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Lecture 4
Bayesian Inverse Problems – Conditioning on Data

Inverse Problems

Least Squares Minimisation and Regularisation

Bayes’ Rule and Bayesian Interpretation of Inverse Problems

Metropolis-Hastings Markov Chain Monte Carlo

Links to what I have told you so far

Multilevel Metropolis-Hastings Algorithm

Some other areas of interest:

Data Assimilation and Filtering
Rare Event Estimation
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Inverse Problems
What is an Inverse Problem?

Inverse problems are concerned with finding an unknown (or
uncertain) parameter vector (or field) x from a set of typically
noisy and incomplete measurements

y = H(x) + η

where η describes the noise process and H(·) is the forward operator
which typically encodes a physical cause-to-consequence mapping.
Typically it has a unique solution and depends continuously on data.

The inverse map “H−1” (from y to x) on the other hand is typically
(a) unbounded, (b) has multiple or (c) no solutions.

(An ill-posed or ill-conditioned problem in the classical setting; Hadamard 1923.)
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Inverse Problems
Examples

Deblurring a noisy image
y : image; H : blurring operator

Seismic
y : reflected wave image;H : wave propagation

Computer tomography
y : radial x-ray attenuation; H : line integral of absorption

Weather forecasting
y : satellite data, sparse indirect measurem.; H : atmospheric flow

Oil reservoir simulation
y : well pressure/flow rates, H : subsurface flow

Predator-prey model
y : state of u2(T ); H : dynamical system
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Inverse Problems
Linear Inverse Problems – Least Squares

Let us consider the linear forward operator H(x) = Ax from Rm to Rn

with A ∈ Rm×n (n > m, full rank) and assume that η ∼ N(0, α2I ).

Least squares minimisation would seek the “best” solution û by
minimising the residual norm (or the sum of squares)

argminx∈Rm ‖y − Ax‖2

In the linear case this actually leads to a unique map

x̂ = (ATA)−1ATy

which also minimises the mean-square error E [‖x̂ − x‖2] and the
covariance matrix E

[
(x̂ − x)(x̂ − x)T

]
and satisfies

E [x̂ ] = x and E
[
(x̂ − x)(x̂ − x)T

]
= α2(ATA)−1
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Inverse Problems
Singular Value Decomposition and Error Amplification

Let A = UΣV T be the singular value decomposition of A with
Σ = diag(σ1, . . . , σm) and U = [u1, ..., um], V = [v1, ..., vn] unitary.
Then we can show (Exercise) that

x̂ =
m∑

k=1

uT
k y

σk
vk = x +

m∑
k=1

uT
k η

σk
vk

In typical physical systems σk � 1, for k � 1, and so the “high
frequency” error components uT

k η get amplified with 1/σk .

In addition, if n < m or if A is not full rank, then ATA is not
invertible and so x̂ is not unique (what is the physically best choice?)
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Inverse Problems
Tikhonov Regularisation

A technique that guarantees uniqueness of the least squares
minimiser (in the linear case) and prevents amplification of high
frequency errors is regularisation, i.e solving instead

argmin
x∈Rm

α−2‖y − Ax‖2 + δ‖x − x0‖2

δ is called the regularisation parameter and controls how much we
trust the data or how much we trust the a priori knowledge about x .

In general, with η ∼ N(0,Q) and H : X → Rn we solve

argmin
x∈X

‖y − H(x)‖2
Q−1 + ‖x − x0‖2

R−1
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Inverse Problems
Bayesian interpretation

The (physical) model gives us π(y |x), the conditional probability of
observing y given x . However, to do UQ, to predict, to control, or to
optimise we often are realy interested in π(x |y), the conditional
probability of possible causes x given the observed data y .

