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Summary

The subject of this thesis is an optimal and scalable parallel geometric multigrid solver

for elliptic problems on the sphere, crucial to the forecasting and data assimilation tools

used at the UK Met Office. The optimality of multilevel techniques for elliptic problems

makes them a suitable choice for these applications. The Met Office uses spherical polar

grids which, although structured, have the drawback of creating strong anisotropies

near the poles. Moreover, a higher resolution in the radial direction introduces further

anisotropies, and so modifications to the standard multigrid relaxation and coarsening

procedures are necessary to retain optimal efficiency.

Since the strength of anisotropy varies, we propose a non-uniform strategy, coars-

ening the grid only in regions that are sufficiently isotropic. This is combined with line

relaxation in the radial direction. The inspiration of a non-uniform coarsening strategy

comes from algebraic multigrid (AMG) methods, which have already demonstrated the

success of this technique. The large setup cost required by AMG, however, means that

geometric multigrid methods are typically more efficient. Since all the problems dealt

with in this thesis have the convenient feature of a grid-aligned anisotropy, we can

exploit this and retain the efficiency of a geometric approach to produce an optimal

method that surpasses the costs of AMG.

We demonstrate both theoretically and experimentally that the non-uniform geo-

metric multigrid method is robust with respect to grid refinement, and therefore an

optimal method for solving elliptic problems on the sphere. The theory, which exploits

the grid-aligned anisotropy in these problems, is based on a separation of coordinate

directions using a tensor product approach, as done in [14], and using existing theory

from Hackbusch et al [44].

The advantages of the method are shown experimentally on model problems, both

sequentially and in parallel, and show robustness and optimal efficiency of the method

with constant convergence factors of less than 0.1. It substantially outperforms Krylov

subspace methods with one-level preconditioners and the BoomerAMG implementation of

AMG on typical grid resolutions used at the Met Office. The parallel implementation

scales almost optimally on up to 256 processors, so that a global solve of 3D problems

with a maximum horizontal resolution of about 10km and 3 × 109 unknowns takes

about 60 seconds.

The non-uniform multigrid method is also applicable to certain elliptic problems

arising in a new development within data assimilation, called the “potential vorticity

(PV)-based control variable transform”. These problems are so ill-conditioned that the

solvers currently used at the Met Office fail to converge to a solution. However, using

the non-uniform multigrid method as a preconditioner to a Krylov subspace method, it

has been possible not only to solve these problems, but to solve them almost optimally.
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Chapter 1

Introduction

1.1 The Subject of the Thesis

Two and three dimensional elliptic partial differential equations (PDEs) play a major

role in the weather and climate numerical model at the UK Met Office, and in its

variational data assimilation code (VAR).

The fully compressible and non-hydrostatic Euler equations form the basis of the

dynamical core of the Met Office’s weather and climate prediction unified model (UM).

These equations form a hyperbolic system, but through the application of a semi-

implicit time discretisation, an elliptic Helmholtz problem is naturally derived for the

increment of the pressure field, denoted Π′, between two adjacent time steps. The

equation, given in spherical polar coordinates, has the form

−∇2
rΠ
′ − 1

r2
∂

∂r

(
a(r)

∂Π′

∂r

)
+ b(r)

∂Π′

∂r
+ c(r)Π′ = Φ , (1.1.1)

where a(r), b(r), c(r) > 0 ∀r, ∇2
r is the two-dimensional (2D) Laplacian in spherical

polar coordinates at a constant height r, and the right-hand-side contains variables

computed at the previous time step. The numerical solution of (1.1.1) plays a vital

role in the UM, as it must be solved at each time step. The full equation, including its

derivation, is found in [28, 31]. The UM is in fact currently undergoing a significant

overhaul, and its new models are described in [57, 73, 89], but once again the key

problem within these models is the solution of the Helmholtz equation which retains

the form of (1.1.1).

In variational data assimilation, the main task is to produce the best estimate for

the current state of the atmosphere, which is then used as an initial condition for a

future forecast. Every day the Met Office receives around half a million observations

1
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recording the atmospheric conditions around the world. However, even with this many

observations there is not enough information on the behaviour of the atmosphere at all

points on and above the Earth’s surface. There are large areas of ocean, inaccessible

regions on land and remote levels in the atmosphere where very few, or no, observations

are recorded. To fill in the ‘gaps’, the available observations must be combined with

forecasts of the expected conditions in the atmosphere, known as the background state.

The Met Office uses a set of model variables, such as wind velocity, pressure and

temperature, to describe the state of the atmosphere. Thus, given the background

state and a set of observations in a certain time window, variational data assimilation

is the task of adjusting the model variables in view of gaining the best estimate of the

current state of the atmosphere.

This is done via the minimization of a cost function, which unfortunately involves

the inversion of a large and dense matrix related to error covariances of the model

variables, which is operationally unfeasible. The matrix, known as the background error

covariance matrix, is dense because the errors of the model variables in the background

state are highly correlated. A key task in simplifying the minimization process is

the “control variable transform (CVT)”, which is used to transform between the model

variables and a set of variables known as the control variables. The purpose of the CVT

is to perform a transformation to a set of variables that are assumed less correlated

so that the background error covariance matrix of these variables has a more sparse

representation. The atmospheric state can be partitioned into components that are

known to be balanced or unbalanced, which evolve independently and are therefore

assumed to be uncorrelated. Hence the choice of control variables is made according

to whether they are balanced or unbalanced.

The main bottleneck in the CVT currently operational at the Met Office is in the

numerical solution of the Quasi-Geostrophic Omega equation, which has the form

−N2(r)∇2
rw
′ − f20

1

r2
∂

∂r

(
r2
∂w′

∂r

)
= g . (1.1.2)

The equation is solved to find the vertical velocity increment (i.e. the deviation from the

vertical velocity, w, given in the background state) in scales important for weather fore-

casting in the atmosphere. f0 is the Coriolis parameter, which in the quasi-geostrophic

regime is assumed constant. Note however that changing this to a (more realistic)

variable parameter f(φ) poses no additional difficulties for the methods we propose in

this thesis. N2(r) is related to the frequency of vertical buoyancy oscillations, which

depends on the temperature gradient and varies smoothly with r. The right hand side

term g encompasses all the sources of quasi-geostrophic forcing for vertical motion, such
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as temperature gradients, quasi-geostrophic wind, quasi-geostrophic vorticity, and la-

tent heat release. Details of the equation, including its derivation and the asymptotic

regimes in which it is valid, can be found in [12, 26]. Operationally at the Met Office,

the solution w′ is currently simply set to zero because solving the equation takes too

long using the existing solvers at the Met Office.

The current CVT is limited to certain regimes of the atmosphere. However, several

studies in [5, 26, 25, 53, 81] have demonstrated that it is possible to eliminate the

shortcomings of the current CVT by choosing a set of new potential vorticity (PV)

based control variables. PV is a completely balanced variable so a control variable

related to PV will be suited to describe the balanced part of the atmospheric flow better.

Likewise, anti-PV is completely unbalanced, and so control variables related to anti-

PV will accurately describe the unbalanced components of flow. Using these control

variables, a new PV-based CVT has been proposed to satisfy the assumption of the

non-correlation between the variables at all regimes of the atmosphere, thus overcoming

the limitations of the existing CVT. Unfortunately, the PV-based CVT poses further

difficulties, where more highly ill-conditioned three dimensional (3D) elliptic problems

must be solved in addition to (1.1.2). The equations, written abstractly, have the form

−α0∇2
ru − ε0

∂2

∂r2
(
∇−2r ∇r · f∇ru

)
= f , (1.1.3)

meaning a two dimensional (2D) solve is embedded within the 3D problems, and so they

cannot be discretised directly. As with (1.1.2), solving (1.1.3) is so far unfeasible using

the solvers at the Met Office, and so the PV-based CVT cannot be made operational

until a better solver is developed for these problems.

For the spatial discretisation of the above problems, many of the standard meteo-

rological codes, in particular at the Met Office, use spherical polar grids, which lead to

strong grid anisotropies near the poles where the grid lines converge. Alternative grids

that avoid the “pole problem” such as Yin−Yang or icosahedral grids, are becoming

increasingly popular in numerical weather prediction, as discussed in [9, 79]. Never-

theless, for all the negative things the spherical polar grids might entail, these grids

are very structured. This greatly simplifies the discretisation and coding for problems

such as (1.1.1) and (1.1.2), which is why they are still widely used. We will show in

this thesis that from a solver point of view the bad reputation of spherical polar grids

(e.g. in [79, §3.2b]) is unjustified, provided the solvers are suitably adapted. Before

we expand a bit further on this let us note that the grid spacings in the radial direc-

tion are in general much smaller than in the horizontal ones, since the thickness of the

atmosphere is two orders of magnitude smaller than the circumference of the Earth.
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This creates a further source of anisotropy. Additionally, the grid is usually strongly

graded in the radial direction with smaller grid spacings near the surface of the Earth

to obtain a better resolution in the regions of most interest.

A standard finite volume discretisation of (1.1.1) or (1.1.2) on this anisotropic mesh

leads to a system of equations

Au = b, (1.1.4)

where A is a large, sparse, symmetric positive definite (SPD) matrix. The discretisation

which we use is basically identical to that given in [7] for Poisson’s equation on a

spherical polar grid. The matrix A contains a 7-point stencil for each node on the grid,

with non-zero entries only for the node itself and for its immediate neighbours. Typical

grid resolutions currently used in data assimilation at the Met Office are 216, 163 and

70 nodes in the latitudinal, longitudinal and radial directions, respectively. This leads

to a large problem size of over a million degrees of freedom and an ill-conditioned

system matrix A, making (1.1.4) very difficult to solve efficiently. The solver currently

used at the Met Office, i.e. a Krylov subspace method preconditioned with simple r-

line relaxation or ADI-type methods, performes increasingly poorly as the problem size

is increased, and so restricts the grid resolutions that are currently feasible for global

simulations, as highlighted in [79, §3.2b]. 1

It is the subject of this thesis to analyze and solve elliptic problems arising in

numerical weather prediction using an optimal and scalable parallel iterative solver.

We focus on solving (1.1.1), (1.1.2) and (1.1.3), all of which are given in spherical polar

coordinates. By optimal we mean that the time for solving the discretised problem is

proportional to the (discrete) problem size. Similarly, we say that an algorithm has

optimal parallel scalability, if the solution time remains constant when the problem size

and the number of processors are increased proportionally. The aforementioned solver

used at the Met Office is not optimal because the increase in solve times with respect

to the problem size is not linear. Note that fast direct solvers for elliptic problems in

spherical geometries based on fast Fourier transforms (FFT) have also been investigated

in [54], but these solvers are not quite optimal either.

It is well known that it is necessary to resort to multilevel techniques to obtain

optimality of iterative methods for large elliptic problems. Many variants of these

iterative methods exist, but as outlined in [20, 75] they all rely on reducing high fre-

quency errors of an initial approximation using a relaxation method (the smoother),

and approximating the remaining low frequency errors on a succession of coarser grids

(the coarse grid correction). For isotropic problems with smoothly varying coefficients,

1Note that the mean radius of the earth is about 6370km, and so the horizontal grid size in the
latitudinal direction for 216 nodes is about 185km near the equator.
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standard geometric multigrid with simple point-wise smoothing and uniform coarsening

is the most efficient method, as demonstrated experimentally in several articles such

as [27, 41]. For anisotropic problems, this standard approach unfortunately does not

lead to an optimal method. However, if the anisotropies are aligned with the grid then

simple modifications achieve optimality even with strong anisotropies. These modi-

fications are line/plane smoothing and/or semi-coarsening. Line smoothing involves

collectively relaxing all unknowns on an entire grid line by solving a tridiagonal system

corresponding to the unknowns on that line. Semi-coarsening uses a family of coarse

grids that are only coarsened in the direction of the larger coefficient. In (1.1.4) there

are two sources of anisotropy: one due to the large aspect ratio between the radial and

horizontal grid spacings; the second due to the converging grid lines at the poles. In

this thesis we propose a robust geometric multigrid method that is able to deal with

both these problems by applying a simple non-uniform partial coarsening combined

with an r-line smoother.

The robustness of the non-uniform coarsening strategy is first demonstrated on a

two-dimensional model problem: Poisson’s equation on the unit sphere. The idea is

simple. The spherical polar grid introduces anisotropy near the poles but not near

the equator, so the grid is semi-coarsened near the poles but fully coarsened near the

equator. We compare the off-diagonal matrix entries in the latitudinal and longitudinal

direction at each line of latitude, and the grid line is fully coarsened only if the coeffi-

cients in both directions are of similar magnitude. This will be true near the equator

where we coarsen in both directions, but not near the poles where we only coarsen

in the longitudinal direction, thus leading to coarse grids that are better and better

adapted to the anisotropy. This coarsening strategy is the key heuristic for the popular

algebraic multigrid (AMG) methods (see e.g. [20, 71]), and the robustness of these

methods even on highly anisotropic problems demonstrate the success of the strategy.

In 3D we deal with the strong anisotropy in the radial direction by using r-line

relaxation and no r-coarsening. This is then combined with the nonuniform coarsening

strategy in the longitudinal and latitudinal directions. Although this partial coarsening

only leads to a coarsening factor of about 3 from one grid to the next (instead of 8 for

uniform coarsening), it guarantees that the method is fully robust to the anisotropies

induced by the geometry and the grid and leads to an optimal method with an average

V-cycle convergence factor of less than 0.1, as our numerical tests show.

Geometric multigrid methods with line and plane smoothers, but with “uniform”

semi-coarsening, have already been studied in [7]. PDEs of the type (1.1.2) from

meteorological applications have already been solved with geometric multigrid methods,

but only on cube-like domains with doubly-periodic boundary conditions and not on



CHAPTER 1. INTRODUCTION 6

the entire globe (cf. [3, 39, 62, 85, 83, 84]). The most closely related paper is [84],

where r-line relaxation and partial coarsening (i.e. uniform coarsening in the horizontal

directions and no coarsening in the radial direction) was already studied extensively for

the quasi-geostrophic equations in Cartesian coordinates. However, since the domain

was not the entire atmosphere the additional complication of the anisotropy at the poles

played no role. Multigrid algorithms have also already been proposed for alternative

grids on the sphere, such as the icosahedral or Yin−Yang grids, in [9, 51]

The idea of “conditional” semi-coarsening in the longitudinal direction proposed

here has only been explored for edge and corner singularities so far (cf. [40, 55, 90])

but not for spherical polar grids (even in two dimensions). To the best of our knowledge,

it seems to be a novel approach. It is clearly inspired by AMG ideas. AMG methods

are fully automatic and only based on algebraic information in the matrix A. Coarse

grid unknowns are chosen based on the relative size of the off-diagonal entries in the

matrix which in the application here will lead to very similar coarse grids. However,

AMG methods are known to require a large setup cost to design these coarse grids

and the operator-dependent interpolation and restriction operators, especially in three

dimensions. Our geometric method on the other hand, requires almost no setup cost

to obtain the same robustness, which is why it easily outperforms established AMG

implementations. Numerical tests (cf. Chapter 5) for a variety of problem sizes confirm

this. In that chapter, we also give a comparison to preconditioned Krylov solvers

as currently used by the MET Office [28] and their collaborators [22]. As expected,

Krylov methods are only optimal when preconditioned with a robust multigrid method,

such as AMG or the non-uniform geometric method proposed in this thesis. With

standard preconditioners used at the MET Office, such as r-line relaxation or ADI-type

preconditioners (on a single grid), the number of iterations grows with the problem size.

We can make theoretical justifications for the optimality of the non-uniform geometric

multigrid method based on the heuristics that discretisations on coarser grids produced

by conditional semi-coarsening yield more isotropic problems. Note that no such theory

exists for AMG.

All sequential computations will be carried out using the Fortran95 compiler ifort

on a single processor of a Dual dual-core 64bit AMD Opteron 2210 processor with

clock speed of 1.8GHz, cache size 1.0MB and 2GB memory. The initial guess for each

iterative scheme is always taken to be zero. The stopping criterion is a relative residual

reduction of 10−8. Parallel computations are carried out using two different clusters, a

64-bit AMD Opteron 2210 cluster (wolf) with a total of 24 processors (each the same

as above) and a 64-bit Intel Xeon E5462 cluster (aquila) of over 800 processors, each

with 2GB memory and 3MB Cache. Both clusters use an Infinipath network.
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1.2 The Aims of the Thesis

The main aim of this thesis is to provide a fast, efficient and robust iterative solver for

the numerical solution of elliptic problems in spherical geometries arising in numerical

weather prediction at the Met Office via a novel non-uniform multigrid method. Since

the Met Office runs its codes using massively parallel computers, we also aim for the

solver to have optimal parallel scalability. We aim to show the optimality of the method

both experimentally and theoretically.

A second major aim of the thesis is to theoretically prove the robustness of the

non-uniform multigrid method with respect to problem size, when applied to model

problems of type (1.1.1) and (1.1.2). The classical result for the uniform convergence

of the multigrid V-cycle [44, 16] is only applicable for isotropic problems. For some

anisotropic problems, theoretical results for multigrid using a variety of techniques can

be found in, for example, [10, 17, 58, 87]. In particular, for planar polar coordinates,

multigrid theory with line smoothers and (uniform) semi-coarsening can be found in

[14] (see also [13]). In this thesis a tensor product analysis is used in order to achieve a

separation of coordinate directions for an anisotropic 2D problem. The analysis relies

on the fact that the anisotropy is grid aligned, and reduces the 2D problem to a family

of 1D problems to which the standard theory of Hackbusch can be applied. We aim to

prove the robustness of the non-uniform multigrid method applied to anisotropic 3D

elliptic problems of the form (1.1.1) and (1.1.2) using a similar approach.

A final aim of the thesis is to provide an efficient solver for the 3D problems in the

new PV-based CVT. Since (1.1.3) cannot be discretised, a discrete operator does not

exist. Thus we must apply the operator by means of 2D Poisson solves, the solutions

to which are applied to the remaining components of the operator. Then we can use

a preconditioned Krylov subspace method to solve (1.1.3). The preconditioning step

involves using multigrid to solve a simplified form of the (1.1.3) that resembles the

Quasi-Geostrophic omega equation, which can be done optimally.

1.3 The Achievements of the Thesis

The following are the main achievements of the thesis:

1. A robust multigrid method for the 2D Poisson equation on the unit sphere was

successfully developed using the non-uniform coarsening strategy. The uniform

convergence of the method was shown experimentally, and some heuristic argu-

ments were also given to back-up the experimental results.

2. The non-uniform multigrid method was developed further and extended to 3D to
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optimally solve the Helmholtz problem (1.1.1) and the Quasi-Geostrophic omega

equation (1.1.2). Note that the direction of strongest coupling is not always

fixed, so an r-line smoother is used to handle the strong coupling in the radial

direction, whilst conditional semi-coarsening deals with the anisotropy on the 2D

plane. The same multigrid method solves both problems optimally.

3. We use heuristics for the convergence of the V-cycle for the 2D Poisson prob-

lem and theory from [14] to show that 3D elliptic problems with grid-aligned

anisotropy converge uniformly when solved using non-uniform multigrid, with a

contraction factor that is independent of mesh refinement and the varying coeffi-

cients. The proof is based on a tensor product analysis that leads to a separation

of coordinate directions to reduce the analysis of the 3D problem to that of a fam-

ily of simpler 2D problems which can be solved optimally with the non-uniform

multigrid method.

4. A highly scalable parallel implementation of the non-uniform multigrid method

was developed. The method was shown to be almost optimally scalable up to 256

processors, and was observed to perform significantly faster than several existing

methods that were tested.

5. The non-uniform multigrid method was also used successfully as a preconditioner

to Krylov subspace methods, accelerating these methods to an extent that they

perform optimally. Using multigrid as a preconditioner enabled a unique method

for solving the elliptic problems in the PV-based CVT, which was not possible

when using the solvers currently employed at the Met Office.

1.4 The Structure of the Thesis

The majority of the subsequent chapters begin with a preamble to motivate the work

of the chapter in addition to a literature review related to the work. The contents of

each chapter in the remainder of this thesis is as follows:

In Chapter 2 we present the main elliptic problems that arise in numerical weather

prediction, namely from the Met Office’s Unified Model and its variational data assim-

ilation scheme. The derivation of each problem is described, as well as the structure of

the computational grids that are used at the Met Office.

In Chapter 3, we describe the finite volume discretisation of the 2D and 3D elliptic

problems, using the grid structure of the Met Office described in Chapter 2. We present

the discretisation in such a way that it applies to all the elliptic problems of interest in

this thesis. We also present an alternative discretisation method using finite elements,
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which will be necessary for the theoretical analysis. However, we show that the two

discretisation schemes can be linked using a quadrature rule that is at least second

order accurate.

Chapter 4 gives an overview of existing iterative solvers for elliptic problems, start-

ing with relaxation schemes and Krylov subspace methods. We then describe the idea

of multigrid methods for isotropic elliptic problems solved on a uniform grid, and how

the method needs to be adapted for anisotropic problems. This chapter also includes

an overview of the convergence proofs of multigrid methods, following the work of

Hackbusch [44], and it is concluded with a description of AMG methods.

Chapter 5 is the main chapter of the thesis. We describe the novel idea of a non-

uniform geometric multigrid method that is adapted to the particular anisotropies

induced by the geometry and by the grid, and highlight some similarities with the

AMG methods described in Chapter 4. Numerical results are given for the sequential

solver applied to 2D and 3D model problems on the unit square/cube with degenerate

coefficients, as well as comparisons with AMG and preconditioned Krylov methods.

The heart of this chapter is a new convergence theory that follows the techniques used

by Börm and Hiptmair [14] and confirms the robustness of the method. However, the

theory relies on a finite element discretisation of the elliptic problem, so the quadrature

rule from Chapter 3 is used to show that the theory also carries over to a finite volume

setting. The section is concluded with the application of the method to elliptic problems

on the sphere, in particular the Helmholtz problem and the Quasi-Geostrophic Omega

equation.

In Chapter 6, we outline how we parallelized our method and demonstrate its

parallel scalability for up to 256 processors, as well as comparing the scalability to that

of parallel versions of the other solvers.

Finally in Chapter 7, we outline another novel method for solving the 3D problems

present in the PV-based CVT. We describe how the operator is applied without the use

of a matrix, and how Krylov methods can be accelerated using a multigrid precondi-

tioner that solves a simplified problem. Numerical results are given for the performance

of the method and for the accuracy of the complete cycle of the PV-based CVT when

using this novel approach.



Chapter 2

Elliptic Problems in Numerical

Weather Prediction

In this chapter we describe the main elliptic problems that arise in numerical weather

prediction (NWP). The process of NWP involves the assimilation of estimates to the

initial conditions for a numerical weather forecast model, and once these conditions are

calculated, the changes in weather are predicted by advancing the model in time. The

flagship numerical model developed and used at the Met Office is called the Unified

Model (UM) and the assimilation of the initial conditions is accomplished by variational

data assimilation (VAR).

For two decades, the UM has been used at the Met Office for both low resolution

climate modelling and high resolution operational NWP. It is versatile and capable

of modelling a wide range of time and space scales and is run in many different con-

figurations at the Met Office. It has been in continual development since the early

1990s, taking advantage of increasing supercomputer power, improved understanding

of atmospheric physics and an increasing range of observational data sources. The

most current version of the UM uses governing equations with a non-hydrostatic, fully

compressible and deep atmosphere formulation (see [24, 28, 31, 78]), which describe the

rates of change of the wind components, the potential temperature, density, humidity

and pressure variables. The equations are formulated in spherical polar coordinates

and discretised using a staggered grid in each coordinate direction. The discretisa-

tion in time is done using a two-time level predictor-corrector implementation of a

semi-implicit scheme, as described in [28, 31]. The discretisation in this form leads to

increased stability, thus allowing larger time steps to be used, but is complicated by the

need to solve a three-dimensional Helmholtz equation at each time step which takes

up a significant fraction of the cost of the UM. This Helmholtz problem is the first

10
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of the elliptic problems we are interested in. To solve it, a preconditioned generalized

conjugate residual (GCR) method, as described in [34], is currently used operationally

in the UM.

The UM also relies on accurate initial conditions of the current state of the at-

mosphere, which is provided via data assimilation. By combining observational data,

statistical data, knowledge of atmospheric dynamics and previous forecasts, the best

estimate to the initial conditions is found. Due to the sheer problem size involved

there are inherent problems in defining the required matrices, and a process known as

the control variable transform (CVT) is used to simplify the problem, as described in

[30, 52, 53, 80]. A key equation in the CVT is the Quasi-Geostrophic omega (QG-Ω)

equation [38], which is the second of the elliptic problems of interest.

The CVT is limited to certain regimes of atmospheric flow. Some of these limitations

are thought to be overcome by a newly proposed CVT based on potential vorticity (PV).

