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Introduction

The problem we are going to consider in this paper is the following second-order elliptic problem
in velocity-pressure formulation

~u+K ~∇p = ~g , (1)
~∇ · ~u = 0 , (2)

over a polyhedral simply connected three-dimensional domain Ω. Such a problem arises for
example in groundwater flow or oil recovery simulations, where ~u corresponds to the velocity,
p to the pressure, and K is permeability divided by dynamic viscosity. We are interested in
solving system (1), (2) subject to mixed boundary conditions

p = pD on ΓD, and ~u · ~ν = 0 on ΓN , (3)

where ΓD and ΓN are assumed to partition the boundary of Ω, and ~ν(~x) denotes the outward
unit normal from Ω at ~x ∈ ΓN . Additionally we assume that each connected component of ΓN

is simply connected.
The numerical treatment of (1 - 3) involves the solution of usually very large indefinite linear

equation systems. In this paper we describe a very efficient and practicable iterative method to
solve these systems by decoupling the vector of velocities from the vector of pressures, resulting
in a symmetric positive definite velocity system and a triangular pressure system. The crucial
step in this approach is the construction of a basis for the divergence-free Raviart-Thomas-
Nédélec elements (using results from Algebraic Topology and Graph Theory).

Mixed Finite Element Discretisation

We discretise (1 - 3) using the lowest order mixed Raviart-Thomas-Nédélec elements on tetra-
hedral meshes ([8]). First we put (1 - 3) in weak form. We introduce the space

H0,N (div,Ω) := {~v ∈ L2(Ω)3 : div~v ∈ L2(Ω) and ~v · ~ν|ΓN
= 0},

Then the weak form of (1 - 3) is to find (~u, p) ∈ H0,N (div,Ω)× L2(Ω) such that

(K−1~u,~v)L2 − (div~v, w)L2 = G(~v) , for all ~v ∈ H0,N (div,Ω),
−(div~v, w)L2 = 0 , for all w ∈ L2(Ω).

}
(4)

with G(~v) := (K−1~g,~v)L2 −
∫

ΓD
pD ~v · d~ν.

To discretise (4) by Raviart-Thomas-Nédélec elements we introduce a triangulation T of Ω
into conforming tetrahedra T ∈ T , and approximate ~u and p in finite dimensional subspaces of
H0,N (div,Ω) and L2(Ω). Here p is approximated in the spaceW of piecewise constant functions
with basis consisting of the characteristic functions wT of each of the tetrahedra T ∈ T , and ~u
is approximated in an appropriate subspace V of the vector-valued piecewise linear functions in
which the normal component of ~u is required to be continuous across the element boundaries.
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Let F denote the set of all faces of the tetrahedra in T which is assumed partitioned into
FI ∪ FD ∪ FN of faces F ∈ F which lie in Ω, ΓD and ΓN , respectively. For any F ∈ F , let
~νF denote the unit normal to the face F (with orientation fixed). Then we define the basis of
V by associating with each face F ∈ FI ∪ FD a vector-valued piecewise linear function ~vF ∈ V
of the form ~vF (~x) = ~αT + γT~x on each T ∈ T , with the property that ~vF · ~νF ′ = δF,F ′ for all
F ′ ∈ FI ∪ FD. The resulting discretisation enforces mass conservation on each element of the
mesh, and the resulting linear equations system is of saddle-point form:(

M B
BT 0

)(
u
p

)
=
(

g
0

)
in RnV × RnW , (5)

where MF,F ′ := (K−1~vF , ~vF ′)L2 , BF,T := −(div~vF , wT )L2 , gF := G(~vF ), and the dimensions
are nV = (#FI + #FD) and nW = (#T ).

Decoupled Iterative Method for Mixed Problems

In this section we formulate our method for decoupling the vector of velocities u from the vector
of pressures p in system (5). This procedure has already been presented for the 2D case in [3].
Recall ([1]) that (5) has a unique solution (u,p) ∈ RnV ×RnW for all g ∈ RnV , and clearly u is
in kerBT .

The decoupling of u from p can be achieved by finding a basis {z1, . . . , zn̊} of kerBT . (Since
BT has full rank, n̊ = nV − nW .) If we have such a basis, then the solution u of (5) can be
written

u =
n̊∑

j=1

ůjzj = ZT ů ,

for some ů ∈ Rn̊, where Z denotes the n̊ × nV matrix with rows zT
1 , . . . , z

T
n̊ . Also, since

ZB = (BTZT )T = 0, multiplying the first (block) row of (5) by Z shows that ů is a solution of
the linear system

Åů = g̊ (6)

where Å = ZMZT and g̊ = Zg. Since M is symmetric positive definite, so is Å and ů is the
unique solution of (6). Thus if the basis {z1, . . . , zn̊} can be found then the velocity u in (5) can
be computed by solving the decoupled positive definite system (6) rather than the indefinite
coupled system (5). Moreover the system (6) is about 3 times smaller than (5).