A simple consequence of P(A,B) = P(A|B)P(B) = P(B |A)P(A) in
probability is Bayes’ rule

P(A|B) =
P(B |A)P(A)

P(B)
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Inverse Problems
Bayesian interpretation

In terms of probability densities Bayes’ rule states

π(x |y) =
π(y |x)π(x)

π(y)

π(x) is the prior density –
represents what we know/believe about x prior to observing y

π(x |y) is the posterior density –
represents what we know about x after observing y

π(y |x) is the likelihood –
represents (physical) model; how likely to observe y given x

π(y) is the marginal of π(x , y) over all possible x
(a scaling factor that can be determined by normalisation)
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Inverse Problems
Link between Bayes’ Rule and Tikhonov Regularisation

Hence, the Bayesian interpretation of the least squares solution x̂ , is
to find the maximum likelihood estimate.

The Bayesian interpretation of the regularisation term is that the
prior distribution π(x) for x is N(x0,R).

The solution of the regularised least squares problem is called the
maximum a posteriori (MAP) estimator. In the simple linear case
above, it is

x̂MAP = (ATA + δα2I )−1(ATy + δα2x0)

However, in the Bayesian setting, the full posterior contains more
information than the MAP estimator alone, e.g. the posterior
covariance matrix P−1 = (ATQ−1A + R−1)−1 reveals those
components of x that are relatively more or less certain.
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Metropolis-Hastings Markov Chain Monte Carlo

Can we do better than just finding the MAP estimator & the
posterior covariance matrix?

YES. We can sample from the posterior distribution using . . .

ALGORITHM 1 (Metropolis-Hastings Markov Chain Monte Carlo)

Choose initial state x0 ∈ X .
At state n generate proposal x ′ ∈ X from distribution q(x ′ | xn)
e.g. via a random walk: x ′ ∼ N(xn, ε2I)

Accept x ′ as a sample with probability

α(x ′|xn) = min

(
1,

π(x ′|y) q(xn | y)

π(xn|x ′) q(x ′ | xn)

)
i.e. xn+1 = x ′ with probability α(x ′|xn); otherwise xn+1 = xn.
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Metropolis-Hastings Markov Chain Monte Carlo

Theorem (Metropolis et al. 1953, Hastings 1970)

Let π(x |y) be a given probability distribution. The Markov chain
simulated by the Metropolis-Hastings algorithm is reversible with
respect to π(x |y). If it is also irreducible and aperiodic, then it
defines an ergodic Markov chain with unique equilibrium distribution
π(x |y) (for any initial state x0).

The samples f (xn) of some output function (“statistic”) f (·) can be
used for inference as usual (even though not i.i.d.):

Eπ(x |y) [f (x)] ≈ 1

N

N∑
i=1

f (xn) := f̂ MetH
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Bayesian Uncertainty Quantification
Links to what I have told you so far

What does this all have to do with UQ and with what I have
told you about so far?

Bayesian statisticians often think of data as the “reality” and use
the “prior” only to smooth the problem. We find sentences like

“It is better to use an uniformative prior.”
“Let the data speak.”
. . .

Bayesian Uncertainty Quantification (in the sense that I am using it)

is different in that

we believe in our physical model, the prior, and even require
certain consistency between components
we usually have extremly limited output data (n v. small) and
want to infer information about an ∞–dimensional parameter x .
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Bayesian Uncertainty Quantification
Links to what I have told you so far

In context of what I said so far, we essentially want to
“condition” our uncertain models on information about input
data (prior) and output data (likelihood).

In the context of large-scale problems with high-dimensional
input spaces, MCMC is even less tractable than standard MC.

Again we have to distinguish whether we are interested

only in statistics about some Quantity of Interest (quadrature
w.r.t. the posterior or
in the whole posterior distribution of the inputs (and the state)

Often people resort to “surrogates”/“emulators” to make it
computationally tractable (can use stochastic collocation)

Can be put in ∞-dim’l setting (important for dimension independence)
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Bayesian Uncertainty Quantification
Example 1: Predator-Prey Problem

In the predator-prey model, a typical variation on the problem studied
so far that leads to a Bayesian UQ problem is:

1 Prior: u0 ∼ u0 + U(−ε, ε)
2 Data: uobs

2 at time T with measurement error η ∼ N(0, α2) ⇒
likelihood model (w. bias)