Many theoretical studies of this new scheme exist (see [52, 53, 6, 5, 25, 78, 81]), but

it is not yet operational as the current solvers are not capable of solving the problems

involved. Some of the problems that appear in the PV-transform are so ill-conditioned

that the current solvers at the Met Office do not converge to a sufficiently accurate

solution even after several hundred iterations. Thus the third of the elliptic problems

of interest appears within the PV-based CVT.

Each of the elliptic problems described above have different characteristics, but all

of them are highly important in improving the efficiency and accuracy of NWP at the

Met Office.

The chapter is organized as follows. Section 2.1 describes the governing equations

used in the UM and how the Helmholtz problem is derived from the semi implicit dis-

cretisation of the equations. In Section 2.2 we focus our attention on data assimilation.

We describe the CVT that is currently operational at the Met Office and that is central

to simplifying the VAR process, and the QG-Ω equation that needs to be solved as a

result of the transformations. In Section 2.3 we discuss the new PV-based CVT as a

possible improvement to the currently operational CVT and the equations involved.

Finally in Section 2.4 the staggered grids used at the Met Office are defined, before

summarizing the key elliptic problems in NWP in Section 2.5.

2.1 The Helmholtz Problem in NWP

The fully compressible, non-hydrostatic and deep atmosphere equations form the basis

of the Met Office weather and climate prediction unified model (UM). A fully com-

pressible system is one where the density of fluid in the system changes with respect to
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pressure, which is the case with the Earth’s atmosphere. Many climate models assume

hydrostatic balance, where the two main vertical forces, gravity and the pressure gradi-

ent, balance each other out. Hydrostatic balance explains why the Earth’s atmosphere

does not collapse to a thin layer on the ground, and is an accurate approximation

on large horizontal scales. However, the UM does not assume complete hydrostatic

balance which allows it to take into account vertical wind acceleration. For accuracy,

a deep atmosphere formulation is used instead of the shallow atmosphere approxima-

tions (see [78]). The prognostic model variables used in atmospheric modelling are the

three-dimensional wind u with components (u, v, w), potential temperature θ, pressure

p, density ρ and the specific humidity q. In the UM the Exner function is used as the

pressure variable, defined as

Π =

(
p

pref

)κ

, κ =
R

Cp
. (2.1.1)

R = 287.05 is the gas constant, Cp = 1005 the specific heat at constant temperature

and pref = 105 Pa a constant reference value of the pressure. Potential temperature is

defined in terms of temperature, T , as θ = T/Π. The governing equations are written

generically as
DX

Dt
= L(x, t,X) +N(x, t,X) , (2.1.2)

where
D

Dt
=

∂

∂t
+ u · ∇z

is the Lagrangian derivative [8] which describes the time rate of change of the prognostic

variables while moving with a velocity field. X is a vector of the prognostic variables

and x and t denote position and time. L and N represent terms that are linear and

nonlinear in X, respectively. ∇z is the horizontal gradient operator.

The equations are discretised in the UM using a predictor-corrector implementation

of a two-time level (2TL), semi-implicit (SI) time discretisation scheme, as outlined in

[28], though further developments are being made to the current methods in a scheme

called ENDGame [57, 73, 89]. A SI discretisation of (2.1.2) is given by

Xn+1 −Xn
d

∆t
= (1− α)(L+N)nd + α(L+N)n+1 ,

which advances the equation from time level n to time level n + 1, where α ∈ [0, 1].

The subscript d denotes the evaluation at a departure point xd, which is the point in

space that X was measured at time level n.
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The predictor-corrector approach is then described as follows

X(1) = Xn
d + (1− α)∆t(L+N)nd + α∆t(L+N)n ,

X(2) = X(1) + α∆tL(2) + α∆t(N(1) −Nn − Ln) ,

where X(1) is the predicted value at time level n+1, and X(2) is the corrected estimate,

such that Xn+1 = X(2). Also, let primed quantities denote the increment from time

level n to n+ 1, i.e.

X′ = Xn+1 −Xn ,

for each of the prognostic variables.

Equations (2.1.3) – (2.1.7), below, are the governing equations used in the UM,

as taken from [28], but with some simplifications made for purposes of clarity. The

simplifications are that we write the equations in Cartesian coordinates and assume

a dry atmosphere with no orography and a uniform rotation rate of f = −2Ω cos y,

where Ω is the Earth’s angular velocity.

Momentum Equations

Du

Dt
= fv − Cpθ

∂Π

∂x
+ Fu , (2.1.3)

Dv

Dt
= −fu− Cpθ

∂Π

∂y
+ Fv , (2.1.4)

Dw

Dt
= −g − Cpθ

∂Π

∂z
+ Fw . (2.1.5)

Potential Temperature Equation

Dθ

Dt
= S .

Continuity Equation (Conservation of Mass)

∂ρ

∂t
+∇z · (ρu) = 0 . (2.1.6)

Equation of State

κΠθρ =
p

Cp
. (2.1.7)

g is the Earth’s gravitational force, and Fu, Fv , Fw and S are the tendencies from the

physics parameterizations. Let us now discuss how these equations are discretised and

which further approximations are used. The equations for θ and u and are discretised
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using the predictor-corrector approach, and after the correction step, they are:

θ(2) = θ(1) − α∆t
∂θ(1)

∂z
w′ , (2.1.8)

u(2) = u(1) + α∆t
[
f(v(2) − vn)− Cp

{
(θ(1) − θn)∂Π

n

∂x + θ(1) ∂
∂x(Π

′)
}]
, (2.1.9)

v(2) = v(1) − α∆t
[
f(u(2) − un) + Cp

{
(θ(1) − θn)∂Π

n

∂y + θ(1) ∂
∂y (Π

′)
}]

, (2.1.10)

w(2) = w(1) + α∆tCp

{
(θn − θ(2))∂Π

n

∂z − θ(1) ∂
∂z (Π

′)
}
. (2.1.11)

Substituting θ(2) from (2.1.8) into (2.1.11) and setting G = 1− α2∆t2Cp
∂θ(1)

∂z
∂Πn

∂z ,

Gw(2) = w(1) − (1−G)wn − α∆tCp(θ
(1) − θn)

∂Πn

∂z
− α∆tCpθ

(1) ∂

∂z
(Π′) . (2.1.12)

The evolution of the equation for density is handled in an Eulerian flux-form (see [28]):

ρ(2) = ρn −∆t

[
∂

∂x

(
ρn(un + αu′)

)
+

∂

∂y

(
ρn(vn + αv′)

)
+

∂

∂z

(
ρn(wn + αw′)

)]
.

Finally, there is no time derivative of Π in the equation of state, and so the equation is

assumed to hold for the latest estimates of each variable, denoted by superscript (2):

κΠ(2)θ(2)ρ(2) =
p(2)

Cp
. (2.1.13)

Since these equations are coupled, we must solve them simultaneously to obtain X(2).

The aim of the SI discretisation is to advance the model variables fromXn toXn+1, and

this can be done by finding X′ instead. (2.1.13) is rewritten in terms of the increments

as

κ(Πn +Π′)(θn + θ′)(ρn + ρ′) =
pn + p′

Cp
. (2.1.14)

Now using the definition of Π from (2.1.1) and a linear approximation,

Πn +Π′ =
(
pn + p′

p0

)κ

=

(
pn

p0

)κ(
1 +

p′

pn

)κ

≈ Πn

(
1 +

κp′

pn

)
,

and we obtain the following approximation to the pressure increment

p′ ≈ pn

κ

Π′

Πn
. (2.1.15)

Now by expanding (2.1.14) and neglecting products of two or more primed quantities

(e.g. Π′θ′ρ′ ≈ Π′θ′ρn ≈ 0) we have
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κΠ′θnρn + κΠnθ′ρn + κΠnθnρ′ + κΠnθnρn =
pn + p′

Cp
. (2.1.16)

Then using (2.1.15) to eliminate p′ from (2.1.16) and rearranging gives the following

linearized form of the equation of state:

−
(

pn

κCpΠn
− κθnρn

)
Π′ + κΠnθnρ′ + κΠnρnθ′ =

pn

Cp
− κΠnθnρn. (2.1.17)

The unknown quantities in (2.1.17) are Π′, θ′ and ρ′. We find that

θ′ =
(
θ(1) − θn

)
− α∆tw′

∂θ(1)

∂z
= −α∆tw′ ∂θ

(1)

∂z
+Xθ ,

ρ′ = −∆t

[
∂

∂x

(
ρn(u+ αu′)

)
+

∂

∂y

(
ρn(v + αv′)

)
+

∂

∂z

(
ρn(w + αw′)

)]
,

where

u′ = (u(1) − un) + α∆t
[
f(v(2) − vn)− Cp

{
(θ(1) − θn)∂Π

n

∂x + θ(1) ∂
∂x(Π

′)
}]

= −Aα∆tCpθ
(1) ∂

∂x(Π
′)− Fα∆tCpθ

(1) ∂
∂y (Π

′) +Xu , (2.1.18)

v′ = (v(1) − vn)− α∆t
[
f(u(2) − un) + Cp

{
(θ(1) − θn)∂Π

n

∂y + θ(1) ∂
∂y (Π

′)
}]

= −Aα∆tCpθ
(1) ∂

∂y (Π
′) + Fα∆tCpθ

(1) ∂
∂x(Π

′) +Xv , (2.1.19)

w′ = G−1
{
(w(1) − wn)− α∆tCp(θ

(1) − θn)
∂Πn

∂z

}
−G−1α∆tCpθ

(1) ∂

∂z
(Π′)

= −G−1α∆tCpθ
(1) ∂

∂z (Π
′) +Xw , (2.1.20)

where A = 1/(1 + α2∆t2f2), F = α∆tfA and Xθ, Xu, Xv and Xw contains explicit

terms that are already known. We substitute the equations for u′, v′ and w′ into the

equation for ρ′, and substitute w′ into θ′. Then we substitute ρ′ and θ′ into (2.1.17) to

yield the following Helmholtz equation for the remaining unknown Π′

−κΠnθn∆t2α2CpA

{
∂

∂x

[
ρnθ(1)

∂Π′

∂x
+ Fρnθ(1)

∂Π′

∂y

]

+
∂

∂y

[
ρnθ(1)

∂Π′

∂y
+ Fρnθ(1)

∂Π′

∂x

]

+
∂

∂z

[
G−1A−1ρnθ(1)

∂Π′

∂z

]}
−
(
κΠn∆t2α2Cpρ

nθ(1)G−1
∂θ(1)

∂z

)
∂Π′

∂z

+

(
pn

κCpΠn
− κθnρn

)
Π′ = κΠnθnρn − pn

Cp
+Φn , (2.1.21)

where Φn contains physical parameters and terms evaluated at the previous time step.
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This equation contains cross derivative terms that introduce several unwanted difficul-

ties. It is therefore more practical to introduce further simplifications to the model

instead, and one way of simplifying the model is to assume a constant Coriolis term,

i.e. set f = f0. This results in A and F being constant. In addition we can enforce

an averaging for ρn and θ(1), meaning they will not vary with latitude or longitude.

This means the cross derivative terms cancel, and the ρnθ(1) terms can be pulled out of

the derivatives. With these simplifications imposed, we obtain the following simplified

model equation that is more amenable to practical implementation:

−κΠnθn∆t2α2Cpρ
nθ(1)A

{
∂2Π′

∂x2
+
∂2Π′

∂y2
+

∂

∂z

(
1

GA

∂Π′

∂z

)}

−
(
κΠn∆t2α2Cpρ

nθ(1)G−1 ∂θ
(1)

∂z

)
∂Π′

∂z
+

(
pn

κCpΠn
− κθnρn

)
Π′ = κΠnθnρn − pn

Cp
+Φn

(2.1.22)

We assume that the Earth’s surface and the top of the atmosphere are rigid boundaries,

thus impose rigid boundary conditions u′ ·n = 0 at these boundaries, where n is a unit

vector pointing outward from the boundary. This implies the Neumann boundary

condition
∂Π′

∂n
= −X · n , (2.1.23)

using equations (2.1.18) – (2.1.20). Once the equation is solved for Π′, we use this to

update the Exner pressure at time level n + 1. This is used to find un+1, vn+1 and

wn+1 which are then used to find θn+1 and ρn+1. The papers [28, 31] also describe the

derivation of the Helmholtz equation in the UM but without the assumptions made

in this section. In [57, §3.2], the Helmholtz equation used in ENDgame is described,

which is a simplified equation comparable to (2.1.22), obtained by making suitable

assumptions as in this section to simplify the model.

The solution to the Helmholtz equation is therefore central to advancing the model

at each time step, and so it must be solved efficiently to reduce the costs of the UM.

The equation is solved operationally using a conjugate residual solver [34] on a grid

with resolution 432 × 325 × 70. This method alone is not adequate for solving the

problem efficiently, thus it is preconditioned using a two dimensional alternative direc-

tion implicit (ADI) method [11]. The ADI method uses a tridiagonal solver in the x-

and z−directions, and the affect of this as a preconditioner is investigated in [22, 69].

Although the preconditioner accelerates the method, it is not optimal and the time

taken to solve the equation is still not adequate. So further improvements are sought

especially for the huge problem sizes used in the UM.
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We conclude this section by defining the Helmholtz equation in spherical polar

coordinates, since we are interested in solving this equation on a spherical geometry.

We have r ∈ [a, a + d] (the radius), φ ∈ [0, π] (the polar angle) and λ ∈ [0, 2π] (the

azimuthal angle), where a ≈ 6371km is the radius of the Earth and d ≈ 63km is the

depth of the atmosphere. The governing equations in spherical polar coordinates, given

in [28], are:

Du

Dt
= fv − Cpθ

r sinφ

∂Π

∂λ
+ Fu ,

Dv

Dt
= −fu− Cpθ

r

∂Π

∂φ
+ Fv ,

Dw

Dt
= −g − Cpθ

∂Π

∂r
+ Fw ,

Dθ

Dt
= S ,

∂ρ

∂t
+∇z · (ρu) =

∂ρ

∂t
+

1

r2
∂

∂r

(
r2ρw

)
+

1

r sinφ

∂

∂φ
(sinφ ρv) +

1

r sinφ

∂

∂λ
(ρu) = 0 ,

κΠθρ =
p

Cp
,

where f = −2Ω cosφ. Then the Helmholtz equation, with the same simplifications

made for (2.1.22), is

−κΠnθn∆t2α2Cpρ
nθ(1)A

{
1

r2 sin2 φ

∂2Π′

∂λ2
+

1

r2 sinφ

∂

∂φ

(
sinφ

∂Π′

∂φ

)
+

1

r2
∂

∂r

(
r2

GA

∂Π′

∂r

)}

−
(
κΠn∆t2α2Cpρ

nθ(1)G−1 ∂θ
(1)

∂r

)
∂Π′

∂r
+

(
pn

κCpΠn
− κθnρn

)
Π′ = κΠnθnρn − pn

Cp
+Φn

(2.1.24)

with Neumann boundary conditions (2.1.23) at the rigid boundaries, i.e. the Earth’s

surface and the top of the atmosphere.

2.2 Data Assimilation in NWP

Forecasts using NWP have improved greatly since they were introduced over 50 years

ago, and one of the main reasons for this is due to the improvement in obtaining the

initial conditions, x0, at a given time, t0, for the model forecast. x0 is a state of the

atmosphere at time t0 obtained for the ‘model variables’. The model variables of the

UM used at the Met Office are

x = (u, v, w, θ, ρ, p, q),
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where (u, v, w) are the three components of wind velocity, θ is the potential tempera-

ture, ρ is density, p is pressure and q is specific humidity. These variables are highly

correlated (e.g. a change in pressure will affect the density of the air) so any errors

in these variables will also be correlated. The model domain used has 432 × 325 × 70

degrees of freedom, and so the state vector of the model variables will have O(107)

elements for each variable. The analysis grid used for data assimilation, however, has

a smaller resolution of 216× 163× 70 degrees of freedom, and so the initial conditions

obtained using data assimilation are interpolated before they are used in the forecast.

Data Assimilation is the process of finding the best estimate of the current state of

a system. In NWP, this system is the atmosphere and the oceans, and data assimila-

tion is used to estimate x0 by combining a previous forecast with observational data,

knowledge of atmospheric dynamics and statistical data that measures the accuracy of

the forecast and observations. The uncertainties are quantified with Gaussian prob-

ability density functions (PDF). Typically there are O(106) observations and O(107)

model variables, thus the system is underobserved and an operator is required to map

the model space to the observation space. A model state is found that is the statisti-

cally optimal estimate of the truth given the previous forecast and new observations,

together with estimates of the errors in each. The errors in the observations and the

previous forecast are minimized in order to produce the best estimate, or ‘analysis’,

of the current state of the atmosphere. Due to the chaotic nature of the governing

equations in the model, any errors in the initial conditions will be amplified in the

forecast. Thus, despite the continuous advancements in computational power and nu-

merical methods, these benefits cannot be fully realized in NWP without accurate data

assimilation techniques.

There are several type of data assimilation methods such as optimal statistical in-

terpolation, Newtonian relaxation, 3D-VAR and 4D-VAR (see [56] for details). Also,

ensemble-based methods such as ensemble Kalman filter methods [35] are being ex-

plored as possible additions to current operational analysis techniques. However, in

this section we focus on 3D and 4D VAR, as these are currently the most commonly

used data assimilation methods in weather forecasting, in particular by the Met Office

who use an incremental version of 4D-VAR, described in [53, 61].

2.2.1 3D-VAR

We denote the current state of the atmosphere obtained from a previous forecast as

the ‘background state’, xb. The background state will have uncertainties, and these are

quantified in the ‘background error covariance matrix’, B, using the PDF associated

with the background state. The matrix B is of size O(107×107). If x is the ‘true state’
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of the atmosphere, then the error in the background state is quantified as

x′ = x− xb, (2.2.1)

where x′ is referred as the increment, or perturbation, to the background state. We

combine the forecast error with the observation errors, which is quantified in the fol-

lowing cost function:

J(x) = Jb + Jo = (x− xb)B
−1(x− xb) + (y−H(x))R−1(y−H(x)) ,

where y is the set of observations, H is a nonlinear observation operator that maps

the model space to the observation space and R is the observation error covariance

matrix of size O(106 × 106). Jb and Jo are the cost functions for the background state

and observations respectively, and the objective of 3D-VAR is to find the model state

x that minimizes the nonlinear cost function J . However, for operational purposes, it

is more practical to linearise the cost function with respect to the increments to the

background state:

J(x′) = x′B−1x′ + (y−H(xb)−H(x′))R−1(y−H(xb)−H(x′)) , (2.2.2)

where H is a linear approximation to the observation operator H.

2.2.2 4D-VAR

In 4D-VAR, the background error is modified not only in space but also over a certain

time span called the ‘assimilation window’. The assimilation window typically spans

a 12 hour time period around the analysis time, and the objective of 4D-VAR is to

minimize the misfit between the previous forecast and the observations during this

time period. We describe a variant of 4D-VAR called strong constraint 4D-VAR, in

which the model state x0 at time t = t0 is found that minimizes the following cost

function

J(x0) = (x0 − xb)B
−1(x0 − xb) +

n∑

i=0

(yi −Hi(xi))R
−1(yi −Hi(xi)) ,

with the constraint

xi = M(ti, t0,x0) .

where M is the nonlinear time dependent model from Section 2.1 and i is an index of

timesteps. By minimizing this cost function, x0 is found at the start of the assimilation
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Figure 2-1: 4D-VAR

window. Then the corrected forecast across the assimilation window, produced by

evolving the model M, minimizes the errors in the forecast and the observations during

this time period. Figure 2-1 demonstrates the process of 4D-VAR, where tn is the end

of the assimilation window. As with 3D-VAR, the 4D-VAR cost function is linearized

with respect to the model state increments for a more practical implementation. In

addition to the observation operator, a linearized approximation to the model is also

used which updates the model space increments at each time step in the assimilation

window.

2.2.3 Control Variable Transforms in 3D-VAR

Minimizing the cost function in 3D- or 4D-VAR is hugely costly due to the huge problem

size involved and the sheer cost in inverting the B matrix. The matrix represents the

errors in the background state which are highly correlated due to the strong correlations

between the model variables, such as density and pressure. These correlations in the

errors are represented in the matrix, hence B is dense and is in fact too large to be used

or even stored explicitly. Therefore attempting to invert the matrix operationally is

completely impractical. Instead, a new representation of the matrix is devised which is

better conditioned and has a simpler structure, consequently allowing the minimization

process to be performed more efficiently.

As with other assimilation schemes, a new representation of theBmatrix is achieved

in the Met Office VAR by a transformation from the space of model variables, e.g.

pressure, potential temperature and wind velocity, to a space of variables known as

the ‘control variables’, e.g. streamfunction, velocity potential and geostrophically un-
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balanced pressure. Then it is in this control space that the minimization process is

performed. The process of the control variable transform (CVT) is done operationally

at the Met Office within incremental 4D-VAR, but in this section we describe the

process in 3D-VAR for simplicity.

Firstly, instead of carrying out the transformations using the model variables, x,

we formulate the problem in terms of their increments from the background state, x′

(recall (2.2.1)), because it is with respect to these increments that the cost function is

minimized (see (2.2.2)). We have

x′ = (u′, v′, w′, θ′, ρ′, p′, q′) ,

and we let, for example,

u = u+ u′ ,

v = v + v′ ,

p = p+ p′ ,

where u, v and p are the background states of the variables. Now, let v be the set of

control variables. Then v′ is the set of increments of the control variables, and without

giving the details the transformation from the model variable increments to the control

variable increments can be compactly formulated as

v′ = Tx′, (2.2.3)

for some matrix T, which we denote the T-transform. It’s inverse, i.e. the transforma-

tion from v′ to x′ is denoted the U-transform

x′ = Uv′. (2.2.4)

The choice of the control variables is based on the fact that the background errors for

each control variable are assumed uncorrelated with each other. Then the background

error covariance matrix for the control variables, Bv, will only contain spatial correla-

tions in the errors for each control variable, and can be assumed to be block diagonal.

Bv is obtained from B by applying the U-transform (2.2.4) to the first term of the cost

function (2.2.2):

x′TB−1x′ = v′TUTB−1Uv′

⇒ B−1v = UTB−1U .
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With this simpler structure of the matrix, the minimization process can be done more

easily in the control space. A simpler form of (2.2.2) is now obtained:

J(v′) = v′B−1v v′ + (y−H(Uvb)−H(Uv′))R−1(y−H(Uvb)−H(Uv′)) .

Once the minimization is completed, the solution v′ is transformed back to the model

space via the U-transform to give the solution x′ in the model space. Operationally

at the Met Office, the transformations are further extended to remove the spatial

correlations of each variable using vertical and horizontal transforms [49]. By doing

this, the matrix can be assumed to be diagonal, hence it doesn’t need to be stored

explicitly. Let z′ be the set of variable increments which have undergone a control

variable and spatial transform. Then

z′ = ThTvTx′,

x′ = UUvUhz
′,

where Th and Tv are the horizontal and vertical transforms which remove the spacial

correlations of the variables, and Uh Uv are the respective inverses. The transformed

background error covariance matrix, Λ, is simply the identity matrix:

I = Λ−1 = ThTvTB−1UUvUh .

Therefore, the problem of storing and inverting the B-matrix has been shifted to defin-

ing suitable control variable and spacial transforms, and so the matrix never needs to

be explicitly represented.

2.2.4 Choice of Control Variable Transform

We now discuss the physics behind the the choice of the control variables. It is impor-

tant that these variables are uncorrelated, or at least nearly uncorrelated, otherwise the

assumption of the transformed background error covariance matrix having a diagonal

structure will not be accurate.

Although the Met Office uses compressible non-hydrostatic equations, here we only

analyze the hydrostatic motions. In [49, 53], it was identified that there are two modes

of atmospheric motion, geostrophically balanced Rossby waves and geostrophically un-

balanced inertia-gravity waves. Balanced and unbalanced flows are assumed to have

little or no interaction between each other, meaning that their errors will be uncorre-

lated. In a linear shallow atmosphere system, one third of the modes are characterized

as balanced and two thirds as unbalanced [5], and this can be extended to a 3D atmo-
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sphere with the assumption that the modes will still be uncorrelated. This provides

the inspiration for the choice of control variables in the CVT for the operational VAR

system. Good control variables are ones which capture either the balanced or unbal-

anced modes, and a separation of control variables in such a way forms the basis of

the idea that their errors will be uncorrelated. At the Met Office the control variables

currently used operationally are:

• The streamfunction, ψ

• The velocity potential, χ

• The unbalanced pressure, pu

The streamfunction is assumed to be a completely balanced variable, whilst the ve-

locity potential is assumed unbalanced. In general, pressure and streamfunction have

balanced and unbalanced components, and likewise for their perturbations:

p′ = p′u + p′b, (2.2.5)

ψ′ = ψ′u + ψ′b. (2.2.6)

However, for the CVT, it is assumed that ψ′u = 0 because the streamfunction is assumed

to be completely balanced. Since a shallow atmosphere approximation is used for the

analysis of the modes, the depth of the atmosphere is assumed to have a constant value

of a.

