ(x) with
γ̃(x) = G ∗ γ(x) whereG(x) is the GaussianG(x) =

1√
2π∆

exp(− x2

2∆2 ), where we specify∆, and then apply
the planewave method as in Method 1. Large∆ results
in more smoothing. The error analysis splits into two
parts: the error introduced by smoothing and the error in-
troduced by using the planewave expansion method. Us-
ing the triangle inequality we add the two errors together
to obtain the following theorem

Theorem. Letp ∈ N∪{0} and let(λ, u) be an eigenpair
of (1) and (λ̃N , ũN ) be an eigenpair of(2) with γ(x)
replaced bỹγ(x) such that‖u − ũN‖H1 < ‖u + ũN‖H1 .
Then

‖u − ũN‖H1 . ∆3/2 + ∆−pN−p−3/2

|λ − λ̃N | . ∆3/2 + ∆−2pN−2p−3

Trying to balance the two error terms, we choose∆ =
N r for somer ∈ R and find that choosing∆ = N−1

is the best choice ofr for the eigenfunction error but this
only recovers the same rate of convergence as in Method
1. If we balance the the eigenvalue error terms then we
find thatr = − 3+2p

3/2+2p and if we chooser = −2 then we
recover the rate of convergence seen in Method 1. Other
choices ofr result in slower rates of convergence. We
conclude that no amount of smoothing will improve the
rate of convergence for the planewave expansion method.



Numerical Results
We now present an example to support the results from

the theorems of the previous section. We chooseγ(x)
as in Figure 1 with1.0 ≤ n ≤ 1.4 andλ0 = 0.5. We
then apply Method 1 for varyingN . The errors of the
1st and 5th eigenpairs have been plotted in Figure 2. The
reference solution was computed withN = 216 − 1.
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A plot of γ for a 1D photonic crystal fibre

Figure 1: Plot ofγ.
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Figure 2: Plot of the errors for Method 1.

References
[1] J.C. Knight, “Photonic crystal fibres”, Nature, vol. 424,

pp. 847-851, 2003.

[2] J.M. Pottage, D.M. Bird, T.D. Hedley, T.A. Birks, J.C.
Knight, P.St.J. Russell, “Robust photonic band gaps for
hollow core guidance in PCF made from high index
glass”, Optics Express, vol. 11, pp. 2854-2861, 2003.

[3] S. Soussi, “Convergence of the supercell method for
defect modes calculations in photonic crystals”, SIAM
Journal of Numerical Analysis, vol. 43, pp. 1175-1201,
2005.

[4] M. Reed & B. Simon, Methods of Modern Mathematical
Physics Vol. 4: Analysis of Operators, Academic Press,
New York, 1978.

[5] R.A. Norton & R. Scheichl, “Numerical Computation of
Band Gaps in Photonic Crystal Fibres”, in preparation.

[6] G.J. Pearce, Plane-wave methods for modelling photonic
crystal fibre, Ph.D. thesis, University of Bath, 2006.