πM(uobs
2 |u0) h exp

(
−|uobs

2 − uM,2(u0)|
α2

)
3 Posterior: πM(u0|uobs

2 ) h πM(uobs
2 |u0) π(u0)︸ ︷︷ ︸

=const

4 Statistic: Eπ(uobs
2 |u0) [GM(u0)] (expected value under the posterior)

Depending on size of α2 this leads to a vastly reduced uncertainty in
expected value of u1(T ). Can be computed w. Metropolis-Hastings MCMC.
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Data for Radioactive Waste Example (WIPP)
Prior and Likelihood Model [Ernst et al, 2014]

log k ≈
s∑

j=1

√
µj φ

cond
j (x)Zj(ω) with i.i.d. Zj ∼ N(0, 1)

KL modes (j = 1, 2, 9, 16) conditioned on 38 permeability observations
(low-rank change to covariance operator)

Prior model: πs0(Z) is the multivariate Gaussian density.
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Data for Radioactive Waste Example (WIPP)
Prior and Likelihood Model [Ernst et al, 2014]

yobs are pressure
measurements.

Fh(Z) is the model
response.

Likelihood model: assuming Gaussian errors with covariance Σobs

πh,s(yobs|Z) h exp(−‖yobs − Fh(Z)‖2
Σobs)

Bayes’ rule: πh,s(Z | yobs) h πh,s(yobs |Z)πs0(Z)
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ALGORITHM 1 (Standard Metropolis Hastings MCMC)

Choose Z0
s .

At state n generate proposal Z′s from distribution qtrans(Z′s |Zn
s )

(e.g. preconditioned Crank-Nicholson random walk [Cotter et al, 2012])

Accept Z′s as a sample with probability

αh,s(Z′s |Zn
s ) = min

(
1,
πh,s(Z′s) qtrans(Zn

s |Z′s)

πh,s(Zn
s ) qtrans(Z′s |Zn

s )

)
i.e. Zn+1

s = Z′s with probability αh,s ; otherwise Zn+1
s = Zn

s .

Samples Zn
s used as usual for inference (even though not i.i.d.):

Eπh,s [Q] ≈ Eπh,s [Qh,s ] ≈ 1

N

N∑
i=1

Q
(n)
h,s := Q̂MetH

where Q
(n)
h,s = G

(
Xh(Z

(n)
s )
)

is the nth sample of Q using Model(h, s).
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Markov Chain Monte Carlo
Comments

Pros:

Produces a Markov chain {Zn
s }n∈N, with Zn

s ∼ πh,s as n→∞.

Can be made dimension independent (e.g. via pCN sampler).

Therefore often referred to as “gold standard” (Stuart et al)

Cons:

Evaluation of αh,s = αh,s(Z′s |Zn
s ) very expensive for small h.

(heterogeneous deterministic PDE: Cost/sample ≥ O(M) = O(h−d))

Acceptance rate αh,s can be very low for large s (< 10%).

Cost = O(ε−2− γ
α ), but depends on αh,s & burn-in

Prohibitively expensive – significantly more than plain-vanilla MC!
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Multilevel Markov Chain Monte Carlo
For simplicity s` = s`−1.

What were the key ingredients of “standard” multilevel Monte Carlo?

Telescoping sum: E [QL] = E [Q0] +
∑L

`=1 E [Q` − Q`−1]

Models on coarser levels much cheaper to solve (M0 � ML).

V[Q` −Q`−1]
`→∞−→→ 0 as =⇒ much fewer samples on finer levels.