The T-transform: (u′, v′, w′, θ′, ρ′, p′, q′) → (ψ′, χ′, p′u)

We now give the details of the T-transform, i.e. how to calculate each of the control

variables from the model variables. Note that there are more model variables than

control variables, but in order to carry out the T-transform we only need the three

model variables (u′, v′, p′). The streamfunction and velocity potential increments are

found from the horizontal wind components by solving the following elliptic equations

on each vertical level of the sphere

∇2
rψ
′ =

1

a sinφ

∂v′

∂λ
− 1

a

∂u′

∂φ
, (2.2.7)

∇2
rχ
′ =

1

a sinφ

∂u′

∂λ
+

1

a

∂v′

∂φ
, (2.2.8)

where ∇2
r is the 2D Laplacian on the sphere:

∇2
r =

1

a2 sinφ

(
∂

∂φ

(
sinφ

∂

∂φ

)
+

∂

∂λ

(
1

sinφ

∂

∂λ

))
.
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Since the right hand sides of (2.2.7) and (2.2.8) have a zero mean value on the sphere,

this ensures the existence of a solution in both equations which will be unique up to a

constant.

Then, the linear balance equation

∇r · (fρ0∇rψ
′
b)−∇2

rp
′
b = 0, (2.2.9)

for the increments of ψ′b and p′b is used to calculate the balanced pressure field where

ρ0 is a reference state density and f is the Coriolis force which is latitude dependant.

Since the streamfunction is assumed to be completely balanced, we have ψ′ = ψ′b, and

so p′b can be calculated. The full pressure increment p′ is known because it is a model

variable, so the unbalanced pressure is calculated trivially from (2.2.5).

The U-transform: (ψ′, χ′, p′u) → (u′, v′, w′, θ′, ρ′, p′, q′)

We now give the details of the transformation from the control variables to the model

variables, i.e. the U-transform. The three control variables are transformed to the

model variables (u′, v′, p′), which are then used to obtain the remaining model variables

(w′, θ′, ρ′, q′).

Firstly, a Helmholtz decomposition is used to separate velocities into rotational and

divergent parts. Therefore we have

(
u′

v′

)
= ∇r × ψ′ +∇rχ

′ , (2.2.10)

which gives

u′ =
1

a sinφ

∂χ′

∂λ
− 1

a

∂ψ′

∂φ
, (2.2.11)

v′ =
1

a sinφ

∂ψ′

∂λ
+

1

a

∂χ′

∂φ
. (2.2.12)

We then obtain the pressure by firstly calculating the balanced pressure, p′b. This is

calculated by solving (2.2.9) on each vertical layer, again with the assumption that

ψ′ = ψ′b. We know p′u as it is a control variable so we obtain the full pressure field

using (2.2.5).

With the pressure increment obtained, we then use (2.1.1) and the following lin-

earized hydrostatic equation (as stated in [80]) to obtain the virtual potential temper-

ature increment θv
′

:
∂Π′

∂r
= − g

cpθv
′ .
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The potential temperature, θ′ and specific humidity, q′, increments are then calculated

by linearising the following equations

θν
′

= θ′(1 + [ǫ−1 − 1]q′) , (2.2.13)

rh′ = q′
(

p′

ǫes(T )

)
, (2.2.14)

and then solving them for θ′ and q′, where ǫ is the ratio of the molecular weight of water

to the molecular weight of dry air, es(T ) is the saturated vapour pressure of water and

rh′ is the relative humidity increment.

The density increment is obtained by rearranging the following equation from [80]:

p′ =

[
Rρ′θv

′

a2pref

] 1
1−κ

. (2.2.15)

Finally we obtain the vertical velocity increment w′. Operationally in the UM, this

is currently set as w′ = 0, but a more accurate value can be obtained by solving a

particular equation known as the Quasi Geostrophic Omega (QG− Ω) equation [38]:

−N2(r)∇2
r(ρrefw

′)− θrefρreff
2
0

∂

∂r

(
1

θrefρref

∂

∂r
(ρrefw

′)
)

= −Pwθrefρref (2.2.16)

with boundary conditions w′ = 0 on the upper and lower vertical boundaries. θref

and ρref are hydrostatically balanced reference states of the potential temperature and

density. N2(r) = g
θ0

∂θ′

∂r , and f0 is the Coriolis parameter, assumed to be a constant.

The form of this equation is valid only if the Boussinesq approximation is valid and the

equation is derived in the Met Office VAR scientific paper no. 16 (yet to be published).

Clearly this is not the case for a nonhydrostatic model, but the errors are likely to be

small enough for equation (2.2.16) to be a useful approximation. The QG−Ω equation

is a three dimensional elliptic problem solved for ρrefw
′ that is currently attempted to

be solved using the generalized conjugate residual (GCR) method [34, 69]. It is a highly

ill-conditioned problem due to the large variation in coefficients between the poles in

addition to the large problem size of O(106). Hence, the GCR solver used at the Met

Office takes over 700 iterations to solve this problem, and so there is considerable scope

for improvement before the solver can be used operationally.
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2.3 PV-Based Control Variable Transformations

The control variables described in Section 2.2.3 are chosen on the basis that they satisfy

the linear balance equation (2.2.9) exactly. However, this assumption is only valid for

balanced components of flow because the unbalanced components cannot obey the

linear balance equation. The separation between balanced and unbalanced modes is

different in different Burger regimes [26]. The Burger number, Bu, is the ratio LR/L

where L is the horizontal length scale and LR is the Rossby radius of deformation,

LR =
√
gH
f , where H is the depth scale. Bu is used to characterize the flow regime,

where the two regimes are as follows:

• High Burger regimes (Bu ≫ 1): This is achieved when L ≪ LR, i.e. when f is

small (e.g. at the tropics). Here the streamfunction is dominated by balanced

components, so ψ = ψb.

• Low Burger regimes (Bu ≪ 1): This is achieved when L ≫ LR, where the

pressure field is dominated by balanced components, so p ≈ pb and in general

ψu 6= 0.

This indicates that the control variables defined in Section 2.2.4 will capture high

Burger regimes accurately because of the assumption that ψ is completely balanced.

Solving the linear balance equation (2.2.9) for p′b is therefore only valid if L ≪ LR in

the high Burger regimes. However, the assumption that ψ = ψb is only satisfied in high

Burger regimes and so the low Burger regimes are not captured accurately.

These limitations are overcome by using a different set of control variables which

represent the separation of balanced and unbalanced components across all flow regimes.

The balanced mode is captured using a quantity known as the potential vorticity (PV).

According to the theory of [5], balanced flow is associated with PV but unbalanced

flow has no PV and so is completely independent from balanced flow, hence they are

uncorrelated. Thus we use this as motivation to choose PV-based control variables that

will more accurately represent the flow in the two Burger regimes. These new variables

are:

• The balanced streamfunction, ψb

• The velocity potential, χ

• The unbalanced pressure, pu

Clearly the only difference is that ψb is used instead of ψ, thus the assumption that

the streamfunction is balanced across all flow regimes is no longer used.
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This new control variable transform using PV recognizes the presence of unbalanced

streamfunction in low Burger regimes, but resembles the existing scheme (which is ac-

curate) for high Burger regimes. Consequently the control variables can be partitioned

into purely balanced and unbalanced parts. The PV-based control variable transform is

based around two equations. In the UM, PV is called Ertel PV, Q, which is calculated

from ψ and p, and an incremental form of the equation is given as follows

α0∇2
rψ
′ + β0p

′ + γ0
∂p′

∂r
+ ε0

∂2p′

∂r2
= Q′ , (2.3.1)

where α0, β0, γ0 and ε0 are reference state quantities of the model variables. The

second is the linear balance equation (2.2.9) which relates the balanced components

of ψ′ and p′. Now, since there is no PV in unbalanced components of flow, (2.3.1) is

written in terms of ψ′u and p′u as

α0∇2
rψ
′
u + β0p

′
u + γ0

∂p′u
∂r

+ ε0
∂2p′u
∂r2

= 0 , (2.3.2)

Now, by substituting (2.2.5) and (2.2.6) into (2.3.1) and using (2.3.2) we get

α0∇2
rψb + β0p

′
b + γ0

∂p′b
∂r

+ ε0
∂2p′b
∂r2

= Q′ , (2.3.3)

Now, only the balanced component of flow satisfies the linear balance equation (2.2.9),

so replacing ψ′b and p′b with ψ′u and p′u respectively gives a residual, denoted anti-PV,

Q, which we calculate from p′ and ψ′

∇r · (fρ∇rψ
′
u)−∇2

rp
′
u = Q

′
= ∇2

rξ
′ , (2.3.4)

where ξ′ is a measure of imbalance. Then adding the linear balance equation (2.2.9) to

(2.3.4), we obtain

∇r · (fρ∇rψ
′)−∇2

rp
′ = ∇2

rξ
′ , (2.3.5)

by using again (2.2.5) and (2.2.6). We have now calculated PV and anti-PV from p′

and ψ′, and thus we now use these to calculate the control variables p′u and ψ′b. The

balanced streamfunction is found by firstly using the linear balance equation (2.2.9) to

solve for p′b, which can be formally written using the inverse Laplacian operator ∇−2r

as

p′b = ∇−2r ∇r · (fρ0∇rψ
′
b) . (2.3.6)
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Substituting (2.3.6) into (2.3.3) we finally obtain the balanced equation for ψ′b:

α0∇2
rψ
′
b + β0

(
∇−2r ∇r · f∇rψ

′
b

)
+ γ0

∂

∂r

(
∇−2r ∇r · f∇rψ

′
b

)
+

ε0
∂2

∂r2
(
∇−2r ∇r · f∇rψ

′
b

)
= Q′

(2.3.7)

A similar approach is used to find the unbalanced pressure. Rearranging (2.3.5) we get

p′u = ∇−2r ∇r · (fρ0∇rψ
′
u)− ξ′, (2.3.8)

and substituting (2.3.8) into (2.3.2), we obtain the unbalanced equation for ψ′u:

α0∇2
rψ
′
u + β0

(
∇−2r ∇r · f∇rψ

′
u

)
+ γ0

∂

∂r

(
∇−2r ∇r · f∇rψ

′
u

)
+

ε0
∂2

∂r2
(
∇−2r ∇r · f∇rψ

′
u

)
= β0ξ

′ + γ0
∂ξ′

∂r
+ ε0

∂2ξ′

∂r2

(2.3.9)

Then we use (2.3.8) to find p′u.

Despite the convincing theory for the new PV-based control variable transforma-

tions (see [53, 6, 5, 25, 78, 81]), these are not yet operational. The main reason for

this are the difficulties in solving (2.3.7) and (2.3.9) to obtain the control variables.

The coefficients in the equations vary with height and latitude, and there are also two

dimensional solves with ∇−2r required within the three dimensional problem. The re-

sult is a highly ill-conditioned problem and previous attempts at implementing a solver

for this have not resulted in a satisfactory convergence to the solution. However, if

these equations can be solved at all, let alone with great efficiency, then there is con-

siderable scope for improving the accuracy of the initial conditions produced by VAR,

particularly in the low Burger regimes.

2.4 Grid Structure for the UM

In this section we define the grids used for the discretisation of the equations in the

UM and the CVT. The grid is regular in longitude λ and latitude φ, but graded in r

with a higher resolution of grid points near the surface of the Earth. A graded vertical

grid spacing is desirable since there are larger vertical gradients and fluxes of variables

near the surface of the Earth. Also, a staggered grid is used in all three coordinate

directions, where the Arakawa C-grid staggering [2] is used in the horizontal (i.e. the

λ–φ plane, see Figure 2-2), while the Charney-Phillips grid staggering [1] is used in the

vertical (see Figure 2-3).
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Figure 2-2: Arakawa C-grid used in the horizontal
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Figure 2-3: Charney Phillips grid used in the vertical
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Figure 2-4: The Met Office grid staggering

In the horizontal, the variables Π, ρ, θ, w, q, χ and u are located at the poles. In

the vertical, the grid is staggered into θ- and ρ-levels. There is an extra θ-level because

these occupy both the upper and lower boundary, and the ρ-levels are located halfway

between. The grid staggering and the position of each variable is visualized in three

dimensions in Figure 2-4.

The equations in the UM and in the CVT are discretised spatially using finite

differences, with a special treatment of the variables that are discretised at the poles.

Details of the spacial discretisation can be found in [28], but will also be covered in

detail in Chapter 3 using a finite volume discretisation where the discretisation at the

poles can be derived more naturally.

2.5 Summary of the Key Elliptic Equations in NWP

We have seen throughout this chapter that the process of NWP and data assimilation

leads to three types of three dimensional elliptic problems which are solved on a model
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domain representing the atmosphere of the Earth:

• The Helmholtz problem (2.1.24), arising from the semi-implicit discretisation of

the fully compressible non-hydrostatic equations used in the dynamical core of

the UM.

• The Quasi Geostrophic Omega (QG−Ω) equation (2.2.16) for finding the vertical

velocity increment in the control variable transform, used in variational data

assimilation.

• The balanced and unbalanced equations (2.3.7) and (2.3.9) for obtaining the

control variables in the new PV-based control variable transform.

The three problems each have a particular role in NWP, and so it is essential to be

able to solve them efficiently and accurately using sophisticated numerical methods.

Although each of these equations are elliptic, they all pose different difficulties. For

example, the coefficients present in each problem are different, leading to different tech-

niques required to compensate for the variation in these coefficients. The balanced and

unbalanced equations require additional two dimensional solves, so further techniques

must be investigated to tackle this problem. Moreover, solving these equations on a

spherical domain poses additional difficulties because the coefficients in the equations

degenerate towards the poles. Therefore, it is clear that advanced numerical techniques

are needed to aid the Met Office in solving these equations with greater efficiency than

what they are currently capable of. This will consequently improve the forecasts from

the NWP models by allowing for finer grid resolutions and by improving the quality of

the initial conditions for the forecasts.

The solution of these type of problems using iterative numerical techniques will

form the core of this thesis. In subsequent chapters we investigate various solvers that

are known to be able to deal with the type of issues that arise from these problems, and

adapt them accordingly for the three main elliptic problems of interest. Comparisons

will be made with the solvers currently used at the Met Office, and if those solvers

are significantly outperformed, it is likely that they will be replaced by the new solvers

described in this thesis.



Chapter 3

Model Problem and

Discretisation

3.1 Model Problem

All the problems described in the previous chapter (summarized in Section 2.5), when

formulated in spherical coordinates and suitably scaled, take the general tensor product

form

−∇ · (K∇u(ξ)) + a(ξ) · ∇u(ξ) + c(ξ)u(ξ) = g(ξ), ∀ξ = (ξ1, ξ2, ξ3) ∈ (0, 1)3 (3.1.1)

with

K = K(ξ) =



α1(ξ) 0 0

0 α2(ξ) 0

0 0 α3(ξ)


 ,

a = a(ξ) = [a1(ξ), a2(ξ), a3(ξ)]
T ,

and separable functions αi(ξ) = α1
i (ξ1)α

2
i (ξ2)α

3
i (ξ3), for i ∈ {1, 2, 3}. The differen-

tial operators in (3.1.1) are the usual gradient and divergence operators (see [15]) in

Cartesian form, i.e.

∇u =
[
∂u
∂ξ1
, ∂u
∂ξ2
, ∂u
∂ξ3

]T

∇ · F = ∂F1
∂ξ1

+ ∂F2
∂ξ2

+ ∂F3
∂ξ3



 .

Let Ω = (0, 1)3 with boundary Γ. K is assumed to be positive definite almost ev-

erywhere (a.e.) in Ω, i.e. αi(ξ) > 0 for all i ∈ {1, 2, 3} a.e., but we are particularly

concerned with the highly anisotropic and degenerate cases where αi(ξ) → 0 as ξi → 0

or ξi → 1. These cases arise in for example spherical polar coordinates where the

32
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functions αi degenerate near the poles. In addition, for problems in numerical weather

prediction, there will usually be a second anisotropy in that

α1(ξ) ≫ α2(ξ), α3(ξ).

This comes from the fact that the Earth’s atmosphere is very thin compared to the

dimensions of the Earth’s surface. Note however, that crucially, these anisotropies are

grid-aligned.

In particular, for the special case of the Poisson equation with source term f posed

in the Earth’s atmosphere and written in spherical polar coordinates (see [15]), we have

K = K(ξ) =




(
a+dξ1

d

)2
sin(πξ2) 0 0

0 sin(πξ2)
π2 0

0 0 1
4π2 sin(πξ2)


 .

where ξ1 is associated with the radial direction, ξ2 with the polar angle and ξ3 with

the azimuthal angle. Note that we have nondimensionalized the problem by setting

ξ1 :=
R− a

d
, ξ2 :=

Φ

π
, ξ3 :=

Λ

2π
,

where {(R,Φ,Λ) : a ≤ R ≤ a + d, 0 ≤ Φ ≤ π, 0 ≤ Λ ≤ 2π} are the usual spherical

polar coordinates and a ≈ 6371km and d ≈ 63km are the Earth’s radius and the depth

of the atmosphere, respectively. Because a≫ d and because sin(πξ2) → 0 as ξ2 → 0 or

ξ2 → 1, we see that this problem is highly anisotropic as suggested above.

Note that the equation has to be scaled by the volume element of a sphere

(a+ dξ1)
2 sin(πξ2), defined in [15], so that it can be written in the general tensor

product form of (3.1.1). With a = 0 and c = 0 we have the Poisson equation:

− ∂

∂ξ1

((
a+ dξ1

d

)2

sin(πξ2)
∂u

∂ξ1

)
− ∂

∂ξ2

(
sin(πξ2)

π2
∂u

∂ξ2

)
− ∂

∂ξ3

(
1

4π2 sin(πξ2)

∂u

∂ξ3

)

= f(γ1, γ2, γ3)(a+ dξ1)
2 sin(πξ2) , (3.1.2)

where g(ξ1, ξ2, ξ3) = f(γ1, γ2, γ3), and γ is a reparameterization that maps the unit

square to the spherical shell with radius ranging from a to a+ d as follows:

γ(ξ1, ξ2, ξ3) = ((a+dξ1) sin(πξ2) cos(πξ3), (a+dξ1) sin(πξ2) sin(πξ3), (a+dξ1) cos(πξ2))
T .
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3.2 Finite Volume Discretisation

In this section we describe the discretisation of the general problem (3.1.1) with various

different boundary conditions using the finite volume method, as described in [36, 77].

We then look at the special case of spherical polar coordinates with periodic boundary

conditions at the east and west boundaries and “polar” boundaries at the north and

south boundaries. This will closely follow the discretisation presented in [72] for the

two dimensional (2D) Poisson equation on the surface of the sphere, and [7] which also

describes the discretisation on the three dimensional (3D) spherical shell.

3.2.1 Discretisation of the General Problem

In order to discretise (3.1.1) on the unit cube, let us subdivide Ω into n1 × n2 × n3

cubes with cell centres

{ (ξ1,i, ξ2,j , ξ3,k) : i = 1, . . . , n1, j = 1, . . . , n2, k = 1, . . . , n3 },

and edge lengths h1 = 1/n1, h2 = 1/n2 and h3 = 1/n3.

We discretise (3.1.1) using the cell centred finite volume method. The PDE is inte-

grated over each mesh cell, or control volume, corresponding to a grid point (ξ1,i, ξ2,j , ξ3,k),

i.e.

Ωi,j,k =
[
ξ1,i− 1

2
, ξ1,i+ 1

2

]
×
[
ξ2,j− 1

2
, ξ2,j+ 1

2

]
×
[
ξ3,k− 1

2
, ξ3,k+ 1

2

]
,

where ξ1,i± 1
2
= ξ1,i ± h1

2 , ξ2,j± 1
2
= ξ2,j ± h2

2 and ξ3,k± 1
2
= ξ3,k ± h3

2 . The boundary of

each control volume consists of six faces, i.e.

Γi,j,k = Γi− 1
2
,j,k ∪ Γi+ 1

2
,j,k ∪ Γi,j− 1

2
,k ∪ Γi,j+ 1

2
,k ∪ Γi,j,k− 1

2
∪ Γi,j,k+ 1

2
,

and the cell faces are denoted by Γi± 1
2
,j,k = {ξ1,i± 1

2
}×[ξ2,j− 1

2
, ξ2,j+ 1

2
]×[ξ3,k− 1

2
, ξ3,k+ 1

2
],

with analogous definitions for Γi,j± 1
2
,k and Γi,j,k± 1

2
.

On each of the faces of Ω we impose either homogeneous Dirichlet boundary con-

ditions, i.e.

u(ξ) = 0 ∀ξ ∈ Γ , (3.2.1)

homogeneous Neumann boundary conditions, i.e.

∂u

∂n
(ξ) = 0 ∀ξ ∈ Γ , (3.2.2)

(where n denotes the outward normal to the boundary Γ), or periodic boundary con-
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ditions, i.e.

u(0, ξ2, ξ3) = u(1, ξ2, ξ3) , (3.2.3)

∂u

∂ξ1
(0, ξ2, ξ3) =

∂u

∂ξ1
(1, ξ2, ξ3) ∀ξ2 ∈ [0, 1],∀ξ3 ∈ [0, 1]. (3.2.4)

and similarly for the boundary faces at ξ2 = 0, 1 and ξ3 = 0, 1.

We begin by deriving the discrete equations at points on the computational domain

whose control volume does not contain a face on the boundary. The finite volume

discretisation is obtained by firstly integrating (3.1.1) over each control volume Ωi,j,k,

i.e.
∫

Ωi,j,k

−∇ · (K∇u(ξ)) + a(ξ) · ∇u(ξ) + c(ξ)u(ξ) dV =

∫

Ωi,j,k

g(ξ) dV ∀i, j, k (3.2.5)

where dV denotes the three dimensional volume element on Ω, i.e.

dV = dξ1dξ2dξ3. (3.2.6)

Discretisation of the Second-Order Term

Let us first concentrate on finding the discrete equations for the second-order term. We

use the divergence theorem to simplify the integrand of equation (3.2.5) by reducing

a second order term to a first order term on the boundary of the control volume,

which requires the equation to be written in divergence form. Applying the divergence

theorem, we obtain

−
∫

Ωijk

∇ · (K∇u) dV = −
∫

∂Ωijk

K∇u · n dS ,

where n is the outward unit normal vector to Ωi,j,k. Integrating over each cell face of

the control volume, we have

−
∫

∂Ωijk

K∇u · n dS = −
∫

Γ
i+1

2
,j,k

α1(ξ)
∂u

∂ξ1
dSi+ 1

2
,j,k +

∫

Γ
i− 1

2
,j,k

α1(ξ)
∂u

∂ξ1
dSi− 1

2
,j,k

−
∫

Γ
i,j+ 1

2
,k

α2(ξ)
∂u

∂ξ2
dSi,j+ 1

2
,k +

∫

Γ
i,j− 1

2
,k

α2(ξ)
∂u

∂ξ2
dSi,j− 1

2
,k

−
∫

Γ
i,j,k+1

2

α3(ξ)
∂u

∂ξ3
dSi,j,k+ 1

2
+

∫

Γ
i,j,k−

1
2

α3(ξ)
∂u

∂ξ3
dSi,j,k− 1

2
, (3.2.7)
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where the individual surface elements on Γ are:

dSi± 1
2
,j,k = dξ2dξ3, dSi,j± 1

2
,k = dξ1dξ3, dSi,j,k± 1

2
= dξ1dξ2 .

We approximate the derivative across the cell faces using central differences, and then

each of the line integrals are approximated using the midpoint rule which gives:

−

∫

∂Ωijk

K∇u · n dS ≈ −α1(ξi+ 1
2
,j,k)

Ui+1,j,k − Ui,j,k

h1
h2h3 + α1(ξi− 1

2
,j,k)

Ui,j,k − Ui−1,j,k

h1
h2h3

− α2(ξi,j+ 1
2
,k)

Ui,j+1,k − Ui,j,k

h2
h3h1 + α2(ξi,j− 1

2
,k)

Ui,j,k − Ui,j−1,k

h2
h3h1

− α3(ξi,j,k+ 1
2
)
Ui,j,k+1 − Ui,j,k

h3
h1h2 + α3(ξi,j,k− 1

2
)
Ui,j,k − Ui,j,k−1

h3
h1h2 ,

where ξi,j,k = (ξ1,i, ξ2,j , ξ3,k) and Ui,j,k is the discrete approximation to the solution

u at ξi,j,k. Discrete approximations to derivatives at grid points are often written in

stencil notation, which is a representation of the non-zero entries of a row of the matrix

corresponding to a particular node on the grid. The finite volume discretisation of the

second order term in (3.2.5) is a 7-point stencil (i.e. non-zero only at entries of the

matrix corresponding to the node itself and for its immediate neighbours) for each node

on the grid whose control cell does not contain a face on the boundary. The 7-point

stencil for node (i, j, k) is:

−α1(ξi− 1
2
,j,k)H1









−α2(ξi,j+ 1
2
,k)H2

−α3(ξi,j,k− 1
2
)H3 −

∑

−α3(ξi,j,k+ 1
2
)H3

−α2(ξi,j− 1
2
,k)H2









− α1(ξi+ 1
2
,j,k)H1 ,

(3.2.8)

with
∑

denoting the sum of all the off-diagonal entries, and where H1 = h2h3
h1

, H2 =
h1h3
h2

and H3 = h1h2
h3

. The numbers in the square brackets give the 5-point stencil in

the ξ2–ξ3 plane in the usual way (see, for example [20]). The numbers outside the

brackets denote the entries corresponding to the upwards and downwards neighbours.