In applications to groundwater flow, where one is primarily interested in the velocity ~u in (1),
(2), the method described above is of great relevance. Even when the pressure p is also of interest
our method may still be highly competitive, provided we can also compute a complementary
basis {zn̊+1, . . . , znV} with the property that span{z1, . . . , zn̊, zn̊+1, . . . , znV} = RnV . If this is
known and if Z ′ denotes the matrix with rows zT

n̊+1, . . . , z
T
nV , then multiplying the first (block)

row of (5) by Z ′ shows that p is the solution of the nW × nW system

(Z ′B)p = Z ′(g −Mu) . (7)

An elementary argument shows that Z ′B is non-singular and so the unique solution p of (7) also
determines the pressure in (5) once the velocity u is known. Exploiting the particular form of
(5), a simple choice of complementary basis can be made so that Z ′B is triangular (see below).

Construction of a Divergence-free Basis

Note that finding the basis z1, . . . , zn̊ in the previous section is equivalent to finding a ba-
sis ~̊v1, . . . , ~̊vn̊ of the space V̊ := {~V ∈ V : b(~V ,W ) = 0 for all W ∈ W} of divergence-free
Raviart-Thomas-Nédélec elements. We construct this basis from the curls of Nédélec’s edge
elements ([8]).

First of all, let E denote the set of all edges of the tetrahedra in T which is assumed
partitioned into EI ∪ ED ∪ EN of edges E ∈ E which lie in Ω, ΓD and ΓN , respectively. For any
E ∈ E , let ~τE denote the unit tangent on edge E (with orientation fixed). Now we can introduce
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the space U ⊂ H( ~curl,Ω) := {~Φ ∈ L2(Ω)3 : ~curl ~Φ ∈ L2(Ω)3} of vector-valued piecewise linear
functions of the form ~Φ(~x) = ~αT + ~βT × ~x on each tetrahedron T ∈ T , in which the tangential
component of ~Φ is required to be continuous along each edge E of the triangulation. We define
a basis of U by associating with each edge E ∈ E a function ~ΦE ∈ U with the property that∫
E′
~ΦE · ~τE′ = δE,E′ for all E′ ∈ E . This choice of basis functions accounts for the widely used

term edge elements.
The basis for V̊ will now be constructed from the fundamental functions ~ΨE defined by:

~ΨE = ~curl~ΦE , E ∈ E

(so that ~ΦE is the vector potential of ~ΨE). The following theorem identifies a linearly indepen-
dent subset of the functions ~ΨE , E ∈ E , that constitutes a basis of V̊. The proof involves some
fundamental notions and results from Graph Theory and Algebraic Topology. In particular we
need the notion of spanning tree of a graph.

Let G := (N , E) be the graph formed by the nodes N and (orientated) edges E of the
triangulation T . Furthermore, let nC denote the number of connected components in ΓN , and
write ΓN = Γ1

N ∪ Γ2
N ∪ . . . ∪ ΓnC

N , where Γ`
N ∩ Γ`′

N = ∅ for all ` 6= `′ ∈ {1, . . . , nC}.

Theorem 1 Let H ⊂ E be such that H := (N ,H) is a spanning tree of G, and such that for
each ` = 1, . . . , nC, the restriction of H to nodes and edges on Γ`

N , is also a tree. Then

{~ΨE : E ∈ (EI ∪ ED)\H} is a basis of V̊.

A similar statement for the pure Neumann case, ΓD = ∅, has already been proved by Dubois
[4], where he uses it to solve model incompressible flow problems with prescribed vorticity. Our
proof of Theorem 1 makes use of the methods of Hecht [5] developed for the non-conforming P1-
P0 elements for the approximation of divergence-free vector fields in H1(Ω)3. In an unpublished
manuscript [6], Hecht extends these results to a wider family of finite elements including the
Raviart-Thomas-Nédélec elements. In the context of (1), (2) the only other work which we
are aware of is the recent paper [2], but this is restricted to uniform rectangular meshes and a
special spanning tree which can be constructed a priori.

Implementation

To implement the decoupled system (6) for determining ů (and hence u) we must work with the
matrix Å = ZMZT and right hand side g̊ = Zg. We observe that these are formally defined in
terms of multiplications with the matrix Z which represents the basis {~ΨE : E ∈ (EI ∪ ED)\H}
of V̊ in terms of the basis {~vF : F ∈ FI ∪FD} of V. Thus we can identify the columns of Z with
the indices F ∈ FI ∪ FD, whereas the rows of Z correspond to E ∈ (EI ∪ ED)\H, and write

~ΨE =
∑

F∈FI∪FD

ZE,F ~vF , E ∈ (EI ∪ ED)\H .

Note that the matrix Z is sparse, in fact ZE,F 6= 0 only when E is an edge of F . Therefore it
is simple to see that Å can be written as a sum of element matrices and g̊ can be written as a
sum of element vectors. This representation may be important if iterative methods are used to
solve (6). Also, the set H ⊂ E of edges that form a spanning tree in the graph G = (N , E) can
be found in optimal time (proportional to the number of edges).