But Important! In MCMC the target distribution π` depends on `:

(on level ` let us denote the posterior by π` := πh`,s`(·|yobs))

EπL [QL] = Eπ0 [Q0] +
∑

`
Eπ` [Q`]− Eπ`−1 [Q`−1]EπL [QL] = Eπ0 [Q0]︸ ︷︷ ︸

standard MCMC

+
∑

`
Eπ` [Q`]− Eπ`−1 [Q`−1]︸ ︷︷ ︸

multilevel MCMC (NEW)

Q̂MLMetH
h,s :=

1

N0

N0∑
n=1

Q0(Zn
0,0) +

L∑
`=1

1

N`

N∑̀
n=1

(
Q`(Zn

`,`)− Q`−1(Zn
`,`−1)

)
In reality, we also reduce number s`−1 of random parameters on coarser levels.
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Multilevel Markov Chain Monte Carlo
Dodwell, Ketelsen, RS, Teckentrup, 2013 . . . 2015

ALGORITHM 2 (Multilevel Metropolis Hastings MCMC for Q` − Q`−1)

At states Zn
`,0, . . . ,Z

n
`,` of `+ 1 Markov chains on levels 0, . . . , `:

1 k = 0: Set z0
0 := Zn

`,0 and generate T0 :=
∏`−1

j=0 tj samples zi0 ∼ π0

(coarsest posterior) via Algorithm 1 with pCN sampler. Choice of t` ?

2 k > 0: Set z0
k := Zn

`,k and generate Tk :=
∏`−1

j=k tj samples zik ∼ πk :

(a) Propose z′k = z
(i+1)tk−1

k−1 with qML
k (z′k |zik) = πk−1(z′k) Subsample!

(b) Accept z′k with probability

αML
` (z′k |zik) = min

(
1,
πk(z′k) qML

k (znk |z′k)

πk(znk) qML(z′k | znk)

)

i.e. set zi+1
k = z′k with prob. αML

` (z′k |zik); otherwise zi+1
k = zik

3 Set Zn+1
`,k := zTk

k , for all k = 0, . . . , `.
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Multilevel Markov Chain Monte Carlo
Dodwell, Ketelsen, RS, Teckentrup, 2013 . . . 2015

For sufficiently big subsampling rates tk−1, we have (for n→∞) an
independence sampler from πk−1, i.e. z′k ∼ πk−1 independent of zik .

Hence, {Zn
`,k}n≥1 is a Markov chain converging to πk , k = 0, . . . , `

(since it is just standard Metropolis-Hastings)

The multilevel algorithm is consistent (= no bias between levels)
since both {Zn

`,`}n≥1 and {Zn
`+1,`}n≥1 are samples from π` in the limit.

But states may differ between level ` and `− 1:

State n + 1 Level `− 1 Level `

accept on level ` Zn+1
`,`−1 Zn+1

`,`−1

reject on level ` Zn+1
`,`−1 Zn

`,`

In the second case the variance will in general not be small, but this does

not happen often since acceptance probability αML
`

`→∞−→ 1 (see below).
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Complexity Theorem for Multilevel MCMC

Suppose there are constants α, β, γ, η > 0 such that, for all ` = 0, . . . , L,

M1 |Eπ` [Q`]− Eπ∞ [Q]| = O(M−α` ) (discretisation and truncation error)

M2a Valg[Ŷ`] +
(
Ealg[Ŷ`]− Eπ`,π`−1 [Ŷ`]

)2
= Vπ`,π`−1 [Y`] O(N−1

` )

(MCMC-error)

M2b Vπ`,π`−1 [Y`] = O(M−β` ) (multilevel variance decay)

M3 Cost(Ŷ MC
` ) = O(N`M

γ
` ). (cost per sample)

Then there exist L, {N`}L`=0 s.t. MSE < ε2 and

Cε(Q̂
MLMetH
h,s ) = ε−2−max(0, γ−β

α ) (+ log-factor when β = γ)

(This is totally abstract & applies not only to our subsurface model problem!)

Recall: for standard MCMC (under same assumptions) Cost . ε−2−γ/α.
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FE Analysis – Verifying Assumptions M1-M3
2D lognormal diffusion problem & linear FEs

Proof of Assumptions M1 and M3 similar to i.i.d. case.

M2a not specific to multilevel MCMC; first steps to prove it are in
[Hairer, Stuart, Vollmer, ’11] (but still unproved for lognormal case!)