Note that we have used a similar notation as in [7] to present the 7-point stencil. Note

also that this stencil assumes a uniform grid is being used in each coordinate direction.

The following generalizations are made to the stencil to account for non-uniform grids.

−α1(ξi− 1
2
,j,k

)H−
1









−α2(ξi,j+ 1
2
,k
)H+

2

−α3(ξi,j,k− 1
2

)H−
3 −∑ −α3(ξi,j,k+ 1

2

)H+
3

−α2(ξi,j− 1
2
,k
)H−

2









− α1(ξi+ 1
2
,j,k

)H+
1 .

(3.2.9)
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where H±1 =
h3,kh2,j

h±

1,i

, H±2 =
h3,kh1,i

h±

2,j

and H±3 =
h2,jh1,i

h±

3,k

, h1,i, h2,j and h3,k are the edge

lengths of control volume Ωi,j,k, and h
+ and h− define the distances between adjacent

cell centres, e.g.

h+1,i =
(h1,i + h1,i+1)

2
, h−1,i =

(h1,i + h1,i−1)
2

.

Discretisation of the First-Order Term

We now discretise the first-order term from (3.2.5). By integrating over the control

volume, we have ∫

Ωi,j,k

a(ξ) · ∇u(ξ) dV ,

where dV is defined in (3.2.6). We use the average of forward and backward differences

to approximate the first order derivatives across each cell, i.e.

∂u

∂ξ1

∣∣∣∣
i

≈ 1

2

{
Ui+1 − Ui

h+1,i
+
Ui − Ui−1

h−1,i

}
. (3.2.10)

Using (3.2.10) and the midpoint rule to approximate the volume integral, we obtain

∫

Ωi,j,k

a(ξ) · ∇u(ξ) dV =

∫

Ωi,j,k

a1(ξ)
∂u

∂ξ1
+ a2(ξ)

∂u

∂ξ2
+ a3(ξ)

∂u

∂ξ3
dV

≈

∫

Ωi,j,k

a1(ξ)
Ui+1,j,k − Ui−1,j,k

2h1
+ a2(ξ)

Ui,j+1,k − Ui,j−1,k

2h2
+ a3(ξ)

Ui,j,k+1 − Ui,j,k−1

2h3
dξ1 dξ2 dξ3

= a1(ξi,j,k)(Ui+1,j,k − Ui−1,j,k)
h2h3

2
+ a2(ξi,j,k)(Ui,j+1,k − Ui,j−1,k)

h1h3

2

+ a3(ξi,j,k)(Ui,j,k+1 − Ui,j,k−1)
h1h2

2
,

if a uniform mesh is used. In this case the 7-point stencil for the first-order term is

−a1(ξi,j,k)
h2h3
2




+a2(ξi,j,k)
h3h1

2

−a3(ξi,j,k)h1h2

2 0 +a3(ξi,j,k)
h1h2

2

−a2(ξi,j,k)h3h1

2


+ a1(ξi,j,k)

h2h3
2

,

or more generally, without the assumption of a uniform mesh,

−a1(ξi,j,k)
Vi,j,k

2h−

1,i











+a2(ξi,j,k)
Vi,j,k

2h+

2,j

−a3(ξi,j,k)
Vi,j,k

2h−

3,k

−
∑

+a3(ξi,j,k)
Vi,j,k

2h+

3,k

−a2(ξi,j,k)
Vi,j,k

2h−

2,j











+ a1(ξi,j,k)
Vi,j,k

2h+
1,i

.

where Vi,j,k = h1,ih2,jh3,k. Note that the matrix resulting from the discretisation of the

first order term does is non-symmetric (or skew-symmetric for a regular grid).
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Discretisation of the Zeroth-Order Term and Right-Hand-Side

Lastly we discretise the zeroth order term and the right-hand-side. Approximating the

integral of the zeroth order term over the control volume using again the midpoint rule

we get ∫

Ωi,j,k

c(ξ)u(ξ) dV ≈ c(ξi,j,k)u(ξi,j,k)h1,ih2,jh3,k .

Similarly the integration of the right hand side yields

∫

Ωi,j,k

g(ξ) dV ≈ g(ξi,j,k)h1,ih2,jh3,k .

3.2.2 Discretisation of the Terms on the Boundary

Dirichlet Boundary Conditions

Suppose we have homogeneous Dirichlet boundary conditions (3.2.1) on the boundary

Γ. Let us without loss of generality (w.l.o.g.) consider the nodes whose cell contains a

face on the boundary ξ1 = 0, e.g. nodes at which i = 1. Recall the following component

from equation (3.2.7): ∫

Γ
i− 1

2 ,j,k

α1(ξ)
∂u

∂ξ1
dSi− 1

2
,j,k . (3.2.11)

We now use one-sided differences to approximate ∂u
∂ξ1

, rather than central differences,

in order to use the value of the solution at the boundary ξ1 = 0. The exact solution

is known at ξ1 = 0, namely U 1
2
,j,k = u(0, ξ2, ξ3) = 0, and the distance between the two

points is h1,1/2 instead of h−1,1 so (3.2.11) becomes

α1(ξ 1
2
,j,k)

U1,j,k − 0
h1,1

2

h2h3 = α1(ξ 1
2
,j,k)

2U1,j,k

h1,1
h2h3 .

The stencil for the nodes at which i = 1, without the assumption of a uniform mesh,
becomes a six-point stencil:











−α2(ξ1,j+ 1
2
,k)

h3,kh1,1

h
+

2,j

−α3(ξ1,j,k− 1
2
)
h2,jh1,1

h
−

3,k

−
∑

+2α1(ξ 1
2
,j,k)

h3,kh2,j

h1,1
−α3(ξ1,j,k+ 1

2
)
h2,jh1,1

h
+

3,k

−α2(ξ1,j− 1
2
,k)

h3,kh1,1

h
−

2,j











− α1(ξ 3
2
,j,k)

h3,kh2,j

h+
1,1

.

Analogously, we can obtain similar stencils at i = n1, j = 1, j = n2, k = 1 and k = n3,

i.e. at the edges and corners of the domain.
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Neumann Boundary Conditions

Now suppose we want to impose homogeneous Neumann boundary conditions (3.2.2)

on Γ, and consider the boundary face where ξ1 = 0 (i.e. i = 1). Recall again the

component (3.2.11) from (3.2.7). By boundary condition (3.2.2), ∂u
∂ξ1

|ξ1=0= 0, and so

the component (3.2.11) vanishes and we are left with the following stencil:











−α2(ξ1,j+ 1
2
,k)

h3,kh1,1

h
+

2,j

−α3(ξ1,j,k− 1
2
)
h2,jh1,1

h
−

3,k

−
∑

−α3(ξ1,j,k+ 1
2
)
h2,jh1,1

h
+

3,k

−α2(ξ1,j− 1
2
,k)

h3,kh1,1

h
−

2,j











− α1(ξ 3
2
,j,k)

h3,kh2,j

h+
1,1

.

Similar stencils are obtained analogously at the remaining edges and corners of Ω.

Periodic Boundary Conditions

Finally, suppose periodic boundary conditions (3.2.3) – (3.2.4) are imposed on Γ, and

consider the boundary faces where ξ1 = 0 and ξ1 = 1 (i.e. i = 1 and i = n1). We recall

again the component (3.2.11) from (3.2.7) as before, and consider the nodes whose cell

contains a face on the boundary ξ1 = 0. By (3.2.3), U 1
2
,j,k = Un1+

1
2
,j,k so (3.2.11)

becomes

α1(ξ 1
2
,j,k)

U1,j,k − Un1,j,k

h−1,1
h2h3.

where h−1,1 = 0.5 (h1,1 + h1,n1), and so the seven-point stencil is

−α1(ξ 1
2
,j,k

)
h3,kh2,j

h
−

1,1



















−α2(ξ1,j+ 1
2
,k

)
h3,kh1,1

h
+
2,j

−α3(ξ1,j,k−
1
2

)
h2,jh1,1

h
−

3,k

−
∑

−α3(ξ1,j,k+1
2

)
h2,jh1,1

h
+

3,k

−α2(ξ1,j− 1
2
,k

)
h3,kh1,1

h
−

2,j



















−α1(ξ 3
2
,j,k

)
h3,kh2,j

h
+
1,1

.

Once again, we obtain similar stencils at each of the edges and corners of Ω.

Resulting System of Linear Equations

The discretisation results in a system of linear equations of the form

Au = b,

where A ∈ R
n×n, and n = nλ × nφ × nr is the dimension of the problem. Matrix

A represents the discretisation of the zeroth, first and second order terms. It is a

sparse and symmetric positive definite (SPD) matrix if the coefficient a to the first
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order term in (3.1.1) is zero (otherwise it is non-symmetric) and if Dirichlet boundary

conditions are imposed (otherwise it is positive semi-definite). u ∈ R
n is the unknown

solution vector corresponding to the values of the unknown function u at the cell centres,

and b ∈ R
n is the right-hand side with entries g(ξi,j,k)h1,ih2,jh3,k. A lexicographical

ordering of the unknowns is used.

3.2.3 Special Case – Spherical Polar Coordinates

Here we consider the discretisation of (3.1.1) for the particular case of spherical polar

coordinates, with ξ = (r, φ, λ) ∈ (0, 1)3, where r, φ and λ are the nondimensionalized

radial direction, polar angle and azimuthal angle respectively. This special case is of a

particular interest in numerical weather prediction, as the elliptic problems of interest

from Chapter 2 are all given in spherical polar coordinates. Recall that the problem

needs to be scaled by (a+ dr)2 sin(πφ) so that it can be written in the general tensor

product form.

The Poisson equation on a sphere is given in (3.1.2), but in general, elliptic problems

on a sphere may have additional coefficients, which is certainly the case for the problems

from Chapter 2. These can be written generally as

α1(r, φ, λ) = Lr(λ, φ)(a + dr)2 sin(πφ)/d2 ,

α2(r, φ, λ) = Lφ(r, λ) sin(πφ)/π
2 ,

α3(r, φ, λ) = Lλ(r, φ)/(4π
2 sin(πφ)) ,

where the coefficients Lr, Lλ and Lφ have to again be assumed to be separable, e.g.

Lr(φ, λ) = Lλ
r (λ)L

φ
r (φ). For simplicity we assume that the ith coefficient Li does not

depend on the ith variable, which is always the case for the problems in Chapter 2. In

general we also have c 6= 0 and a 6= 0, but for the problems in Chapter 2, these are

restricted to c ≥ 0 and a(ξ) =
[
a1(r)(a+ dr)2 sin(πφ)/d, 0, 0

]
.

The main difference of this setting is the boundary conditions in the φ-direction

coming from the pole, which also affects the mesh defined on Ω at these boundaries.

The mesh is defined by subdividing Ω into nλ × nφ × nr cubes with cell centres

{ (ri, φj , λk) : i = 1, . . . , nr, j = 1, . . . , nφ, k = 1, . . . , nλ },

and edge lengths hλ = 1/nλ, hφ = 1/(nφ + 1) and hr,i, i = 1, . . . , nr. In addition there

are 2×nr cells at the poles with edge lengths 1, hφ/2 and hr,i. The computational grid

in the λ − φ plane can be seen in Figure 3-1(a), where the top and bottom boundary

represent the North and South pole, respectively. The grid on the λ−φ plane is uniform,
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(a)
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(b)

Earth’s surface

Figure 3-1: (a) The computational grid in the λ-φ plane, and (b) the graded mesh in
the r-direction.

except at the poles. The nodes are located at the cell centres, where λk = (k − 1
2)hλ

and φj = jhφ. At the poles we use half cells, so that the poles themselves are located

at the centres of the cells in the physical domain Ω, and so that a discrete equation

can be derived at these points in the same fashion as at the other points. In the radial

direction, the mesh is graded as shown in Figure 3-1(b) with the cell centres located

at ri =
∑i−1

t=1 hr,t + 1
2hr,i, and with the mesh widths hr,i increasing with i. Thus, the

total number of unknowns, including the unknowns at the poles, is (nλ × nφ +2)×nr.

This computational grid is the same as the Arakawa C-grid and the Charney-Phillips

grid introduced in Chapter 2, where the cell centred nodes are located at the p′-points

and ρ-levels.

As described in Section 3.2.1, we discretise (3.1.1) using the cell centred finite

volume method, where firstly the PDE is integrated over each mesh cell (or control

volume) corresponding to an interior grid point (ri, φj , λk), i.e. Ωi,j,k, or corresponding

to a grid point at the pole. Denoting the control volume corresponding to a vertical

grid point at level i on the north and south poles as ΩS
i and ΩN

i respectively, we have

ΩS
i =

[
ri− 1

2
, ri+ 1

2

]
×
[
0, φ 1

2

]
× [0, 1] , and

ΩN
i =

[
ri− 1

2
, ri+ 1

2

]
×
[
0, φnφ+

1
2

]
× [0, 1] .

where φ 1
2
= hφ/2. Except at the poles, the boundary of each control volume, Γi,j,k,

consists of six faces, as described in Section 3.2.1. Each control volume at the poles,
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however, has nλ + 2 faces, i.e.

ΓS
i =

nλ⋃

k=1

Γi, 1
2
,k ∪ ΓS

i− 1
2
∪ ΓS

i+ 1
2
,

where ΓS
i± 1

2

= {ri± 1
2
} ×

[
0, φ 1

2

]
× [0, 1] are the top and bottom faces of the control

volume at the south pole on vertical grid level i.

Since the problem is discretised on a sphere, it is necessary to impose periodic

boundary conditions on the lateral boundary, i.e.

u(r, φ, 0) = u(r, φ, 1) ,

∂u

∂λ
(r, φ, 0) =

∂u

∂λ
(r, φ, 1) ∀φ ∈ [0, 1],∀r ∈ [0, 1].

In addition, for the upper and lower boundaries of the atmosphere (corresponding to

r = 0 and r = 1), the problems from Chapter 2 either have homogeneous Dirichlet

boundary conditions, i.e.

u(0, φ, λ) = u(1, φ, λ) = 0.

or homogeneous Neumann boundary conditions, i.e.

∂u

∂r
(0, φ, λ) =

∂u

∂r
(1, φ, λ) = 0.

The discretisation at the interior nodes is identical to the general case, resulting in the

same stencil (3.2.9). Recall that for spherical polar coordinates we have

α1(ξi± 1
2
,j,k) = α1(ri± 1

2
, φj , λk) = Lr(φj , λk)(a+ dri+ 1

2
)2 sin(πφj)/d

2 ,

α2(ξi,j± 1
2
,k) = α2(ri, φj± 1

2
, λk) = Lλ(ri, λk) sin(πφj)/π

2 ,

α3(ξi,j,k± 1
2
) = α3(ri, φj , λk± 1

2
) = Lφ(ri, φj)/(4π

2 sin(πφj)) ,

and h1 = hr, h2 = hλ, h3 = hφ.

We now come to the discretisation at the boundaries. The homogeneous Dirichlet

and Neumann boundary conditions at r = 0 and r = 1 have been covered in the

general case, as well as the periodic boundary conditions on the lateral boundary.

What remains is the treatment of the north-south boundaries at the polar regions.

Poles

We now tackle the discretisation at the poles, which occupy an entire r − λ plane.

Each pole cell (apart from those at the top or bottom boundary) has an entire λ-line of



CHAPTER 3. ELLIPTIC PROBLEMS IN NWP 43

Figure 3-2: The polar region, with the pole at the centre of nλ half cells

neighbours in addition to upper and lower neighbours, thus a total of nλ+2 neighbours,

leading to a (nλ +3)-point stencil at these cells. The poles nodes on level i are located

at the centre of the control volume ΩS
i or ΩN

i which is comprised of nλ half cells (see

Figure 3-2), with ΓS
i± 1

2

or ΓN
i± 1

2

corresponding to the top and bottom faces of the control

volume. For the south pole (where φ = 0), the integration over control volume ΩS
i leads

to the following discretisation:

−
∫

ΓS
i

K∇u · n dS

= −
∫

ΓS

i+1
2

α1(ξ)
∂u

∂r
dSS

i+ 1
2

−
∫

ΓS

i− 1
2

α1(ξ)
∂u

∂r
dSS

i− 1
2

+

nλ∑

k=1

∫

Γ
i, 1

2
,k

α2(ξ)
∂u

∂φ
dSi, 1

2
,k

= − α1(ri+ 1
2
, φ 1

4
, λk)

USi+1 − USi
h+r,i

(1)
hφ
2

− α1(ri− 1
2
, φ 1

4
, λk)

USi − USi−1

h−r,i
(1)

hφ
2

−
nλ∑

k=1

α2(ri, φ 1
2
, λk)

Ui,1,k − USi
hφ

hλhr,i

= − α1(ri+ 1
2
, φ 1

4
, λk)

hφ

2h+r,i

(
USi+1 − USi

)
− α1(ri− 1

2
, φ 1

4
, λk)

hφ

2h−r,i

(
USi − USi−1

)

− hr,ihλ
hφ

nλ∑

k=1

α2(ri, φ 1
2
, λk)

(
Ui,1,k − USi

)
,

where US
i is the discrete solution at the south pole on level i and φ 1

4
= hφ/4. For the

right hand side at the south pole, again we discretise by approximating the integral

using the midpoint rule:
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∫

ΩS
i

g(a+ dr)2 sin(πφ) dV = gSi (a+ dri)
2 sin(πφ 1

4
)hr,i

hφ
2
,

where hr,i × hφ

2 is an approximation to the volume of the control cell ΩS
i , and we see

from Figure 3-1(a) that (ri, φ 1
4
, 0.5) is the midpoint of ΩS

i in the computational grid.

Note that the midpoint of ΩS
i in the physical domain is actually located at the south

pole (see Figure 3-2), but the special treatment we use at the poles is consistent with

the work of Barros [7] and also with the discretisation used at the Met Office.

Analogously for the north pole (where φ = π) we obtain

− α1(ri+ 1
2
, φnφ+

3
4
, λk)

hφ

2h+r,i

(
UNi+1 − UNi

)
− α1(ri− 1

2
, φnφ+

3
4
, λk)

hφ

2h−r,i

(
UNi − UNi−1

)

− hr,ihλ
hφ

nλ∑

k=1

α2(ri, φnφ+
1
2
, λk)

(
Ui,nφ,k − UNi

)

= gNi (a+ dri)
2 sin(πφnφ+

3
4
)hr,i

hφ
2
.

Resulting System of Linear Equations

The discretisation results in a system of linear equations of the form

Au = b.

A ∈ R
n×n, and n = (nλ × nφ + 2)× nr is the dimension of the problem. u ∈ R

n is the

unknown solution vector corresponding to the values of the unknown function u at the

cell centres, and b ∈ R
n is the right-hand side containing the source terms. It contains

seven non-zero entries per row corresponding to an interior node, and nλ+3 non-zeros

per row corresponding to pole nodes that are not at the upper or lower boundaries. For

typical problem sizes used at the Met Office, nλ+3 ≫ 7, hence the rows corresponding

to the pole nodes are significantly more dense. For nodes whose cell face is on the

upper or lower boundary, there are six non-zeros (for non-pole nodes) or nλ + 2 non-

zeros per row (for pole nodes). Figure 3-3 is a spy plot showing the sparsity pattern

of matrix A with problem size n = 152 (nλ = 6, nφ = 6, nr = 4). Periodic boundary

conditions are imposed at the lateral boundary, in addition to the polar boundary at

the north-south boundaries. If the vertical boundary conditions are of Neumann-type,

then these boundary conditions yield a singular system of linear equations, meaning

that the solution to this system is unique only up to a constant. Techniques for dealing

with this singularity will be discussed in Section 5.5.2.
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Figure 3-3: A spy plot showing the sparsity pattern of matrix A for the 3D problem.

3.2.4 Two Dimensional Problems on the Surface of the Sphere

In NWP, the solution to Poisson-type equations on the sphere in two dimensions are

also highly important. One such use of a two dimensional Poisson solver is for the

balanced and unbalanced equations (2.3.7) and (2.3.9), as well as regularly within the

control variable transform (CVT) described in Chapter 2. Therefore in this section we

derive the finite volume discretisation of the two dimensional Poisson-type equation.

Consider the following two dimensional abstract equation:

−∇ · (K∇u(ξ)) = g(ξ) on Ω2D , (3.2.12)

with

K = K(ξ) =

(
α1(ξ) 0

0 α2(ξ)

)
,

for ξ = (λ, φ) and for separable functions α1(φ, λ) = α1
1(φ)α

2
1(λ) > 1 a.e. and

α2(φ, λ) = α1
2(φ)α

2
2(λ) > 1 a.e. Of particular interest is the case of a Poisson-type

equation in spherical polar coordinates which is given by α1(φ, λ) = Lφ(λ) sin(πφ)/π
2,

α2(φ, λ) = Lλ(φ)/(4π
2 sin(πφ)) and a scaling by sin(πφ):
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Figure 3-4: A spy plot showing the sparsity pattern of the matrix for the 2D problem.

− ∂

∂φ

(
Lφ(λ) sin(πφ)

π2
∂u

∂φ

)
− ∂

∂λ

(
Lλ(φ)

4π2 sin(πφ)

∂u

∂λ

)
= g sin(πφ) , (3.2.13)

This is solved on the unit square Ω2D = (0, 1)2, which is subdivided into nφ × nλ cells

{ (φj , λk) : j = 1, . . . , nφ, k = 1, . . . , nλ },

in addition to one cell for each pole. This computational grid is pictured in Figure

3-1(a), and the edge lengths hφ and hλ are defined as in Section 3.2.3. As in Section

3.2.1, (3.2.12) is integrated over each control volume, and using the Divergence theorem

it is simplified to a first order term on the boundary of the control volume. Each of

the line integrals is approximated by the midpoint rule and the derivatives involved on

it by central differences, producing a 5-point stencil at an interior node (j, k):




−Lφ(λk)
hλ

hφ

sin(πφ
j+1

2
)

π2

−Lλ(φj)
hφ

hλ

1
4π2 sin(πφj)

−∑ −Lλ(φj)
hφ

hλ

1
4π2 sin(πφj)

−Lφ(λk)
hλ

hφ

sin(πφ
j− 1

2
)

π2


 , (3.2.14)

and the sparsity pattern for the matrix is plotted in Figure 3-4.
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3.3 Finite elements and a Link to Finite Volumes Using

Quadrature

Although the majority of the work and computations in this thesis is based on using

the finite volume discretisation, it is also necessary to use the finite element scheme

(described in e.g. [19, 23, 67]) to prove some theoretical results (which we will see

in Chapter 5). However, as discussed in [14], a finite element discretisation of an

elliptic problem will cover most finite volume discretisations, since the two schemes

can be shown to agree if suitable quadrature formulas are used. Thus, with slight

modifications, the theoretical results in Chapter 5 will carry over to a finite volume

discretisation of the same problem. In Section 3.3.1 the discretisation of the two-

dimensional problem (3.2.12) using bilinear finite elements is described, and in Section

3.3.2 a quadrature rule is devised which links the finite volume and finite element

schemes. Finally in Section 3.3.3 we discuss on how the ideas are extended to three

dimensions.

3.3.1 Piecewise Bilinear Finite Elements in Two Dimensions

Consider an abstract two-dimensional problem:

−∇ · (K(ξ)∇u(ξ)) = g(ξ), on Ω = Ωx × Ωy , (3.3.1)

with a continuous boundary Γ, homogeneous Dirichlet boundary conditions u = 0

on Γ, and ξ = (x, y). As shown in [67], the finite element method involves writing

problem (3.3.1) in a weak form and then approximating this weak form by formulating

an approximate weak form in a finite dimensional space.

To find the weak form of (3.3.1) we introduce a space V of functions in Ω that vanish

on the boundary. Here, the appropriate choice for V is the Hilbert space H1
0 (Ω):

H1
0 (Ω) =

{
v : Ω → R :

∫

Ω
(|v|2 + |∇v|2) <∞ and v = 0 on Γ

}
.