Alternatively Å can be determined from an approximation of the related bilinear form

a(~Φ, ~Φ′) := (K−1 ~curl~Φ, ~curl~Φ′)L2(Ω)3 for all ~Φ, ~Φ′ ∈ H( ~curl,Ω) ,

by Nédélec’s edge-elements ~ΦE , without the assembly of any Raviart-Thomas stiffness matrix
entries:

Theorem 2
ÅE,E′ = a(~ΦE , ~ΦE′) for all E,E′ ∈ (EI ∪ ED)\H.
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We would like to note here that in [7] a multilevel preconditioned conjugate gradient method is
presented for solving the singular, symmetric positive semidefinite system with stiffness matrix
A := (a(~ΦE , ~ΦE′))E,E′∈E without explicitly eliminating columns and rows corresponding to
edges E ∈ H. In their multilevel splitting they eliminate the kernel of a(·, ·) only approximately
by relaxing the orthogonality condition and thus avoid the construction of a basis. Here we
eliminate the kernel a priori.

Pressure computations

The assembly of (7) requires the computation of a complementary basis {zn̊+1, . . . , znV} to
{z1, . . . , zn̊}. This is again equivalent to finding a complementary basis {~v c

n̊+1, . . . , ~v
c
nV} to the

basis {~̊v1, . . . , ~̊vn̊} of V̊ in V such that span{~̊v1, . . . , ~̊vn̊, ~v
c
n̊+1, . . . , ~v

c
nV} = V.

In the context of the specific system (5) this can be done by finding a distinguished subset
of faces

Fc ⊂ FI ∪ FD

such that the corresponding subset {~vF : F ∈ Fc} of Raviart-Thomas-Nédélec basis functions
constitutes a complementary basis. Note that this set must contain nW := nV − n̊ = #T
elements. The following simple algorithm chooses nW appropriate faces:

1. Choose T1 ∈ T to be any tetrahedron with a face F1 ∈ FD and set Fc = {F1}.

2. For j = 2, . . . , nW ,

• choose Tj ∈ T \{T` : ` = 1, . . . , j − 1} and Fj ⊂ T j with the property that there
exists ` ∈ {1, . . . , j − 1} such that

Fj ⊂ T `

• update Fc = Fc ∪ {Fj}.

3. Assemble Z ′B as (Z ′B)i,j = b(~vFi , wTj ), for all i, j = 1, . . . , nW .

Theorem 3 The above algorithm works, the functions

{~vF : F ∈ Fc}

form a complementary basis to {~ΨE : E ∈ (EI ∪ ED)\H} in V and the matrix Z ′B given in
Step 3 is lower triangular.

Using this complementary basis and applying the general theory presented above, we can there-
fore find the unique solution p from (7) by simple back substitutions.

Numerical Results

We tested the performance of the proposed method for (1 - 3) on two simple problems. Let Ω =
(0, 1)3, K ≡ 1, ~g = ~0 and pD = 1− x. The two problems are induced by different partitionings
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of the boundary. In the first problem we choose ΓD = {0, 1}×(0, 1)×(0, 1) ∪ [0, 1]×(0, 1)×{1},
in the second problem we choose ΓD = (0, 1)× (0, 1)× {1} (in both cases ΓN = ∂Ω\ΓD).

We discretise these problems on a sequence of uniform and non-uniform tetrahedral meshes of
different refinement levels L. To solve the resulting saddle-point system (5) we use the decoupled
iterative method described above. The subtask of solving the symmetric positive definite system
(6) is carried out by ILU-preconditioned conjugate gradients (PCG) until achieving a relative
reduction of the residual by a factor of 10−5.

Our results show (as expected) that the work needed for the decoupling process and the
recovery of the pressure is proportional to the number of freedoms in (5), and therefore optimal.
The core part of the calculation is the solution of (6), and PCG performs as predicted for a
2nd-order elliptic problem. The growth in the number of iterations on the uniform meshes is
proportional to n̊1/3 where n̊ is the number of freedoms. We then compared the performance of
our method with the performance of a preconditioned minimum residual method (MINRES) for
the (full mixed) saddle-point system (5) (again the convergence criterion is the relative reduction
of the residual by a factor of 10−5). To precondition MINRES we take the ILU factorisation
of an optimal block preconditioner presented and analysed in [9]. The results for the second
problem are presented in Table 1. Comparing Columns 6 and 7 in Table 1 we observe that

# Freedoms Iterations MFlops
Mesh Mixed Decoupled Mixed Decoupled Mixed Decoupled
Uniform (L = 4) 1088 320 62 18 4.2 0.62

8 8960 2816 113 35 66 8.7
16 72704 23552 217 75 1040 132

Non-un. (L = 2) 544 160 113 24 3.8 0.35
4 4480 1408 255 80 74 8.0
8 36352 11776 460 187 1400 145

Table 1: Comparison of the decoupled iterative method with MINRES (2nd problem)

our decoupled method is almost 8 times faster than preconditioned MINRES on the uniform
meshes (Rows 3 – 5), and almost 10 times faster on the non-uniform meshes (Rows 6 – 8).
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