Key Lemma for M2b (Dodwell, Ketelsen, RS, Teckentrup)

Let ν = 0.5 and assume that F h is Fréchet diff’ble and suff’ly smooth.
Then

Eπ`,π`
[
1−αML

` (·|·)
]

= O(h1−δ
`−1 + s

−1/2+δ
`−1 ) ∀δ > 0.

Theorem (Dodwell, Ketelsen, RS, Teckentrup)

Let {Zn
`,`}n≥0 and {Zn

`,`−1}n≥0 be from Algorithm 2 and choose s` & h−2
` .

Then
Vπ`,π`−1

[
Q`(Zn

`,`)− Q`−1(Zn
`,`−1)

]
= O(h1−δ

` ) ∀δ > 0

and M2b holds for any β < 1. (unfortunately β = α not 2α)
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FE Analysis – Verifying Assumptions M1-M3
2D lognormal diffusion problem & linear FEs
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Numerical Example
2D lognormal diffusion problem on D = (0, 1)2 with linear FEs

Prior: Separable exponential covariance with σ2 = 1, λ = 0.5.

“Data” yobs: Pressure at 16 points x∗j ∈ D and Σobs = 10−4I .
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Numerical Example
2D lognormal diffusion problem on D = (0, 1)2 with linear FEs

Quantity of interest: Q =
∫ 1

0 k∇p dx2; coarsest mesh size: h0 = 1
9

Two-level method with #modes: s0 = s1 = 20

Autocorrelation fct. (a.c. time ≈ 86) E[Ŷ1] w. 95% confidence interval
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Numerical Example
2D lognormal diffusion problem on D = (0, 1)2 with linear FEs

5-level method w. #modes increasing from s0 = 50 to s4 = 150
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Additional Comments on MLMCMC

We use multiple chains to reduce dependence on initial state

Using a special “preconditioned” random walk to be dimension
independent (Assumption M2) from [Cotter, Dashti, Stuart, 2012]

Reduced autocorrelation related to delayed acceptance method
[Christen, Fox, 2005], [Cui, Fox, O’Sullivan, 2011]

Multilevel burn-in also much cheaper
(related to two-level work in [Efendiev, Hou, Luo, 2005])

Related theoretical work by [Hoang, Schwab, Stuart, 2013]
(different multilevel splitting and so far no numerics to compare)

pCN random walk not specific; can use other proposals
(e.g. use Hessian info about posterior [Cui, Law, Marzouk, ’14])
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Some Other Interesting Directions/Open Questions

Application in other areas (especially for multilevel MCMC):
other (nonlinear) PDEs, big data, geostatistics, imaging, physics

[Elsakout, Christie, Lord, ’15]

Multilevel filtering, data assimiliation, sequential MC
[Hoel, Law, Tempone, ’15], [Beskos, Jasra, Law, Tempone, Zhou, ’15],

[Gregory, Cotter, Reich, ’15], [Jasra, Kamatani, Law, Zhou, ’15]

Multilevel methods for rare events – “subset simulation”
[Elfverson et al, ’14], [Ullmann, Papaioannou, ’14], [Elfverson, RS, in prep]

Multilevel stochastic simulation in systems biology, chemistry..
[Anderson, Higham ’12], [Lester, Yates, Giles, Baker ’15], [Moraes et al ’15]

Multilevel high-order QMC & adaptive stochastic collocation
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Conclusions

I hope the course gave you a basic understanding of the
questions & challenges in modern uncertainty quantification.

The focus of the course was on the design of computationally
tractable and efficient methods for high-dimensional and
large-scale UQ problems in science and engineering.

Of course it was only possible to give you a snapshot of the
available methods and we went over some of them too quickly.

Finally, I apologise that the course was of course also strongly
biased in the direction of my research and my expertise and was
probably not doing some other methods enough justice.

But I hope I managed to interest you in the subject and persuade
you of the huge potential of multilevel sampling methods.

I would be very happy to discuss possible applications and
projects on this subject related to your PhD projects with you.
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