If u solves (3.3.1), then it also satisfies

−
∫

Ω
v∇ · (K∇u) dV =

∫

Ω
gv dV , (3.3.2)

for any arbitrary function v ∈ V . Now using Green’s formula [19, Chapter 0], we obtain
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from (3.3.2):

∫

Ω
∇v · (K∇u) dV −

∫

Γ
v (K∇u) · ndS

︸ ︷︷ ︸
=0 as v|Γ=0

=

∫

Ω
gv dV .

We now write the weak form of (3.3.1) as:

Find u ∈ V such that

a(u, v) = (g, v)L2(Ω), ∀v ∈ V (3.3.3)

where a : V × V → R is a bilinear form defined as

a(u, v) =

∫

Ω
∇v · (K∇u) dxdy ,

and (·, ·)L2(Ω) is the scalar product of the function space L2(Ω), i.e

(g, v)L2(Ω) =

∫

Ω
gv dxdy .

(Note that dxdy will now be used to denote the 2D volume element instead of dV )

The solution u ∈ V of the weak form (3.3.3) is then approximated by choosing a finite

dimensional space Vh ⊂ V and by introducing the approximate weak form:

Find uh ∈ Vh such that

a(uh, vh) = (g, vh)L2(Ω), ∀vh ∈ Vh . (3.3.4)

In finite element methods the finite dimensional space Vh is constructed by decomposing

Ω into a mesh of triangular or rectangular elements whose vertices are the nodes of

the mesh. We denote the collection of elements as T and a typical element including

its boundary as τ ∈ T . The set of nodes in the mesh, excluding the boundary because

of the Dirichlet boundary conditions, is denoted N . We also require a suitable basis

for Vh. In the lowest order (bilinear) case on rectangular elements, as used here, the

basis functions are (usually) associated with nodes of the grid and have support only

in elements containing that node. For any ni ∈ N , denote the basis for Vh as

{φi(x, y) : ni ∈ N}.

The solution uh ∈ Vh to the approximate weak form can be written as a linear combi-

nation of the basis functions

uh =
∑

nj∈N
Ujφj ,
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and since a is a bilinear form (linear in both its arguments) and L is also linear, we get

∑

nj∈N
a(φj , φi)︸ ︷︷ ︸

Ai,j

Uj = (g, φi)L2(Ω)︸ ︷︷ ︸
bi

∀ni ∈ N ,

or equivalently

Au = b, (3.3.5)

where A is known as the stiffness matrix.

The system (3.3.5) is assembled via element stiffness matrices. We have

Ai,j =

∫

Ω
∇φi · (K∇φj)dxdy

=
∑

τ∈T

∫

τ
∇φi · (K∇φj)dxdy

︸ ︷︷ ︸
Aτ

i,j

, (3.3.6)

where Aτ
i,j is the element stiffness matrix for element τ ∈ T . Since φi has support only

in elements containing node ni, A
τ
i,j = 0 unless ni and nj are both nodes of element τ .

Hence, Aτ
i,j can be stored as a 4 × 4 matrix with rows and columns corresponding to

the four nodes of τ .

Depending on the entries in the coefficient matrix K, it may be possible to evaluate

the integral over τ exactly. However, it is common to use quadrature rules to approxi-

mate the integral, and for a suitable quadrature rule, this will lead to the finite volume

discretisation of (3.3.1) given above, as we will see in the following section.

3.3.2 Link to the Finite Volume Scheme

Let us now restrict our problem to a uniform rectangular mesh on the unit square, with

mesh widths hx and hy in the x- and y-directions respectively. We denote the set of

nodes of the mesh as

{(xi, yj) : i = 1, . . . , nx, j = 1, . . . , ny} .

where xi = ihx and yj = jhy. The element centred at (xi+ 1
2
, yj+ 1

2
) is denoted τi+ 1

2
,j+ 1

2

where

τi+ 1
2
,j+ 1

2
= [xi, xi+1]× [yj, yj+1].

If the mesh width in the x- and y-directions are equal, then hx = hy = h. The mesh

is visualized in Figure 3-5. We choose Vh to be a space of continuous and piecewise

bilinear functions on Ω that vanish on the boundary. We can do this by resorting
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6

-

y

x-�
hx

6
?

hy

(xi, yj)
r

(x1, y1)
r

�
�
�
�
�


τi+ 1
2
,j+ 1

2

Figure 3-5: Finite element mesh

to H1
0 (Ω)-conforming finite dimensional spaces built in a tensor product fashion, as

done in [14]. That is, we decompose Ωx and Ωy into two 1D grids and introduce finite

dimensional spaces V x
h ⊂ H1

0 (Ωx) and V y
h ⊂ H1

0 (Ωy) on these grids. We see from

[67] that suitable nodal basis functions for V x
h and V y

h are the linear hat functions

{φxi : i = 1, . . . , nx} and {φyj : j = 1, . . . , ny} respectively, defined by

φxi (x) =





(x−xi−1)
hx

x ∈ [xi−1, xi]
(xi+1−x)

hx
x ∈ [xi, xi+1]

0 elsewhere

, φyj (y) =





(y−yj−1)
hy

y ∈ [yj−1, yj]
(yj+1−y)

hy
y ∈ [yj, yj+1]

0 elsewhere

,

TheH1
0 (Ω)-conforming finite dimensional space Vh can then be defined as Vh = V x

h ⊗V
y
h ,

i.e. Vh = span{u(x)v(y) : u ∈ V x
h , v ∈ V y

h }. The nodal basis {φi,j : i = 1, . . . , nx, j =

1, . . . , ny} of Vh is the set of products of any two basis functions of V x
h and V y

h , i.e.

φi,j(x, y) =





(x−xi−1)
hx

(y−yj−1)
hy

x ∈ [xi−1, xi], y ∈ [yj−1, yj]
(x−xi−1)

hx

(yj+1−y)
hy

x ∈ [xi−1, xi], y ∈ [yj , yj+1]
(xi−1−x)

hx

(y−yj−1)
hy

x ∈ [xi, xi+1], y ∈ [yj−1, yj]
(xi−1−x)

hx

(yj+1−y)
hy

x ∈ [xi, xi+1], y ∈ [yj , yj+1]

0 elsewhere

(3.3.7)

We calculate the 4× 4 element stiffness matrix for element τi+ 1
2
,j+ 1

2
by calculating

A
τ
i+1

2 ,j+1
2

(i,j)(k,l) =

∫

τ
i+1

2 ,j+1
2

∇φi,j · (K∇φk,l)dxdy , (3.3.8)
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τ
i+1

2,j+
1
2

e

×

e

×

×

e

×

e

(xi+ 1
2
, yj)

(xi+ 1
2
, yj+1)

(xi+1, yj+ 1
2
)(xi, yj+ 1

2
)

(xi, yj)

(xi, yj+1)

(xi+1, yj)

(xi+1, yj+1)

Figure 3-6: Element τi+ 1
2
,j+ 1

2

where (xi, yj) and (xk, yl) are two nodes of the mesh. (3.3.8) expands as

A
τ
i+1

2 ,j+1
2

(i,j)(k,l) =

∫

τ
i+1

2 ,j+1
2

α1(x, y)
∂φi,j
∂x

∂φk,l
∂x

dxdy +

∫

τ
i+1

2 ,j+1
2

α2(x, y)
∂φi,j
∂y

∂φk,l
∂y

dxdy .

(3.3.9)

The integrals in (3.3.9) are approximated as usual by quadrature rules. However, to

find a scheme that resembles the finite volume discretisation, the two integrals have to

be approximated by different quadrature rules. For the first integral in (3.3.9) we use

the midpoint rule in x and the trapezoidal rule in y, i.e.

∫

τ
i+1

2 ,j+1
2

f(x, y)dxdy ≈ hxhy
2

(
f(xi+ 1

2
, yj) + f(xi+ 1

2
, yj+1)

)
. (3.3.10)

For the second integral, we use the midpoint rule in y and the trapezoidal rule in x,

i.e. ∫

τ
i+1

2 ,j+1
2

f(x, y)dxdy ≈ hxhy
2

(
f(xi, yj+ 1

2
) + f(xi+1, yj+ 1

2
)
)
. (3.3.11)

Both these rules are second order accurate. It is easy to verify that

∂φk,l
∂x

(xk+ 1
2
, yl) = − 1

hx
,

∂φk,l
∂x

(xk− 1
2
, yl) =

1

hx
, (3.3.12)

∂φk,l
∂x

(xk, yl+ 1
2
) = − 1

hy
,

∂φk,l
∂x

(xk, yl− 1
2
) =

1

hy
, (3.3.13)

and
∂φk,l

∂y ,
∂φk,l

∂y vanish at all other points needed in the above quadrature rules. Hence,

using (3.3.10) and (3.3.11) in (3.3.9) we get for the diagonal entries in the element

stiffness matrix
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A
τ
i+1

2
,j+ 1

2

(i,j)(i,j) =

∫

τ
i+1

2
,j+1

2

α1(x, y)

(
∂φi,j
∂x

)2

dxdy +

∫

τ
i+1

2
,j+1

2

α2(x, y)

(
∂φi,j
∂y

)2

dxdy

≈ hxhy
2

[
α1(xi+ 1

2
, yj)

(
∂φi,j
∂x

)2

(xi+ 1
2
, yj) + α1(xi+ 1

2
, yj+1)

(
∂φi,j
∂x

)2

(xi+ 1
2
, yj+1)

]

+
hxhy
2

[
α1(xi, yj+ 1

2
)

(
∂φi,j
∂y

)2

(xi, yj+ 1
2
) + α1(xi+1, yj+ 1

2
)

(
∂φi,j
∂x

)2

(xi+1, yj+ 1
2
)

]
,

and using (3.3.12) and (3.3.13) we get

A
τ
i+1

2 ,j+1
2

(i,j)(i,j) =
hxhy
2h2x

α1(xi+ 1
2
, yj) +

hxhy
2h2y

α2(xi, yj+ 1
2
) . (3.3.14)

Finally assembling the diagonal entries of the global stiffness matrix A by using (3.3.6),

i.e. by adding the entries of the element stiffness matrices corresponding to the four

elements containing node (xi, yj), we get

A(i,j)(i,j) =
hy
hx

(
α1(xi+ 1

2
, yj) + α1(xi− 1

2
, yj)

)

+
hx
hy

(
α1(xi, yj+ 1

2
) + α2(xi, yj− 1

2
)
)
.

The off diagonal entries are calculated in the same way. Using the quadrature rules we
have

A
τ
i+1

2
,j+ 1

2

(i,j)(i+1,j)
=

∫

τ
i+1

2
,j+ 1

2

α1(x, y)
∂φi,j

∂x

∂φi+1,j

∂x
dxdy +

∫

τ
i+1

2
,j+ 1

2

α2(x, y)
∂φi,j

∂y

∂φi+1,j

∂y
dxdy

≈ hxhy

2

[

α1(xi+ 1
2

, yj)

(

∂φi,j

∂x

∂φi+1,j

∂x

)

(x
i+ 1

2

, yj) + α1(xi+ 1
2

, yj+1)

(

∂φi,j

∂x

∂φi+1,j

∂x

)

(x
i+ 1

2

, yj+1)

]

+
hxhy

2

[

α1(xi, yj+ 1
2

)

(

∂φi,j

∂y

∂φi+1,j

∂y

)

(xi, yj+ 1
2

) + α1(xi+1, yj+ 1
2

)

(

∂φi,j

∂x

∂φi+1,j

∂x

)

(xi+1, yj+ 1
2

)

]

,

which simplifies, using (3.3.12) and (3.3.13), to

A
τ
i+1

2 ,j+1
2

(i,j)(i+1,j) = − hy
2hx

α1(xi+ 1
2
, yj) .

Then by assembling the two elements that contain nodes (xi, yj) and (xi+1, yj) we get

A(i,j)(i+1,j) = −hy
hx
α1(xi+ 1

2
, yj) .

Similarly

A(i,j)(i−1,j) = −hy
hx
α1(xi− 1

2
, yj) , A(i,j)(i,j±1) = −hx

hy
α2(xi, yj± 1

2
) ,
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and

A(i,j)(i−1,j−1) = A(i,j)(i+1,j−1) = A(i,j)(i−1,j+1) = A(i,j)(i+1,j+1) = 0 .

All the remaining entries in A will be zero because the support of the basis functions

at the two nodes do not overlap. Thus the stencil at an interior node (xi, yj) is




−hx

hy
α2(xi, yj+ 1

2
)

−hy

hx
α1(xi− 1

2
, yj) −∑ −hy

hx
α1(xi+ 1

2
, yj)

−hx

hy
α2(xi, yj− 1

2
)


 . (3.3.15)

This is equivalent to the finite volume stencil (3.2.14), with x = λ and y = φ.

Remark 3.3.1. Note that this stencil is not what we would have obtained by inte-

grating the integrals in (3.3.9) exactly. For example, in the simple case K = I with

mesh widths hx = hy = h, the stencil (using exact integration) resulting from the finite

element discretisation at some interior node (xi, yj) is

1

3




−1 −1 −1

−1 8 −1

−1 −1 −1


 ,

whereas using the quadrature rules (3.3.10) and (3.3.11), we obtain the finite volume

stencil: 


−1

−1 4 −1

−1


 . (3.3.16)

3.3.3 Extension to Three Dimensions

Consider the three dimensional problem

−∇ · (K∇u) = g on Ω3D = Ω1D × Ω2D , (3.3.17)

with Dirichlet boundary conditions u(ξ) = 0 for ξ ∈ Γ, where Ω1D ⊆ R, Ω2D ⊆ R
2 and

ξ = (x, y, z). As in Section 3.3.1 we solve (3.3.17) by writing it in a weak form which is

then approximated on a finite dimensional space. The weak form of (3.3.17) in 3D is:

Find u ∈ V such that

a(u, v) = (g, v)L2(Ω) ∀v ∈ V ,
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where

a(u, v) =

∫

Ω3D

∇v · (K∇u) dxdydz , (g, v)L2(Ω) =

∫

Ω3D

gv dxdydz .

A suitable choice for V is the Hilbert space H1
0 (Ω3D). The abstract approximation of

the weak form is:

Choose Vh ⊂ V and find uh ∈ Vh such that

a(uh, vh) = (g, vh)L2(Ω) ∀vh ∈ Vh .

To find Vh we first decompose Ω3D into a mesh of cubic elements, where the nodes of

the mesh are the vertices of the elements and denoted

{(xi, yj, zk) : i = 1, . . . , nx, j = 1, . . . , ny, k = 1, . . . , nz} .

The element centred at (xi+ 1
2
, yj+ 1

2
, zk+ 1

2
) is denoted τi+ 1

2
,j+ 1

2
,k+ 1

2
. As in Section 3.3.1

we choose Vh ⊂ H1
0 (Ω3D) in a tensor product fashion by decomposing Ω1D and Ω2D

into a 1D and 2D grid respectively, and introducing finite dimensional spaces V 1D
h ⊂

H1
0 (Ω1D) and V 2D

h ⊂ H1
0 (Ω2D) on these grids. The nodal basis functions of V 2D

h are

{φi,j : i = 1, . . . , nx, j = 1, . . . , ny} (see (3.3.7)) and of V 1D
h are

φzk(z) =





(z−zk−1)
hz

z ∈ [zk−1, zk]
(zk+1−z)

hz
z ∈ [zk, zk+1]

0 elsewhere

.

We then choose Vh = V 2D
h ⊗V 1D

h with the nodal basis functions {φi,j,k : i = 1, . . . , nx, j =

1, . . . , ny, k = 1, . . . , nz} of Vh as the set of products of any two basis functions of V 1D
h

and V 2D
h .

As we have already seen, the solution uh ∈ Vh to the approximate weak form can be

written as a linear combination of the basis functions of Vh, and this leads to a system

of equations Au = b assembled via the element stiffness matrices. We have

A(i,j,k)(l,m,n) =

nx∑

i=1

ny∑

j=1

nz∑

k=1

∫

τ
i+1

2 ,j+1
2 ,k+1

2

∇φi,j,k · (K∇φl,m,n) dxdydz

︸ ︷︷ ︸
A

τ
i+1

2 ,j+1
2 ,k+1

2
(i,j,k)(l,m,n)

, (3.3.18)

where (xi, yj , zk) and (xl, ym, zn) are two nodes of the mesh and where A
τ
i+1

2 ,j+1
2 ,k+1

2

(i,j,k)(l,m,n) is

an 8×8 matrix with rows and columns corresponding to the eight nodes of τi+ 1
2
,j+ 1

2
,k+ 1

2
.
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The element stiffness matrix for τi+ 1
2
,j+ 1

2
,k+ 1

2
can be written as

A
τ
i+1

2
,j+ 1

2
,k+1

2

(i,j,k)(l,m,n) =

∫

τ
i+1

2
,j+1

2
,k+1

2

α1(x, y, z)
∂φi,j,k

∂x

∂φl,m,n

∂x
dxdydz

+

∫

τ
i+1

2
,j+1

2
,k+1

2

α2(x, y, z)
∂φi,j,k

∂y

∂φl,m,n

∂y
dxdydz +

∫

τ
i+1

2
,j+1

2
,k+1

2

α3(x, y, z)
∂φi,j,k

∂z

∂φl,m,n

∂z
dxdydz .

(3.3.19)

The first integral is approximated by the midpoint rule in x and the trapezoidal rule

in y and z, i.e.

∫

τ
i+1

2
,j+ 1

2
,k+1

2

f(x, y, z) dxdydz =

hxhyhz
4

[
f(xi+ 1

2
, yj, zk) + f(xi+ 1

2
, yj+1, zk) + f(xi+ 1

2
, yj , zk+1) + f(xi+ 1

2
, yj+1, zk+1)

]
.

The second integral is approximated by the midpoint rule in y and the trapezoidal

rule in x and z, i.e.

∫

τ
i+1

2
,j+ 1

2
,k+1

2

f(x, y, z) dxdydz =

hxhyhz
4

[
f(xi, yj+ 1

2
, zk) + f(xi+1, yj+ 1

2
, zk) + f(xi, yj+ 1

2
, zk+1) + f(xi+1, yj+ 1

2
, zk+1)

]
,

and the third integral is approximated by the midpoint rule in z and the trapezoidal

rule in x and y, i.e.

∫

τ
i+1

2
,j+ 1

2
,k+1

2

f(x, y, z) dxdydz =

hxhyhz
4

[
f(xi, yj, zk+ 1

2
) + f(xi, yj+1, zk+ 1

2
) + f(xi+1, yj , zk+ 1

2
) + f(xi+1, yj+1, zk+ 1

2
)
]
.

For the diagonal entries of the element stiffness matrix, we have

A
τ
i+1

2
,j+1

2
,k+1

2

(i,j,k)(i,j,k) =
hyhz
4hx

α1(xi+ 1
2
, yj , zk) +

hxhz
4hy

α1(xi, yj+ 1
2
, zk) +

hxhy
4hz

α1(xi, yj , zk+ 1
2
) .

Assembling the diagonal entries of the global stiffness matrix A by using (3.3.18), we

get

A(i,j,k)(i,j,k) =
hyhz
hx

(
α1(xi+ 1

2
, yj, zk) + α1(xi− 1

2
, yj, zk)

)

+
hxhz
hy

(
α2(xi, yj+ 1

2
, zk) + α2(xi, yj− 1

2
, zk)

)
+
hxhy
hz

(
α3(xi, yj, zk− 1

2
) + α3(xi, yj , zk+ 1

2
)
)
.
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Similarly we have

A(i,j,k)(i±1,j,k) = −hyhz
hx

α1(xi± 1
2
, yj , zk) ,

A(i,j,k)(i,j±1,k) = −hxhz
hy

α2(xi, yj± 1
2
, zk) ,

A(i,j,k)(i,j,k±1) = −hxhy
hz

α3(xi, yj , zk± 1
2
) .

All other entries in A will be zero. Then the stencil at the interior node (xi, yj, zk) is

−Hzα3(xi, yj , zk− 1
2

)









−Hyα2(xi, yj+ 1
2

, zk)

−Hxα1(xi− 1
2

, yj , zk) −∑ −Hxα1(xi+ 1
2

, yj , zk)

−Hyα2(xi, yj− 1
2

, zk)









−Hzα3(xi, yj , zk+ 1
2

)

(3.3.20)

which is the same as the finite volume stencil (3.2.8) with x = ξ1, y = ξ2 and z = ξ3,

and where Hx =
hyhz

hx
, Hy = hxhz

hy
and Hz =

hxhy

hz
.

Remark 3.3.2. For the case K = I with mesh widths hx = hy = hz = h, the stencil

(using exact integration of (3.3.19)) resulting from the finite element discretisation at

some interior node (xi, yj , zk) is

h

3




−1
4 −1

2 −1
4

−1
2 0 −1

2

−1
4 −1

2 −1
4







−1
2 0 −1

2

0 8 0

−1
2 0 −1

2







−1
4 −1

2 −1
4

−1
2 0 −1

2

−1
4 −1

2 −1
4


 . (3.3.21)

where the terms in the first and third brackets represent entries corresponding to neigh-

bours on z-level k− 1 and k+1 respectively. By using the three quadrature rules from

above instead, we obtain the finite volume stencil:

−h




−h
−h 6h −h

−h


− h .

Remark 3.3.3. The tensor product, ⊗, of square matrices for A = (ai,j)i,j ∈ R
n,n and

B ∈ R
m,m is defined by

A⊗B =




a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
...

an1B an2B · · · annB



. (3.3.22)
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Using this definition, the the 3D operator represented by the stencil (3.3.20) can be

found using the 2D operator represented by stencil (3.3.15) and the finite volume dis-

cretisation of a 1D Poisson-type operator whose stencil representation is

[
−α3

3(zk− 1
2
) 1
hz

−∑ −α3
3(zk+ 1

2
) 1
hz

]
.

Denoting A1D, A2D, A3D as the above one, two and three dimensional operators, re-

spectively, we find A3D by

A3D = A2D ⊗ hzα
3
1(zk)I1D + hxhyα

1
3(xk)α

2
3(yj)I2D ⊗A1D ,

where I1D and I2D are the identity matrices of the same dimension as A1D and A2D,

respectively.



Chapter 4

Numerical Solution of Large

Sparse Systems of Linear

Equations

4.1 Introduction and Model Problems

In this chapter we describe numerical methods for solving large sparse linear systems

of equations arising from the discretisation of second order elliptic partial differential

equations (PDEs). We will mainly follow Briggs, Henson and McCormick [20].

Consider the following boundary value problem for the Poisson-type elliptic equa-

tion in one dimension:

−u′′(x) + cu(x) = f(x) on Ω1D = (0, 1)2, c ≥ 0 , (4.1.1)

u(0) = u(1) = 0 .

With c = 0 this is the Poisson equation. The simplicity of this equation means it can be

solved analytically, but for the purpose of this chapter we solve it numerically instead.

The domain Ω1D is split up into n subintervals which introduces the grid Th with grid

points xi = ih, i = 1, · · · , n − 1, where h is the constant width of the subintervals

(mesh width). For simplicity we use a uniform mesh which is sufficient for this chapter,

but the results in this chapter also extend to non-uniform (but shape regular) meshes.

A discrete second order finite difference 2 approximation replaces equation (4.1.1) as

2Note that for a uniform mesh, finite volume and finite element discretisations lead to identical
algebraic systems (apart from a scaling by h2). We saw in Chapter 3 how they can also be linked in
more general cases via the use of suitable quadrature rules.

58
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follows:

−Ui+1 + 2Ui − Ui−1
h2

+ cUi = f(xi) , 1 ≤ i ≤ n− 1 , (4.1.2)

U0 = Un = 0 ,

where the solution vector u = (U1, U2, · · · , Un−1) approximates the exact solution u

at the grid points. (4.1.2) is a system of n − 1 linear equations, represented in matrix

form as

1

h2




2 + ch2 −1

−1 2 + ch2 −1
. . .

. . . −1

−1 2 + ch2




︸ ︷︷ ︸
A




U1

...

Un−1




︸ ︷︷ ︸
u

=




f1

...

fn−1




︸ ︷︷ ︸
b

.

The matrix A is sparse, symmetric (A = AT ) and tridiagonal. Analogously, the two-

dimensional version of this problem is

−uxx − uyy + cu = f(x, y) on Ω2D = [0, 1]2, c ≥ 0 ,

u = 0 on Γ2D ,

where Γ2D is the boundary of Ω2D, and the finite difference approximation yields the

following system of N = (nx − 1)× (ny − 1) linear equations

−Ui−1,j + 2Ui,j − Ui+1,j

h2x
+

−Ui,j−1 + 2Ui,j − Ui,j+1

h2y
= fij , (4.1.3)

ui,0 = ui,nx = u0,j = uny,j = 0, 1 ≤ i ≤ nx − 1, 1 ≤ j ≤ ny − 1 ,

where hx = 1/nx and hy = 1/ny, and the grid points (xi, yj) = (ihx, jhy) belong to

the two-dimensional grid shown in Figure 4.1. This system in matrix form is sparse,

symmetric and block-tridiagonal:




B −Iα
−Iα B −Iα

. . .

. . . −Iα
−Iα B







U1

...

U(nx−1)(ny−1)




=




f1

...

f(nx−1)(ny−1)




,



CHAPTER 4. NUMERICAL SOLUTION OF SYSTEMS OF EQUATIONS 60

6

-
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x-�
hx

6
?
hy

(xi, yj)
r

Figure 4-1: The two-dimensional grid on the unit square

where each diagonal block B is an (nx−1)×(nx−1) tridiagonal matrix which looks like

the matrix A for the one-dimensional problem. Each off-diagonal block is a multiple,

α = 1
h2
y
, of the (nx − 1)× (nx − 1) identity matrix.

It is convenient to use stencils to represent discrete equations at certain points on

the grid, and the stencil notation was described in Chapter 3. The stencil representation

for the linear system (4.1.2) is

1

h2

[
−1 2 + ch2 −1

]
,

and for (4.1.3) is

1

h2




−1

−1 4 + ch2 −1

−1


 ,

assuming h = hx = hy.

The matrices produced by the discretisation of boundary value problems have desir-

able properties for numerical methods. Matrices that are sparse and symmetric can be

exploited by certain numerical methods. Further desirable properties include diagonal

dominance, where the entries aij of the matrix A satisfy

N∑

j 6=i

|aij | ≤ |aii| , 1 ≤ i ≤ N ,

and positive definiteness where xTAx > 0 for any non-zero vector x, or equivalently all

the eigenvalues of A are real and positive. Symmetric and diagonally dominant matrices

with positive diagonal elements are positive definite, and matrices that are symmetric

positive definite (SPD) with non-positive off-diagonal entries are M–matrices [20].
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During the past 50 years, an enormous amount of work has been devoted to the

solution of large, sparse linear systems. Existing methods fall into two main categories:

direct or iterative methods. Direct methods, such as Gaussian Elimination or QR

factorization [74], compute the solution exactly (up to rounding errors) in a finite

number of arithmetic steps. These methods are very robust but generally inefficient,

and only specific problems concerning simple geometries can be solved quickly (eg.

using Fast Fourier Transforms [21]). Note, however, that there are sparse factorisations,

based on a clever ordering of the unknowns that can be highly competitive even up to

moderately large problem sizes especially in one and two dimensions, as shown in [48]

(see also [29, 33]). Iterative methods on the other hand begin with an initial guess to the

solution which generally converges to the actual solution through a succession of simple

updating steps (iterations). A convergence criterion and a tolerance tol are specified

in order to determine when a sufficiently accurate solution has been found. Examples

include basic iterative methods such as the Jacobi or Gauss–Seidel methods [64] and

Krylov subspace methods such as the conjugate gradient (CG) method [47, 64, 74].

Two factors have to be considered for an effective solution of the system of linear

equations. The first is the memory M that is needed, and the second, and more

important factor, is the number Q of arithmetics operations (FLOPs) required to solve

the system. The number of FLOPs required is directly proportional to the CPU time

on a simple computer. A method is optimal if the number of FLOPs and the memory

grow linearly with problem size, ie. Q = O(N) and M = O(N) (see [66]). In general,

both Q and M are too high for direct methods to be feasible. For iterative methods,

the memory usage is normally optimal (ie. M = O(N)) and the number of FLOPs per

iteration is normally O(N). Thus we require the number of iterations relative to the

stopping criteria, I(tol), to be O(1). However, I(tol) usually depends on the condition

number of the matrix which becomes worse as the problem size grows, thus iterative

methods alone are usually not optimal.

One technique for achieving optimality is preconditioning. A matrix P is chosen

such that preconditioning systems can be solved quickly (typically O(N) operations),

and such that the iteration matrix P−
1
2AP−

1
2 is close to the identity matrix, meaning

the conditioning of P−
1
2AP−

1
2 is significantly better than that of A. Preconditioning

techniques can be very effective, especially for Krylov subspace methods.

Another technique for reducing the number of FLOPs is to use a multigrid tech-

nique [20, 75]. Standard iterative methods such as Jacobi or Gauss–Seidel suffer from

disabling limitations as they are only effective in reducing the high frequency com-

ponents of the error (ie. they only smooth the error). Thus in order to treat the low

frequency components, a coarser grid is introduced. The smoothed residual is restricted
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onto the coarse grid and the same procedure, known as the coarse grid correction, is

applied recursively. The system on the coarsest grid can be solved using direct or iter-

ative methods. Multigrid techniques are optimal for most systems resulting from the

discretisation of elliptic boundary value problems.

In the following sections of this chapter, both techniques for accelerating the it-

erative methods are applied. In Section 4.2, we analyze the basic iterative methods

which, when taking into account the particular structure of the problem, can be used

as an effective preconditioner to Krylov subspace methods and as an effective smoother

for multigrid methods. Section 4.3 describes the Krylov subspace methods and how

preconditioners are used to accelerate them. Amongst the most effective precondition-

ers are multigrid methods, and in Section 4.4 we describe the main components of

the method required for Poisson-type problems and a variety of algorithms that can

be used, with some basic theory to confirm the optimal performance of the method.

Section 4.5 describes some modifications to the method for solving elliptic problems

with anisotropy, and a detailed convergence theory is given in Section 4.6. Finally in

Section 4.7, we describe an alternative multigrid method known as algebraic multigrid

(AMG) which is proven experimentally to be very robust for a wide class of problems

and is therefore a very popular method for many industrial applications.

4.2 Basic Iterative Methods

Consider the system of linear equations

Au = b (4.2.1)

and let ũ be an approximation to the exact solution u. We denote the algebraic error

of ũ as

e = u− ũ,

where e is a vector whose magnitude can be measured by any of the vector norms. By

obtaining the error of ũ we can obtain the exact solution, but since the exact solution

is not known, e is not accessible. Another measure of how well ũ approximates u is

the residual, given by

r = b−Aũ.

Hence the residual is the amount by which ũ fails to satisfy (4.2.1). If the system has

a unique solution then r = 0 ⇐⇒ e = 0 and we have

Ae = A(u− ũ) = b−Aũ = r.
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This relationship between the error and the residual, called the residual equation, has a

vital role in multigrid. By finding an approximate solution, ẽ, of the residual equation,

a new approximation is obtained for u which is given by ũ+ ẽ. A second vital tool for

multigrid methods is the use of basic iterative methods, and we begin by analyzing the

performance of these methods on the system of equations (4.2.1).

4.2.1 Point-Wise Relaxation Schemes

Additive Splitting of the Matrix A

Basic iterative methods, or relaxation schemes, for solving (4.2.1) are based on splitting

A ∈ R
N×N into B − C where B is nonsingular. Then the system of equations (4.2.1)

is equivalent to

Bu = Cu+ b,

and so the iterative method is cast in the following form:

Bu(k) = Cu(k−1) + b, (4.2.2)

where the matrix S = B−1C is known as the iteration matrix. An obvious condition

on (4.2.2) is that the solution of (4.2.1) is a fixed point of (4.2.2).

The Jacobi Method

One such iterative method is known as the Jacobi method, which splits A into the

following:

A = D + (L+ U) ,

with D the diagonal of A, L the strictly lower triangular part of A and U the strictly
upper triangular part of A, ie.

D =









a11

. . .

aNN









, L =













0

a21 0

.

..
. . .

. . .

aN1 · · · aN,N−1 0













, U =













0 a21 · · · a1N
. . .

. . .
...

0 aN−1,N

0













.

Then the Jacobi method is defined by choosing

B = D and C = −(L+ U) .
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The method is well defined if and only if all the diagonal terms are non-zero. So given

an initial guess u(0), the Jacobi method in matrix/vector form is given by

u(k) = −D−1(L+ U)︸ ︷︷ ︸
SJ

u(k−1) +D−1b,

where SJ is the Jacobi iteration matrix. We rewrite this as

u(k) = u(k−1) +D−1(b−Au(k−1)) , (4.2.3)

which can be written in component form as follows:

u
(k)
i = u

(k−1)
i + a−1ii


bi −

N∑

j=1

aiju
(k−1)
j


 , i = 1, . . . , N,

Since the method updates the approximate solution one component at a time, methods

of this type are known as point-wise relaxation schemes. Using a weighting factor, ω,

we obtain the weighted Jacobi method

u(k) = [(1− ω)I + ωSJ ]︸ ︷︷ ︸
SJ,ω

u(k−1) +D−1b,

with SJ,ω being the weighted Jacobi iteration matrix. We will see that for an appro-

priate choice of ω, the weighted Jacobi method has better smoothing properties.

Gauss–Seidel Method

The (forward) Gauss–Seidel method is defined similarly, with the same splitting A =

D + L+ U , but choosing

B = D + L and C = −U .

Hence we have, after some algebraic manipulations,

u(k) = u(k−1) +D−1(b− Lu(k) − Uu(k−1) −Du(k−1)) , (4.2.4)

or equivalently in component form,

u
(k)
i = u

(k−1)
i + a−1ii


bi −

i−1∑

j=1

aiju
(k)
j −

N∑

j=i

aiju
(k−1)
j


 , i = 1, . . . , N.
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Unlike the Jacobi method, the approximate solution is updated immediately after each

component is determined, resulting in a faster algorithm. Here, the ordering of the

components is important, and we use a lexicographical ordering of the grid points.

Algorithm 4.1 shows the implementation of the Gauss–Seidel method.

Algorithm 4.1 The Gauss–Seidel Method: gs(A, u, b)

-2cm-2cm

Choose u(0)

for k = 1, 2, . . ., until convergence . . .
for i = 1, N

u
(k)
i = u

(k−1)
i + a−1ii

(
bi −

∑i−1
j=1 aiju

(k)
j −∑N

j=i aiju
(k−1)
j

)

end for
end for

4.2.2 Block Relaxation Schemes

A simple generalization of the above methods is known as block relaxation. These

methods update an entire set of components simultaneously which typically correspond

to a subvector containing an entire line of grid points. Thus we partition the vectors

u and b into subvectors and ensure that these are compatible with the partitioning

of A. Suppose each subvector corresponds to an entire x-line on the grid, then the

partitioning is as follows:

A =




A11 A12 · · · A1ny

A12 A22 · · · A2ny

...
. . .

. . .
...

Any1 Any2 · · · Anyny



, u =




u1

u2

...

uny



, b =




b1

b2

...

bny



.

Similarly to the point-wise case, the splitting of the matrix A is given by

A = D + L+ U ,

with

D =









A11

. . .

Anyny









, L =













0

A21 0

..

.
. . .

. . .

Any1 · · · Any ,ny−1 0













, U =













0 A21 · · · A1ny

. . .
. . .

...

0 Any−1,ny

0













.
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The methods in matrix/vector form are the same as before, (4.2.3) for the block Jacobi

method and (4.2.4) for the block Gauss–Seidel method. In component form the block

Gauss–Seidel method is

u
(k)
i = u

(k−1)
i +A−1ii


bi −

i−1∑

j=1

Aiju
(k)
j −

ny∑

j=i

Aiju
(k−1)
j


 , i = 1, . . . , ny.

The block relaxation methods therefore require solving a system of equations Aiivi = wi

for i = 1, . . . , ny that correspond to an entire line of grid points. These are normally

tridiagonal systems which can be solved very efficiently using the Thomas algorithm

(aka. the tridiagonal matrix algorithm) [50, Chapter 8]. We see how the block relax-

ation schemes are implemented in Algorithm 4.2.

Algorithm 4.2 The Block Gauss–Seidel Method: blockgs(A, u, b)

Choose u(0)

for k = 1, 2, . . . , until convergence . . .
for i = 1, . . . , ny

wi = bi −
∑i−1

j=1Aiju
(k)
j −∑ny

j=iAiju
(k−1)
j

Solve vi = A−1ii wi

u
(k)
i = u

(k−1)
i + vi

end for
end for

4.2.3 Error Analysis

For any of the above iterative methods, we have that

u(k) = Su(k−1) + g and u = Su+ g ,

for the iteration matrix S. Thus the algebraic error, e(k), after k iterations, is

e(k) = Se(k−1), (4.2.5)

and it follows by induction that

e(k) = Ske(0)

and so taking norms on each side we have

‖e(k)‖ ≤ ‖S‖k‖e(0)‖ ,
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where ‖·‖ denotes any norm. This implies that the methods are convergent if ‖S‖ < 1,

for any initial guess u(0).

Now consider the weighted Jacobi method applied to the one-dimensional Poisson’s

equation (the one-dimensional problem is used for simplicity):

−u′′(x) = f(x), 0 < x < 1, u(0) = u(1) = 0, (4.2.6)

which is discretised using the finite difference method with uniform mesh width h and

n subintervals to form a discrete operator A ∈ R
(n−1)×(n−1). Recalling that SJ,ω =

(1− ω)I + ωSJ and SJ = −D−1(L+ U), we can obtain SJ,ω in terms of A as follows:

SJ,ω = I − h2

2
ωA.

It is known that the eigenvalues and eigenvectors of A are

λi(A) =
4

h2
sin2

(
iπ

2n

)
, v

(i)
j = sin

ijπ

n
, i, j = 1, . . . , n− 1,

respectively, where i is known as the wavenumber. Therefore the eigenvalues of SJ,ω

are

λi(SJ,ω) = 1− h2

2
ωλi(A) = 1− 2ωsin2

(
iπ

2n

)
, i = 1, . . . , n− 1. (4.2.7)

and the eigenvectors of SJ,ω are the same as those of A.

Now looking at the eigenvectors of A, observe that higher values of i correspond to

more highly oscillatory sine waves while lower values of i produce longer smooth waves.

It is possible to expand an arbitrary vector in terms of the eigenvectors because the

eigenvectors span R
n−1. Thus we can write

e(0) =

n−1∑

i=1

civ
(i),

where e(0) is the initial error, and since m sweeps of the iteration yield e(m) = Sm
J,ωe

(0),

the error after m iterations becomes

e(m) =

n−1∑

i=1

ciS
m
J,ωv

(i) =

n−1∑

i=1

ciλ
m
i (SJ,ω)v

(i) (4.2.8)

because the eigenvectors of A and SJ,ω are equal. Thus |λmi (SJ,ω)| must be as small as

possible in order to produce the best convergence rate. From (4.2.7), we establish that
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Figure 4-2: The error of a random initial guess after zero iterations (top left), two
iterations (top right), four iterations (bottom left) and six iterations (bottom right)
of the Gauss–Seidel method. The oscillatory components are removed after very few
iterations, but the smooth components are damped very slowly.

|λmi (SJ,ω)| < 1 for all 0 < ω ≤ 1. Now for small values of i,

|λi(SJ,ω)| = |1− 2ωsin2 (hiπ/ 2)| ≈ |1− 2ωh2i2π2/4| ≈ 1.

because h ≪ 1, and so h2i2π2 ≈ 0. Thus for small i , λi will always be close to 1,

meaning that the smooth components of the error cannot be damped very well. For

higher values of i (we arbitrarily set these to be n−1
2 ≤ i ≤ n−1), ie. for the oscillatory

components of the error, the value of ω which provides the best damping is found by

imposing the condition |λn/2| = |λn|, and solving this for ω gives an optimal value

of ω = 2/3. In this case |λk| < 1/3 for all n−1
2 ≤ k ≤ n − 1, so all the oscillatory

components of the error are reduced by a factor of at least 1/3 in each iteration.

We see that the weighted Jacobi method damps the oscillatory components of the

error very quickly, within a couple of iterations, but the smooth components slowly.

It is also possible to show (though not necessarily very easily) that other iterative

schemes, such as Gauss–Seidel, possess the same smoothing property, and Figure 4-2

demonstrates this in effect for a two dimensional problem. Hence these methods are

known as smoothers or relaxation methods, and they play a vital role within multigrid

methods.
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4.3 Preconditioned Krylov Subspace Methods

Another very important class of iterative methods is known as projection methods, as

described in [64, Chapter 5]. Consider the linear system

Au = b.

for A ∈ R
n×n. Let Km and Lm be m-dimensional subspaces of Rn that are different

from each other. Then, given an initial guess u(0) to the solution, the projection method

seeks an approximate solution u(m) in the space u(0) +Km such that

r(m) ⊥ Lm ,

where r(m) = b − Au(m) is the residual. A Krylov subspace method is one which the

subspace Km is the Krylov subspace

Km(A, r(0)) = span{r(0), Ar(0), A2r(0), . . . , Am−1r(0)} . (4.3.1)

There are many different choices of Krylov subspace methods, each arising from a dif-

ferent choice of Lm (see [64, Chapters 6 and 7] for details of each Krylov subspace

method). If A is SPD then it is possible to choose Lm = Km(A, r(0)) which yields the

conjugate gradient (CG) method [47], the best known iterative technique for solving

sparse SPD linear systems. However, for more general non-symmetric linear systems,

Lm is normally associated with the dual system ATu∗ = b∗, i.e. Lm = Km(AT , r(0)∗),

with r(0)∗ = b∗ − ATu(0)∗. However, such methods rely on the use of AT which may

not be readily available due to compressed storage techniques of sparse matrices. The

biconjugate gradient stabilized (Bi-CGSTAB) method was developed in 1992 by Van

der Vorst [76] which avoids the use of AT , and achieves fast convergence rates for

non-symmetric linear systems. The generalized minimal residual (GMRES) method

developed by Saad in 1982 [65] also achieves competitive convergence rates for non-

symmetric linear systems. It is mathematically equivalent to the generalized conjugate

residual (GCR) method [34], which is used operationally at the Met Office, but is more

robust and requires less storage.

Krylov subspace methods on their own are generally not optimal, as their conver-

gence rates usually depend on the condition number of A. Thus, in order to reduce the

condition number, preconditioning techniques are used.

An SPD preconditioning matrix P is chosen for solving

P−
1
2AP−

1
2 ũ = b̃ ,
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where

P
1
2u = ũ and P

1
2 b̃ = b.

We require

• Solves with P
1
2 to be cheap,

• κ(P−
1
2AP−

1
2 ) to be smaller than κ(A).

Normally, either left preconditioning or right preconditioning, i.e.

P−
1
2Au = P−

1
2b or AP−

1
2P

1
2u = b,

are used. Left preconditioning is used for the CG method which is shown in Algorithm

4.3. At the Met Office, the GCR method is accelerated by an ADI preconditioner [11],

as discussed in [22, 69].

Algorithm 4.3 Preconditioned conjugate gradient method: pcg(A, u, b)

Choose u(0) (initial solution) and P
1
2 (preconditioner)

r(0) = b(0) −Au(0) (initial residual)

Solve z(0) = P−
1
2 r(0)

p(0) = z(0) (initial search direction)
for k = 0, 1, . . . , until convergence . . .

q = Ap(k)

αk = (z(k)T r(k))/(p(k)Tq) (search parameter)

u(k+1) = u(k) + αkp
(k) (update solution)

r(k+1) = r(k) − αkAp
(k) (update residual)

if r(k+1) sufficiently small exit

Solve z(k+1) = P−
1
2 r(k+1)

βk = (z(k+1)T r(k+1))/(z(k)T r(k))

p(k+1) = z(k+1) + βkp
(k) (update search direction)

end for

4.4 Multigrid Methods

4.4.1 Heuristics

We have established in Section 4.2.3 that the basic iteration procedures suffer in the

presence of smooth components of the error. Now consider a grid Th with grid spacing

h and T2h with double the grid spacing, 2h. After a small number of iterations of a
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smoother, the error on grid Th becomes smooth. However, in passing from a finer grid

(Th) to a coarser grid (T2h), the error effectively becomes more oscillatory because the

number of oscillations of the function per node has doubled.

This leads to the idea that when the relaxation method stalls, i.e. when the error

is smooth, move onto a coarser grid where the error appears more oscillatory and the

relaxation method will become more effective. However, since it is only the error that

is smooth, not the solution itself, only the error can be passed between the grids.

Thus, on the coarse grid we solve the residual equation, Ae = r = f− Aû, where û is

an approximation to the exact solution u after a certain number of iterations of the

smoother. By using a specific initial guess e = 0 to the residual equation, we know

that the error of this guess is equal to the value of e passed onto the coarse grid, which

we know was smooth on the fine grid but will be more oscillatory on the coarse grid.

Hence the smoother applied to the residual equation on the coarse grid will once again

be effective. Let us define matrix Ah and A2h as the operators defined on Th and T2h,
respectively, and similarly vectors with subscripts h and 2h as vectors defined on Th and

T2h, respectively. Then a basic strategy based on the above heuristics is summarized

as follows:

• Smooth on Ahuh = fh on Th for an approximation to the exact solution uh, which

we denote ûh.

• Compute the residual rh = fh − Ahûh and solve A2he2h = r2h on T2h to obtain

an approximation ê2h to e2h

• Update the approximation to uh with the estimate of the error obtained on T2h:
ûh := ûh + êh

This is known as the two-grid correction scheme, where the solve on T2h is called the

coarse grid correction. The easiest way to introduce a coarse grid is to simply double

the mesh width in each coordinate direction. This is called full coarsening. For the

uniform grid in the unit square, Figure 4-3 presents a 8× 8 grid fully coarsened to an

4× 4 grid. Now that we have two grids to work with, the following questions naturally

arise:

1. How do we transfer vectors from Th to T2h (e.g. the residual rh on Th to r2h on

T2h) and vice versa (e.g. the approximation to the error ê2h on T2h to êh on Th)?

2. What is A2h on T2h?

3. How do we solve the residual equation on T2h?
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→

Figure 4-3: Full coarsening on an 8× 8 uniform grid

4.4.2 Grid Transfer Operators

The first of the above questions are answered using transfer operators called restriction

and interpolation. The interpolation matrix, P , transfers a vector from the coarse grid

space to the fine grid space. Several interpolation methods exist with varying degrees

of accuracy, but here we only consider linear interpolation as experiments have shown

that it is sufficiently accurate. The restriction matrix, denoted R, transfers a vector

from the fine grid space to the coarse grid space, and it is typically the transpose of the

interpolation matrix. The construction of these matrices is different for vertex centred

(finite difference and finite element methods) and cell centred (finite volume method)

grids. Both of these are described for the 1D case – assuming a uniform mesh, full

coarsening and homogeneous Dirichlet boundary conditions – as follows:

Vertex Centred Grids

A vertex centred grid with n subintervals will have n − 1 grid points on Th and n
2 − 1

grid points on T2h. The interpolation operator, P : R
n
2
−1 → R

n−1, takes a coarse grid

vector v2h ∈ R
n
2
−1 and produces a fine grid vector vh ∈ R

n−1 according to the rule

Pv2h = vh, where

vh(2j) = v2h(j), 1 ≤ j ≤ n

2
− 1

vh(2j + 1) =
1

2
(v2h(j) + v2h(j + 1)) , 1 ≤ j ≤ n

2
− 2.

and suitable modifications for the nodes adjacent to the boundaries, i.e. vh(1) =
1
2v2h(1) and vh(

n
2 − 1) = 1

2v2h(n − 1). In two dimensions, the interpolation operator

can be constructed by a recursive procedure (over the two dimensions) of the 1D linear

interpolation.

Note that the interpolation works well only if certain conditions hold. Assume that

the real error (which is unknown in practice) is smooth on the fine grid. Then assume

that the coarse grid approximation on T2h is exact at the coarse grid points. Then

when this approximation is interpolated back onto the fine grid, the interpolant will be
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smooth and a relatively good approximation to the actual error. However, if the real

error is oscillatory on the fine grid, the coarse grid approximation will not capture the

oscillations and so the interpolant will be a poor approximation to the actual error.

Therefore interpolation is effective only when the error is smooth before restricting the

residual to the coarse grid, and this is ensured by applying the smoother beforehand.

The restriction operator, R : Rn−1 → R
n
2
−1, takes a fine grid vector and produces

a coarse grid vector, i.e. Rvh = v2h. The most obvious restriction operator, injection,

is defined by

v2h(j) = vh(2j) 1 ≤ j ≤ n

2
− 1.

The coarse grid vector simply takes its value directly from the corresponding fine grid

point, with all other points ignored. An alternative operator is called full weighting

which takes weighted averages of values at neighbouring points, ie.

v2h(j) = α

(
1

2
vh(2j − 1) + vh(2j) +

1

2
vh(2j + 1)

)
1 ≤ j ≤ n

2
− 1, (4.4.1)

where α is an appropriate scaling factor ensuring
∑

j Rij = 1 for all i. For the case of

(4.4.1), α = 1
2 . The full weighted restriction matrix without the scaling factor is the

transpose of the interpolation matrix. In stencil notation it is

1

4
[ 1 2 1 ] .

In two dimensions, the full weighting restriction operator can be constructed using a

tensor product of

1

2
[ 1 2 1 ] and

1

2




1

2

1


 .

Cell Centred Grids

For cell centred grids, the interpolation and restriction is different because, as described

in [41], the coarse grid points are not a subset of the fine grid points. With n subin-

tervals, a vertex centred grid will have n grid points on Th and n
2 grid points on T2h.

For vh ∈ R
n and v2h ∈ R

n
2 , we define the linear interpolation operator P : R

n
2 → R

n

based on the arrangement of the unknowns as Pv2h = vh where

vh(2j) =
3

4
v2h(j) +

1

4
v2h(j + 1), 1 ≤ j ≤ n

2
− 1
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vh(2j − 1) =
3

4
v2h(j) +

1

4
v2h(j − 1) , 2 ≤ j ≤ n

2

and for nodes adjacent to the boundary we have vh(1) =
3
4v2h(1) and vh(n) =

3
4v2h(

n
2 ).

2D linear interpolation is defined similarly.

For the restriction operator R : Rn → R
n
2 , either the two point average (or four

point average in 2D), i.e.

v2h(j) =
1

2
vh(2j − 1) +

1

2
vh(2j), 1 ≤ j ≤ n

2

or full weighting, i.e.

v2h(j) =
1

4
vh(2j − 2) +

3

4
vh(2j − 1) +

3

4
vh(2j) +

1

4
vh(2j + 1) , 2 ≤ j ≤ n

2
− 1

v2h(1) =
3

4
vh(1) +

3

4
vh(2) +

1

4
vh(3) ,

v2h(
n

2
) =

1

4
vh(n− 2) +

3

4
vh(n− 1) +

3

4
vh(n) ,

are most commonly used. In stencil notation, these correspond to

1

2
[ 1 1 ] (1D) and

1

4

[
1 1

1 1

]
(2D) , (4.4.2)

and

1

4
[ 1 3 3 1 ] (1D) and

1

4




1 1

1 2 2 1

1 2 2 1

1 1




(2D) , (4.4.3)

Note that for cell centred restriction, a scaling factor is not needed. Figure 4-4 visualizes

the difference between vertex centred and cell centred linear interpolation in 2D.

Remark 4.4.1. Let ma be the order of a differential operator (e.g. ma = 2 for

the Poisson-type equations). Further, let P be an interpolation of order mp (this

assumption holds if P interpolates polynomials of degree mp− 1 exactly), and suppose

R = P̂ T , where P̂ is an interpolation of order mr. Then the following condition given

in [44, 75] must be satisfied

mp +mr > ma . (4.4.4)

For example, if ma = 2, then we could choose P and R such that P is a piecewise

linear interpolation and R = P T . This would give mp +mr = 4 > ma and so (4.4.4)

is satisfied. If R is simple injection and the adjoint of P̂ T , then P̂ only interpolates
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Figure 4-4: Linear interpolation in two-dimensions for (a) a cell centred grid and (b) a
vertex centred grid. Circles denote the coarse grid nodes and crosses denote fine grid
nodes

constants exactly, and so it is a prolongation of order 1 (i.e. mr = 1). In this case

P being a piecewise linear interpolation (i.e. mp = 2) will still satisfy (4.4.4). For

cell centred discretisations, the combination of linear interpolation (mp = 2) with full

weighting restriction or a four point average (mr = 2 for both) is well suited for the

Poisson-type equations.

The Coarse Grid Approximation

The remaining issue is to work out the discrete operator, A2h on T2h. This can be done

in two ways:

• Discretise on the coarse grid

• Compute the Galerkin product A2h = RAhP

The coarse grid system

A2he2h = r2h

is then solved using a direct method (exactly) or an iterative method (approximately).

Remark 4.4.2. The Galerkin product is effectively a mapping of the matrix from

the fine grid to the coarse grid via the use of the transfer operators (see [75, §2.3.2]).
Suppose vertex centred grids are being used, then by using the Galerkin product, the

coarse grid correction is unaffected by scaling as we shall see below. Let u
(0)
h is the

initial approximation to uh, then the approximation u
(1)
h after the coarse grid correction
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(note that we have ignored smoothing) is

u
(1)
h = u

(0)
h + P (αRAhP )

−1αRrh,

and so the scaling factor, α, is cancelled out. However, if A2h is computed by discretising

on each grid, the scaling factor remains. Note also that if cell centred grids are used,

then the scaling factor is not present irrespective of the method for finding the coarse

grids.

4.4.3 The Two Grid Method (TGM)

Now that we have well defined transfer operators between grids, we can return to the

two-grid correction scheme and make it more precise. Algorithm 4.4 shows the method

in algorithmic form.

Algorithm 4.4 The Two Grid Method (TGM)

Choose u
(0)
h

for k = 0, 1, . . . , until convergence . . .

u
(k)
h = Sν1(u

(k)
h ,bh) (ν1 pre-smoothing steps)

r
(k)
h = bh −Ahu

(k)
h (calculate residual)

r
(k)
2h = Rr

(k)
h (restrict residual)

e
(k)
2h ≈ A−12h r

(k)
2h (coarse grid solve on T2h)

e
(k)
h = Pe

(k)
2h (interpolate error)

u
(k+1)
h = u

(k)
h + e

(k)
h (correction)

u
(k+1)
h = Sν2(u

(k+1)
h ,bh) (ν2 post-smoothing steps)

if r(k+1) sufficiently small exit
end for

There are several choices for each of the components in Algorithm 4.4, as discussed

already, and we summarize them as follows:

• Initial Approximation: Any initial approximation will suffice but it is normally

set to u
(0)
h = 0.

• Smoother: Point-wise Jacobi, Gauss–Seidel and SOR are popular smoothing

methods, though block versions of these smoothers are more efficient for particular

problems. We denote the smoothing operation generically as Sν , where ν denotes

the number of smoothing iterations. Very few pre- and post-smoothing steps are

necessary, but usually a least one of each are used. If the two-grid iteration is to
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be symmetric, we must use an equal number of pre- and post-smoothing steps,

noting that the ordering must be reversed in post-smoothing if Gauss–Seidel is

used.

• Transfer Operators: These depend on whether vertex centred (FDM) or cell

centred (FVM) methods are used. Simple prolongation such as piecewise linear or

bilinear interpolation are the easiest choices, with the restriction normally chosen

as the adjoint of the interpolation. For the vertex centred restriction, a suitable

scaling factor α is needed, ie. R = αP T , but for cell centred restriction, no scaling

factor is necessary.

• Coarse Grid Approximation: Firstly, a suitable approximation to Ah is

needed on the coarse grid which can be obtained by discretising on the coarse

grid or using the Galerkin product. The coarse grid system

A2he2h = r2h

is solved with a direct method (exactly) or an iterative method (approximately),

which would typically be a preconditioned Krylov subspace method or a block

relaxation scheme.

With suitable choices for each component in the TGM, the first smoothing step elim-

inates the oscillatory components of the error, and assuming the residual equation is

solved accurately on T2h, the error transferred back to the fine grid will be smooth, so

eh will be a good approximation to the exact error.

4.4.4 The Multigrid Method (MGM)

The obvious question from the description of the TGM is: what is the best way to

solve the coarse grid approximation? The answer is to apply the TGM recursively to

any number of grids, with the mesh width doubling in each coordinate direction for

each successively coarser grid. Solving the residual equation is no different to solving

the main problem, so A2he
2h = r2h on T2h can be solved by γ iterations of the TGM,

with initial approximation e
(0)
2h = 0. This process can be repeated on successive coarse

grids until we reach a chosen ‘coarsest’ grid, at which the system defined on this grid

is solved either directly or iteratively. We label the ‘level’ of each grid as level l = F

(finest grid) down to l = 1 (coarsest grid), and we define a sequence of nested grids

T1, . . . ,TF on each level with T1 being the coarsest grid and TF the finest grid. This

recursive technique is known as the Multigrid method (MGM). For this method we not

only need to define the operator Aℓ on each level ℓ = 1, . . . , F but also the transfer
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Figure 4-5: The multigrid (a) V-cycle and (b) W-cycle on four grids

operators Pℓ and Rℓ on levels ℓ = 2, . . . , F , which are mappings of vectors between

grids Tℓ−1 and Tℓ. Using this approach, the coarsest grid will be significantly smaller

than the finest grid. Thus the condition number of the problem on the coarsest grid

will be much smaller, as well as the dimension being much smaller, and so it can be

solved much faster using an iterative or direct method. Since several grid levels are

being used in the MGM, it is more convenient to define all the multigrid components

using the grid level rather than the mesh width as subscripts, i.e. the linear system

AFuF = bF (4.4.5)

is defined on the fine grid F . There are several variants to the multigrid method, and

the most popular are the V-cycle (when γ = 1) and the W-cycle (when γ = 2). Figure

4-5 shows the path between grids for one V-cycle and one W-cycle in the case of four

grids (i.e. F = 4).

Algorithm 4.5 describes how (4.4.5) is solved using the multigrid V-cycle with F

grid levels:

Algorithm 4.5 The Multigrid method (MGM)

Choose uF = u
(0)
F and set rF = bF

for k = 1, . . . until convergence. . .
Vcycle(AF , uF , bF , F) (apply one V-cycle)
rF = bF −AFuF (residual update)
if (‖ rF ‖ < tolerance) exit

end for

The core of this method is the recursive subroutine Vcycle where all the components

of this algorithm are the same as those described for the TGM:
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Algorithm 4.6 The Multigrid V-cycle: Vcycle(Aℓ, uℓ, bℓ, ℓ)

if (ℓ = 1) then

uℓ = A−1ℓ bℓ (solve on coarsest grid T1)
else

uℓ = Sν1
ℓ (uℓ,bℓ) (ν1 pre-smoothing steps)

rℓ = bℓ −Aℓuℓ (calculate residual on grid Tℓ)
rℓ−1 = Rℓrℓ (restrict residual onto grid Tℓ−1)
eℓ−1 = 0 (set initial guess to zero on grid Tℓ−1)
Vcycle(Aℓ−1, eℓ−1, rℓ−1, ℓ− 1) (apply one V-cycle on grid Tℓ−1)
eℓ = Pℓeℓ−1 (interpolate error onto grid Tℓ)
uℓ = uℓ + eℓ (update the solution)
uℓ = Sν2

ℓ (uℓ,bℓ) (ν2 post-smoothing steps)
end if

The MGM can be used as a stand-alone iterative solver with a sufficient number

of V- or W- cycles to reach the stopping criterion, or as a preconditioner to a Krylov

subspace method. Multigrid as a preconditioner would typically involve a single itera-

tion of the V- or W-cycle, and the multigrid iteration matrix must be symmetric (i.e.

Rℓ = P T
ℓ for each ℓ, ν1 = ν2 and a reverse ordering if Gauss–Seidel is used).

4.4.5 Basic Theory

With the basic multigrid algorithm outlined, we now analyze its performance for the 1D

model problem (4.2.6). By denoting the exact solution of (4.2.6) as u(x), and the asso-

ciated solution to the discrete problem as uF = (U1, U2, . . . , Un−1), the discretisation

error, E, is given by

Ei = u(xi)− Ui, 1 ≤ i ≤ n− 1.

The discretisation error measures how well the exact solution of the discretised problem

approximates the exact solution of the continuous problem. With a mesh width of h,

it can be shown to be bounded in the discrete l2 norm (i.e. the Euclidean norm) ‖ · ‖2
by

‖E‖2 ≤ Kh2. (4.4.6)

(cf. [74]) It is unlikely that the discretised problem can be solved exactly, so we also

require the algebraic error eF = uF − ũF , where ũF approximates uF in the discrete

problem. We now specify the following tolerance on the total error (algebraic error +

discretisation error)

‖u− ũF‖2 < tol,
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where u is a vector of the exact solution sampled at the grid points. The total error is

given by

‖u− ũF ‖2 ≤ ‖u− uF‖2 + ‖uF − ũF‖2 (by triangle inequality)

= ‖EF ‖2 + ‖eF ‖2.

Therefore, we must ensure ‖E‖2 + ‖eF‖2 < tol or ‖E‖2 < tol
2 and ‖eF ‖2 < tol

2 individ-

ually. Using (4.4.6), we require that

Kh2 <
tol

2
=⇒ h <

(
tol

2K

) 1
2

. (4.4.7)

Thus ‖E‖2 < tol
2 is satisfied if a sufficiently small mesh width is used such that (4.4.7)

holds.

Now in order to show ‖eF ‖F < tol
2 , consider the V-cycle scheme applied to a one-

dimensional problem with approximately n unknowns and h = 1
n . We assume that the

V-cycle scheme has a convergence factor δ that is independent of h (in fact we will prove

this rigorously in Section 4.6). The V-cycle scheme must reduce the algebraic error from

O(1), the initial error, to O( tol2 ). This means the number of V-cycles required, β, must

satisfy

δβ =
tol

2
⇒ β =

log (tol/2)

log δ
= O(1).

The cost of a single V-cycle scheme is O(n) so the cost of converging to the level of

the discretisation error is O(n). Since there are n grid points, the optimal cost is O(n)

and so the V-cycle scheme is optimal.

4.5 Anisotropic Problems

The problem treated thus far is isotropic, where direction is unimportant in the equa-

tion. More specifically, in the stencil representation of the matrix, the values of the off

diagonal entries will be of the same order of magnitude. Note that the entries in the

stencil corresponding to the two neighbours in the x-direction will be called connections

in the x-direction, and likewise for the two neighbours in the y-direction. Now consider

a small variation to the two-dimensional Poisson’s equation

−uxx − ǫuyy = f(x, y) on Ω = [0, 1]2, (4.5.1)

with Dirichlet boundary conditions u = 0. Suppose this is discretised on the computa-

tional domain given in Figure 4.1 to produce a system of equations Ahuh = bh. The
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stencil of Ah now looks like




− ǫ
h2
x

− 1
h2
x

2
h2
x
+ 2ǫ

h2
y

− 1
h2
x

− ǫ
h2
x


 .

By choosing ǫ ≪ 1, there is now a weak connection in the y-direction (i.e. the con-

nections in the y-direction are much smaller than the connections in the x-direction)

causing anisotropy. Unfortunately the basic multigrid algorithm doesn’t deal with such

anisotropic problems very well, and convergence rates degrade as ǫ→ 0. To explain this

phenomenon, consider the weighted Jacobi method with weight ω. For the isotropic

problem, the eigenvalues of the relaxation matrix are given by

λk,l = 1− ω

(
sin2

(
kπ

2nx

)
+ sin2

(
lπ

2ny

))
, 1 ≤ k ≤ nx − 1, 1 ≤ l ≤ ny − 1 .

For the anisotropic problem, the eigenvalues (given in [20]) are

λk,l = 1− 2ω

1 + ǫ

(
sin2

(
kπ

2nx

)
+ ǫsin2

(
lπ

2ny

))
, 1 ≤ k ≤ nx − 1, 1 ≤ l ≤ ny − 1 .

Here we observe that as ǫ → 0, there is little variation in the eigenvalues with respect

to the wavenumber l, whereas the variation in eigenvalues with respect to k is what we

observed for the one-dimensional problem in Section 4.2.3. Thus, the eigenvalues do

not change significantly along any of the y-lines (the direction of the weak connection),

and using (4.2.8), we observe that this means that neither the high or low frequency

components of the error are damped very well along these lines. There are two possible

techniques that can be used to recover optimality for anisotropic problems:

Semi coarsening: Coarsen in the strongly coupled direction only.

Line relaxation: Smooth along entire lines in the strongly coupled direction.

4.5.1 Semi Coarsening with Point Relaxation

For the method of semi coarsening, coarsening is applied only in the direction of the

strong connection. In problem (4.5.1), semi coarsening will only occur in the x-direction

as in Figure 4-6.

The interpolation and restriction matrices are similar to those for a one-dimensional

problem, as no coarsening is applied in the y-direction. Thus on each x-line, the one-

dimensional interpolation and restriction strategy is applied. The stencil representation

for each of the above grids looks as follows:
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→

Figure 4-6: Semi coarsening on an 8× 8 uniform grid




− ǫ
h2
y

− 1
h2
x

2
h2
x
+ 2ǫ

h2
y

− 1
h2
x

− ǫ
h2
y


 →




− ǫ
h2
y

− 1
(2hx)2

2
(2hx)2

+ 2ǫ
h2
y

− 1
(2hx)2

− ǫ
h2
y


 .

After semi coarsening, the values of the off-diagonal entries become closer in magni-

tude, so the problem on each coarse level is closer to an isotropic problem. However,

semi coarsening too many times may switch the direction of the strong connection (ie.
1

(2nhx)2
< ǫ

h2
y
for large n), in which case the method will no longer work. Therefore, this

method should be used when the anisotropy is very strong (that is, ǫ is very small), as

there is a limit to the number of coarse levels that can be used before the direction of

the strong connection switches around.

4.5.2 Line Relaxation with Full Coarsening

By ordering the unknowns along lines of constant x, the matrix Ah and right-hand-side

bh can be written in block format as

Ah =




D −cI
−cI D −cI

. . . D
. . .

. . .
. . . −cI
−cI D




, bh =




b1

b2

...

...

bny




. (4.5.2)

where c = − ǫ
h2
y
and D ∈ R

nx is a tridiagonal matrix whose off-diagonal entries are the

connections in the x-direction. bi ∈ R
nx is a subvector corresponding to an entire x-line

of grid points at the ith y-line. Each tridiagonal block is represented by the stencil

1

h2x

(
−1 2 + 2ǫh

2
x

h2
y

−1
)
.
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The Jacobi method is applied, but now it is applied to entire blocks in the matrix of

(4.5.2) instead of the individual entries. One sweep of the ‘block’ Jacobi method involves

solving the tridiagonal system along each x-line (hence the name ‘line’ relaxation).

The j-th sweep of line relaxation involves solving Du
(j)
i = g

(j)
i for i = 1, . . . , ny where

g
(j)
i = bi − c(u

(j)
i−1 + u

(j−1)
i+1 ). The system can be solved exactly as it is a tridiagonal

system with Dirichlet boundary conditions, and can be solved very efficiently using the

Thomas algorithm [50, Chapter 9] with a cost of O(nx).

This strategy is effective when the direction of the strong coupling appears in the

diagonal blocks. To see why this is, we need to look at the convergence properties of

the iteration matrix, which recall from (4.2.8) is determined by its eigenvalues. The

eigenvalues of the block Jacobi iteration (when the direction of the strong coupling

appears in the diagonal blocks) are given in [20] as

λk,l = 1− 2ω

2 sin2
(
kπ
2nx

)
+ ǫ

(
sin2

(
kπ

2nx

)
+ ǫsin2

(
lπ

2ny

))
, 1 ≤ k ≤ nx− 1, 1 ≤ l ≤ ny− 1 .

The maximum magnitude of these eigenvalues can be shown to be much smaller than

the maximum magnitude of the eigenvalues of the point Jacobi iteration, resulting in

a greater reduction of the errors. Furthermore, as ǫ → 0, we have λk,l → 1 − ω for

all wavenumbers k and l, meaning that all components of the error are reduced by a

factor 1− ω at each iteration, resulting in a very good stand alone solver.

However, if the direction of the weak coupling appears in the diagonal blocks, the

eigenvalues of the block Jacobi iteration are

λk,l = 1− 2ω

2 sin2
(
lπ
2ny

)
+ ǫ

(
sin2

(
kπ

2nx

)
+ ǫsin2

(
lπ

2ny

))
, 1 ≤ k ≤ nx− 1, 1 ≤ l ≤ ny− 1 ,

in which case the maximum magnitude of these eigenvalues is more comparable to

those of the point Jacobi iteration, resulting in a less effective smoother.

4.5.3 Semi Coarsening with Line Relaxation

Both the above strategies rely on knowing the direction of the weak and strong connec-

tions. Suppose the direction of the weak connection is unknown, then semi coarsening

could be used in the one direction and line relaxation in the other (e.g. coarsening only

in the x-direction and solving tridiagonal systems along each y-line). Semi coarsening

would take care of any strong coupling in the one direction and line relaxation would

take care of any strong coupling on the other. This method is therefore the most robust
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as it works independently of the size or direction of the anisotropy. However, it still

requires the anisotropy to be grid-aligned, and for such cases it is also possible to prove

the robustness of the method theoretically. The theory is based on a tensor product

analysis for a separation of coordinate directions (see [14] and Section 5.4), and also

relies on the classical V-cycle convergence theory for isotropic problems presented in

the following section.

4.6 Convergence Analysis of the Multigrid Method

In this section we give a rigorous convergence analysis of the multigrid method, fol-

lowing the work of Hackbusch [44, 45, 43]. Note that more recently, further techniques

have been developed (cf. [16, 58, 59, 68, 82, 86, 88]) which generalize the analysis of

Hackbusch to cover a more general class of elliptic boundary value problems. However,

the majority of multigrid convergence relies on two properties being satisfied, namely

the smoothing property and the approximation property. If these properties are sat-

isfied, then it is possible to show that the convergence rate of the of the method is

bounded by a value independent of the problem size and the number of grid levels

used. Moreover, if the problem is SPD, a tighter bound is obtained and the analysis is

valid for any ν > 0 (where ν is the total number of smoothing steps). In this section we

restrict the analysis only to SPD problems, since the majority of problems we deal with

in this thesis are SPD. In section 4.6.1, the analysis is given for the two-grid method,

and this is extended in Section 4.6.2 to cover the multigrid V-cycle. The convergence

rate will be measured by finding the contraction number of the iteration matrix with

respect to particular norms.

4.6.1 Analysis of the Two-Grid Method

In this section we give a rigorous convergence analysis of the two-grid method (TGM),

where we use the two grids Tℓ (fine grid) and Tℓ−1 (coarse grid). The two-grid iteration

is a linear iteration having a representation

u
(j+1)
ℓ =MTG

ℓ u
(j)
ℓ +NTG

ℓ bℓ ,

where the iteration matrix MTG
ℓ depends on the number of pre- and post-smoothing

steps ν1 and ν2, i.e. M
TG
ℓ =MTG

ℓ (ν1, ν2). The two-grid iteration matrix is

MTG
ℓ (ν1, ν2) = Sν2

ℓ (I − PℓA
−1
ℓ−1RℓAℓ)S

ν1
ℓ ,



CHAPTER 4. NUMERICAL SOLUTION OF SYSTEMS OF EQUATIONS 85

(cf. [44, Chapter 6]) where Sν
ℓ denotes a ν-fold application of Sℓ. It is well known that

the iteration converges if and only if

ρ(MTG
ℓ (ν1, ν2)) < 1

holds for the spectral radius ρ(MTG
ℓ (ν1, ν2)) = max{|λ| : λ an eigenvalue of MTG

ℓ }.
However, it is more common to use norm estimates of the iteration matrix for deter-

mining the rate of convergence. The spectral norm ‖ · ‖2 is the matrix norm on R
n×n

induced by the Euclidean vector norm on R
n. Since ‖X‖2 = ρ(X) for a symmetric

matrix (c.f. [44, Lemma 1.3.4]), we deduce that the two-grid iteration converges if and

only if

‖MTG
ℓ (ν1, ν2) ‖2< 1 ,

Note that we will often refer to the Energy norm ‖ · ‖Aℓ
, which is related to the spectral

norm by

‖ B ‖Aℓ
=‖ A

1
2
ℓ BA

− 1
2

ℓ ‖2 . (4.6.1)

(cf. [45, Chapter2]) Let us first consider the case of ν2 = 0 (i.e. no post-smoothing).

We can split MTG
ℓ into two factors

MTG
ℓ (ν1, 0) = (A−1ℓ − PℓA

−1
ℓ−1Rℓ)(AℓS

ν1
ℓ ) ,

and therefore

‖MTG
ℓ (ν1, 0) ‖2≤‖ A−1ℓ − PℓA

−1
ℓ−1Rℓ ‖2‖ AℓS

ν1
ℓ ‖2 ,

by the submultiplicativity of the matrix norm. We consider each factor separately

which gives rise to two key properties.

The Smoothing Property

Let us first consider the factor ‖ AℓS
ν1
ℓ ‖2. A vector wℓ is smooth if the product of Aℓ

and wℓ satisfies

‖Aℓwℓ‖2 ≪ ‖Aℓ‖2‖wℓ‖2 ,

where ‖x‖2 is the Euclidean norm for a vector x. Thus the smoothing procedure Sℓ is

really smoothing if

‖AℓSℓ‖2 ≪ ‖Aℓ‖2‖Sℓ‖2 , and

‖Sℓ‖2 ≤ 1 . (4.6.2)
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Usually ‖Aℓ‖ is of order O(h−αℓ ) where α is the order of the differential operator (e.g.

α = 2 for the Poisson equation), and hℓ is the mesh width on grid level ℓ. Also, ‖Sℓ‖2
is of order O(1) as long as (4.6.2) holds, leading to the following condition:

Definition 4.6.1 (The smoothing property (SP)). An iteration Sℓ satisfies the SP if

there exists functions η(ν) and νmax(h) and a number α such that

‖AℓSℓ‖2 ≤ η(ν)‖Aℓ‖2 , ∀ℓ ≥ 1 , 1 ≤ ν ≤ νmax(hℓ) , (4.6.3)

η(ν) → 0 as ν → ∞ ,

νmax(hℓ) = ∞ or νmax(hℓ) → ∞ as hℓ → 0 .

Note η(ν) does not depend on ℓ or hℓ.

The Approximation Property

Now let us consider the second factor ‖ A−1ℓ − PℓA
−1
ℓ−1Rℓ ‖2. The error eℓ on the

fine grid is approximated by Pℓeℓ−1 obtained from the residual equation Aℓ−1eℓ−1 =

rℓ−1 = Rℓrℓ on the coarse grid. This implies that A−1ℓ rℓ ≈ PℓA
−1
ℓ−1Rℓrℓ should be a

good approximation. Thus the requirement of Pℓeℓ−1 being a good approximation to

eℓ is quantified by

‖A−1ℓ rℓ − PℓA
−1
ℓ−1Rℓrℓ‖2 ≤ C ′A‖rℓ‖2/‖Aℓ‖2 .

This leads to the approximation property written in terms of the spectral norm:

Definition 4.6.2 (The approximation property (AP)). The AP is satisfied if

‖A−1ℓ − PℓA
−1
ℓ−1Rℓ‖2 ≤ C ′A/‖Aℓ‖2, ∀ℓ ≥ 2 (4.6.4)

for some constant C ′A.

Theorem 4.6.3 (Proof of the AP). Let Aℓ be the matrix of a finite element discreti-

sation, e.g. (3.3.5). Suppose the regularity assumption

‖ uℓ − u ‖L2(Ω)≤ Ch2ℓ ‖ f ‖L2(Ω) (4.6.5)

holds, where ‖ · ‖L2(Ω) is the L2(Ω) norm, and u and uℓ are the solutions of (3.3.3)

and (3.3.4). Then the AP (4.6.4) holds.

Proof. The proof (given in appendix C) uses a finite element setting and bijective

mappings from finite element spaces to vector spaces of the same dimension.
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The SP and AP are the two essential properties of the two-grid and multigrid iterations,

and we will see in this section that these conditions are sufficient for two-grid and

multigrid convergence.

SPD Systems

From this point on in this section, we only consider SPD matrices. The notation X ≥ Y

for matrices X and Y signifies that both X and Y are symmetric and that X − Y is

positive definite. Using this notation it can be shown that, for any symmetric matrices

X and Y ,

‖ X ‖2≤ c is equivalent to − cI ≤ X ≤ cI , (4.6.6)

X ≤ Y implies CTXC ≤ CTY C , (4.6.7)

CTC ≤ X ⇔ CX−1CT ≤ I , (4.6.8)

‖X‖22 = ‖XTX‖2 = ‖XXT ‖2 , (4.6.9)

where c is an arbitrary constant and C an arbitrary matrix with the same dimensions

as X and Y (cf. [44, Chapter 1]). For the two-grid analysis an SPD problem must

satisfy the following conditions:

Aℓ = AT
ℓ > 0 , ∀ℓ ≥ 1 (4.6.10)

Rℓ = P T
ℓ , ∀ℓ ≥ 2 (4.6.11)

Aℓ−1 = RℓAℓPℓ , ∀ℓ ≥ 2 (4.6.12)

Lemma 4.6.4 (The smoothing property for the symmetric case). Smoothing iterations

are written as Sℓ = I−W−1ℓ Aℓ for an SPD matrix Wℓ. Suppose that for an SPD matrix

Aℓ, there exists a constant CW such that

‖Wℓ‖2 ≤ CW‖Aℓ‖2 , (4.6.13)

Then if the smoothing iteration satisfies

Wℓ =W T
ℓ ≥ Aℓ > 0 , (4.6.14)

the smoothing property (4.6.3) holds with η(ν) = CW η0(ν) and νmax(hℓ) = ∞.

Proof. Firstly let us show that for an SPD matrix X, if 0 ≤ X ≤ I, then

‖X(I −X)ν‖2 = η0(ν) , (4.6.15)
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with

η0(ν) = νν/(1 + ν)1+ν .

We show (4.6.15) by setting f(ξ) = ξ(1− ξ)ν . Then

‖X(I −X)ν‖2 = ρ(X(I −X)ν) = max
0≤ξ≤1

f(ξ) ,

since 0 ≤ X ≤ 1. The maximum of this function occurs at x = 1/(ν + 1) which yields

f(x) = η0(ν) and so (4.6.15) holds.

Now, let Rℓ =Wℓ −Aℓ and define Y :=W
− 1

2
ℓ RℓW

− 1
2

ℓ . Then we deduce that

‖AℓS
ν
ℓ ‖2 = ‖W

1
2
ℓ (I − Y )Y νW

1
2
ℓ ‖2 ≤ ‖Wℓ‖2‖(I − Y )Y ν‖2 .

We have ‖Wℓ‖2 ≤ CW‖Aℓ‖2 by (4.6.13) and 0 ≤ Y ≤ 1 by (4.6.14). Therefore

‖(I − Y )Y ν‖ ≤ η0(ν) by (4.6.15), which implies

‖AℓS
ν
ℓ ‖2 ≤ CWη0(ν)‖Aℓ‖2 , (4.6.16)

i.e. the smoothing property (4.6.3) holds with η(ν) = CW η0(ν).

Remark 4.6.5. Note that using Lemma 4.6.4 the smoothing property can be satisfied

for any SPD matrix Aℓ and any symmetric smoothing iteration Sℓ satisfying (4.6.14). In

particular, the point- or block-wise damped Jacobi iterations applied to an SPD system

satisfy the smoothing property. This is because we recall that Wℓ = ω−1Dℓ, where Dℓ

is the diagonal (or block-diagonal) of Aℓ, so (4.6.14) is satisfied if ω ≤ ‖D−1ℓ Aℓ‖−1.
Then, assuming Dℓ ≤ CDh

−2
ℓ I for some constant CD, (4.6.16) is satisfied with CW =

CDω
−1h−2ℓ (see [44, Proposition 6.2.14]).

Lemma 4.6.6 (The approximation property for the symmetric case). Suppose (4.6.10)

– (4.6.12) hold. Then, provided that (4.6.13) is satisfied, the following inequality is a

sufficient condition for the approximation property (4.6.4):

0 ≤ A−1ℓ − PℓA
−1
ℓ−1Rℓ ≤ CAW

−1
ℓ . (4.6.17)

with CA = C ′ACW .

Proof. Firstly we deduce that if (4.6.13) holds, (4.6.4) is equivalent to

‖W
1
2
ℓ (A−1ℓ − PℓA

−1
ℓ−1Rℓ)W

1
2
ℓ ‖2 ≤ C ′ACW = CA. (4.6.18)
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By (4.6.6), (4.6.18) is equivalent to

−CAI ≤W
1
2
ℓ (A−1ℓ − PℓA

−1
ℓ−1Rℓ)W

1
2
ℓ ≤ CAI .

Multiplying by W
− 1

2
ℓ from the left and right gives the right-hand inequality of (4.6.17).

As for the left-hand inequality, we have by (4.6.12) that RℓA
1
2
ℓ A

1
2
ℓ Pℓ = Aℓ−1 and then

using (4.6.8) we have that A
1
2
ℓ PℓA

−1
ℓ−1RℓA

1
2
ℓ ≤ I. Hence PℓA

−1
ℓ−1Rℓ ≤ A−1ℓ which proves

the left-hand inequality.

For the proofs that follow, we assume the SP and AP hold, but since we are only dealing

with SPD problems, it suffices to assume that (4.6.14) and (4.6.17) hold, since (4.6.13)

holds for symmetric smoothing iterations. Let us now prove the uniform convergence

of the TGM for any ν > 0, firstly for the case of the symmetric iteration matrix, i.e.

ν1 = ν2 =
ν
2 .

Theorem 4.6.7. Suppose (4.6.10) – (4.6.12), the smoothing property for SPD problems

(4.6.14) and the approximation property for SPD problems (4.6.17) hold. Then the

two-grid iteration converges with respect to the energy norm with the rate:

‖MTG
ℓ

(ν
2
,
ν

2

)
‖Aℓ

≤





CA
νν

(1+ν)1+ν < 1 0 ≤ CA ≤ 1 + ν(
1− 1

CA

)ν
< 1 CA ≥ 1 + ν

.

Proof. Introduce transformed matrices

Xℓ = A
1
2
ℓ W

−1
ℓ A

1
2
ℓ , (4.6.19)

Qℓ = A
1
2
ℓ (A

−1
ℓ − PℓA

−1
ℓ−1Rℓ)A

1
2
ℓ = I −A

1
2
ℓ PℓA

−1
ℓ−1RℓA

1
2
ℓ , (4.6.20)

Ŝℓ = A
1
2
ℓ SℓA

− 1
2

ℓ = A
1
2
ℓ (I −W−1ℓ Aℓ)A

− 1
2

ℓ = I −Xℓ , (4.6.21)

M̂TG
ℓ = A

1
2
ℓ M

TG
ℓ

(ν
2
,
ν

2

)
A
− 1

2
ℓ = Ŝ

ν
2
ℓ QℓŜ

ν
2
ℓ , (4.6.22)

where (4.6.22) follows because Aℓ and Sℓ are commutative if a Jacobi smoother is used.

We deduce from the definitions of Qℓ, Xℓ and (4.6.17) that

0 ≤ Qℓ ≤ Xℓ, (4.6.23)

and similarly from (4.6.11), we deduce that Qℓ is symmetric and from (4.6.10) and

(4.6.12) that A
1
2
ℓ PℓA

−1
ℓ−1RℓA

1
2
ℓ ≥ 0, thus

0 ≤ Qℓ ≤ 1. (4.6.24)
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A linear combination of (4.6.23) and (4.6.24) yields

0 ≤ Qℓ ≤ αCAXℓ + (1− α)I ∀ 0 ≤ α ≤ 1. (4.6.25)

Multiplication by Ŝ
ν
2
ℓ from both sides gives

0 ≤ Ŝ
ν
2
ℓ QℓŜ

ν
2
ℓ = M̂ℓ ≤ (I −Xℓ)

ν
2 [αCAXℓ + (1− α)I](I −Xℓ)

ν
2 , (4.6.26)

Now 0 ≤ Xℓ = A
1
2
ℓ W

−1
ℓ A

1
2
ℓ , and by (4.6.14) we have W−1ℓ ≤ A−1ℓ therefore 0 ≤ Xℓ ≤ I.

The spectral norm of the right-hand side of the inequality (4.6.26) is equal to

sup{(1− x)ν(αCAx+ 1− α) : x ∈ spectrum of Xℓ}, ∀ 0 ≤ α ≤ 1.

Since 0 ≤ Xℓ ≤ 1, the above value for the spectral norm is bounded above by

m(α) = max0≤ξ≤1{(1− x)ν(αCAx+ 1− α)}, ∀ 0 ≤ α ≤ 1.

Therefore we have

‖M̂TG
ℓ ‖2 = ‖MTG

ℓ ‖Aℓ
≤ m(α).

If 0 ≤ CA ≤ 1 + ν, choose α = 1 and max m(1) = CA
νν

(ν+1)ν+1 at ξ = 1
1+ν . Otherwise

choose α = ν
CA−1 ∈ [0, 1], then we have max m(α) = (1 − 1

CA
)ν at ξ = 1

CA
, which

proves the result.

Now the proof of the two-grid convergence need not be restricted to the case where

the number of pre- and post-smoothing steps are equal. For the more general case of

different pre- and post-smoothing steps, one can apply:

Corollary 4.6.8. Suppose (4.6.10) – (4.6.12), the smoothing property for SPD prob-

lems (4.6.14), the approximation property for SPD problems (4.6.17) and ν1, ν2 > 0.

Then the contraction number of the two-grid iteration with respect to the energy norm

is bounded by

‖MTG
ℓ (ν1, ν2) ‖Aℓ

≤‖MTG
ℓ (ν1, ν1) ‖

1
2
Aℓ
‖MTG

ℓ (ν2, ν2) ‖
1
2
Aℓ

. (4.6.27)

Proof. By simple manipulations of MTG
ℓ , we can deduce that

MTG
ℓ (ν1, ν2) =MTG

ℓ (0, ν2)M
TG
ℓ (ν1, 0) , (4.6.28)

MTG
ℓ (0, ν)T =MTG

ℓ (ν, 0) , (4.6.29)

assuming (4.6.11) and (4.6.12) and the commutativity of Aℓ and Sℓ. Then using
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the transformed iteration matrix M̂TG
ℓ (ν1, ν2) = A

1
2
ℓ M

TG
ℓ (ν1, ν2)A

− 1
2

ℓ , we obtain from

(4.6.28) and (4.6.1) that

‖MTG
ℓ (ν1, ν2)‖Aℓ

≤ ‖MTG
ℓ (0, ν2)‖Aℓ

‖MTG
ℓ (ν1, 0)‖Aℓ

. (4.6.30)

Then using (4.6.9), (4.6.28) and (4.6.29) we get

‖MTG
ℓ (0, ν2)‖2Aℓ

= ‖MTG
ℓ (ν2, ν2)‖Aℓ

. (4.6.31)

(4.6.30) and (4.6.31) imply the result (4.6.27). By Theorem 4.6.7, both the terms on

the right-hand-side of (4.6.27) are bounded by contraction numbers less than 1.

4.6.2 Analysis of the Multigrid V-Cycle

We now analyze the convergence of the multigrid method, where we specifically focus

on the V-cycle. Let

u
(j+1)
ℓ =MMG

ℓ u
(j)
ℓ +NMG

ℓ bℓ , (4.6.32)

where MMG
ℓ =MMG

ℓ (ν1, ν2) is the multigrid iteration matrix defined recursively as:

Lemma 4.6.9. The iteration matrix MMG
ℓ (ν1, ν2) of the multigrid method is

MMG
ℓ =





0 for ℓ = 1 (the coarsest grid)

MTG
ℓ for ℓ = 2

MTG
ℓ + Sν2

ℓ Pℓ(M
MG
ℓ−1 )

γA−1ℓ−1RℓAℓS
ν1
ℓ for ℓ > 2

.

Proof. A full proof is given in Appendix B.

γ = 1 and γ = 2 represent the V-cycle and the W-cycle respectively, but for the

remainder of this section we only consider the V-cycle, and we denoteMV
ℓ =MMG

ℓ . We

now give the famous result given by Hackbusch [44, Theorem 7.2.2] for the convergence

of the V-cycle:

Theorem 4.6.10 (Convergence of the V-cycle). Suppose (4.6.10) – (4.6.12), the

smoothing property for SPD problems (4.6.14) and the approximation property for SPD

problems (4.6.17) hold. If ν1 = ν2 = ν
2 , then the V-cycle converges with respect to the

energy norm for ν > 0 and the contraction number is bounded by

‖MV
ℓ

(ν
2
,
ν

2

)
‖Aℓ

≤ CA

CA + ν
< 1 . (4.6.33)
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Proof. Let us first recall the matrices Xℓ, Qℓ, Ŝℓ and M̂
TG
ℓ from (4.6.19) – (4.6.22). In

addition, denote

P̂ℓ = A
1
2
ℓ PℓA

1
2
ℓ−1, R̂ℓ = A

1
2
ℓ−1RℓA

1
2
ℓ ,

then we have that

Qℓ = I − P̂ℓR̂ℓ. (4.6.34)

We prove (4.6.33) by induction. Starting with ℓ = 1, we know MV
ℓ = 0, thus we have

‖MV
ℓ

(ν
2
,
ν

2

)
‖Aℓ

= 0 <
CA

CA + ν
.

Now suppose the inequality holds for ℓ − 1. Using (4.6.22), (4.6.34), (4.6.25) and the

inductive hypothesis, the transformed V-cycle iteration matrix on level ℓ is bounded

above by

M̂V
ℓ ≤ Ŝν2

ℓ ((1 −
(

CA

CA + ν

)
)(αCAXℓ + (1− α)I) +

(
CA

CA + ν

)
I)Ŝν1

ℓ = f(Xℓ, α) ,

and since Ŝℓ = I −Xℓ and 0 ≤ Xℓ ≤ 1 we have

f(ξ, α) ≤ (1− ξ)ν
[(

ν

CA + ν

)
(αCAξ + (1− α)) +

CA

CA + ν

]
,

for all ξ ∈ [0, 1] and α ∈ [0, 1]. The spectral norm of M̂V
ℓ is bounded above by the

maximum of f(ξ, α), which occurs at ξ = 0. Then choosing α = 1 gives

f(0, 1) ≤ CA

CA + ν
,

and so (4.6.33) holds for all ℓ > 1, which completes the proof.

For the more general case of different pre- and post-smoothing steps, the convergence

rate is found via the following Corollary:

Corollary 4.6.11 (Convergence of the V-cycle for a different number of pre- and

post-smoothing iterations). Under the conditions of Theorem 4.6.10 and if ν1+ν2 > 0,

the V-cycle converges with respect to the energy norm, and the contraction number is

bounded by

‖MV
ℓ (ν1, ν2)‖Aℓ

≤ CA√
CA + ν1

√
CA + ν2

< 1
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Proof. Firstly we can show by induction that

MV
ℓ (ν1, ν2) =MV

ℓ (0, ν2)M
V
ℓ (ν1, 0) ,

and also by simple algebraic manipulations and the commutativity of Aℓ and Sℓ that

MV
ℓ (0, ν)T =MV

ℓ (ν, 0) .

Then using the transformed matrix M̂V
ℓ (ν1, ν2) = A

1
2
ℓ M

V
ℓ (ν1, ν2)A

− 1
2

ℓ , we follow the

same lines as the proof for Corollary 4.6.8.

All the analysis in Section 4.6 can be applied to the 1D and 2D model problems

discussed throughout this chapter, but only for the isotropic cases. For anisotropic

problems, such as model problem (4.5.1), the AP fails and so we must seek alternative

techniques to prove the uniform convergence of multigrid methods when applied to

these problems, as shown in [58, 70] where line relaxation and full coarsening are

used. We will also show in Section 5.4 that the robustness of multigrid methods for

anisotropic problems can be proved by using techniques motivated by a method known

as Fourier analysis. The Fourier analysis of multigrid methods differs from the approach

described in this section, in that the eigenvectors of the operator Aℓ play a pivotal

role in transforming the main problem into a family of smaller problems with which

the analysis can be done more trivially (A two-grid Fourier analysis for the simple

1D Poisson equation (4.2.6) is given in Appendix A, noting that the analysis can be

extended to the multidimensional case). Using this idea, the uniform convergence of

two particular anisotropic model problems from Chapter 5 will be proved in Section

5.4 based on a separation of coordinate directions using a tensor product approach.

This effectively reduces the analysis of the anisotropic problems to that of a family of

simpler isotropic problems, for which the analysis from this section can be applied.

4.7 Algebraic Multigrid (AMG)

Thus far we have been analyzing problems with structured grids and simple coeffi-

cients, where the coarse grid selection has been based on simple coarsening strategies

and grid transfer operators. These multigrid techniques are called geometric multigrid

methods. They, however, are in general not optimal for solving problems with highly

varying coefficients or unstructured grids, and for such problems we refer to a technique

known as algebraic multigrid (AMG). Both these methods have two distinct phases.

In the setup phase, all the multigrid components are defined, such as the hierarchy
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of coarse grids, the operators in each grid level and the intergrid transfer operators.

The solution phase follows, consisting of a stand alone iteration of multigrid cycles or

a preconditioning of a Krylov subspace method by multigrid cycles. AMG provides

robust solution methods for a wide class of problems posed on unstructured grids, and

as a result it is becoming increasingly popular for many industrial applications. The

fundamental approach to AMG, as shown in [20, 71, 63, 18], is as follows:

• Fix the smoother (normally a simple point-wise smoother).

• Choose the coarse grids and interpolation operators based on information from

the operator.

• Define the coarse grid operator and restriction operator.

This technique is conceptually the opposite of geometric multigrid. Geometric ap-

proaches employ pre-determined and fixed grid hierarchies, and choose an appropriate

smoother to obtain an efficient interplay between the smoothing and coarse grid correc-

tion. Conversely, AMG fixes the smoother to a simple relaxation scheme, and enforces

an efficient interplay with the coarse grid correction by choosing the coarser levels and

interpolation operators appropriately. The coarse levels are chosen from information

based solely from the operator, and the operator-dependant interpolation is generated

on the principle that its range is forced to contain functions which are unaffected by

relaxation, i.e. smooth functions. The coarsening process is fully automatic, and this

is the reason why AMG can adapt itself to the specific requirements of a problem and

be robust for a large class of problems despite using simple relaxation methods.

The flexibility of AMG comes at a cost: its setup phase. The cost of constructing

the coarse grids and interpolation operators is, in general, larger for AMG, and so it

is usually less efficient than geometric multigrid when applied to problems for which

geometric multigrid can be applied efficiently. However, the strengths of AMG are its

applicability to more complex problems that are beyond the scope of the geometric

approach, so it should be considered as a variant to geometric multigrid rather than a

competitor.

Throughout the discussion of AMG, we assume that the operator Aℓ is an SPD

M -matrix, and we identify the grid points with the set of unknowns, i.e. if we solve

Aℓuℓ = bℓ, and

u = [u1, u2, . . . , un]
T ,

then the fine grid points can be denoted {1, 2, . . . , n}. The connections within the grid

at each node are then defined by undirected adjacency graphs. For an entry aij of Aℓ,

the vertices of the graph are associated with the grid points, and an edge between the
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ith and jth vertex means that aij 6= 0 (which implies that aji 6= 0 since Aℓ is symmetric).

By describing the problem without the use of grids, it is possible to develop the AMG

algorithm even for problems which are defined on highly unstructured grids.

4.7.1 Algebraic Smoothness

In AMG, one of the fundamental concepts used for the coarsening and interpolation

strategies is the idea of algebraic smoothness. Having chosen a simple relaxation scheme,

we now define an algebraically smooth error as one that is not effectively reduced by

relaxation. Recall the algebraic error (4.2.5) after k iterations of the smoother Sℓ:

e
(k)
ℓ = Sk

ℓ e
(0)
ℓ .

By definition, e
(k)
ℓ is smooth if it is not significantly different to e

(k−1)
ℓ , i.e.

e
(k)
ℓ ≈ Sℓe

(k−1)
ℓ .

Thus for an algebraically smooth error, eℓ, the iteration satisfies eℓ ≈ Sℓeℓ, which is

equivalent to D−1Aℓeℓ ≈ 0 for the weighted Jacobi iteration Sℓ = I − ωD−1Aℓ. This

leads to the condition

Aℓeℓ ≈ 0 . (4.7.1)

We appeal to the errors satisfying (4.7.1) as algebraically smooth error. Note that such

an error may not be geometrically smooth (see [71, Section 1.3]). Although we have

used the weighted Jacobi method to lead to condition (4.7.1), similar analysis can be

performed for the Gauss–Seidel method which is more commonly used in AMG.

An implication of (4.7.1) is that < D−1r, r > ≪ < e, r >, and we can show from

this that ∑

j 6=i

( |aij |
aii

)(
ei − ej
ei

)
≪ 2, 1 ≤ i ≤ n . (4.7.2)

The product on the left-hand-side must be very small, which implies that if
|aij |
aii

is

relatively large, then ei ≈ ej . In other words, the error varies slowly from variables i

to j if |aij | is large. This heuristic idea is one of the main concepts used for defining

the interpolation operator.

4.7.2 Strong Coupling

Aside from algebraic smoothness, a second important concept in AMG is that of strong

dependence or strong coupling. Noting that we associate the ith equation of Aℓ with
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the ith unknown ui, we define strong coupling as follows:

Definition 4.7.1. A variable ui is strongly coupled to another variable uj if

−aij ≥ θmax
k 6=i

{−aik} ,

for some 0 < θ ≤ 1.

In other words, if aij (i 6= j) is large relative to the other coefficients aik, then ui is

strongly coupled with uj .

With the two key concepts of algebraic smoothness and strong coupling defined, we

can now define the multigrid components for AMG.

4.7.3 Selecting the Coarse Grid

When selecting the coarse grids, we rely on the twin concepts of algebraic smoothness

and strong coupling. We also assume vertex centred grids, so the coarse grid nodes will

be s subset of the fine grid nodes. Suppose we split the set of variables on the fine grid

as a set C of coarse grid variables and a set F of variables only on the fine grid, i.e.

we have a partitioning of the indices {1, . . . , n} = C ∪ F . Let us denote

Ni = {j : j 6= i and aij 6= 0}, the neighbours of i.

Si = {j ∈ Ni : i is strongly dependant on j},
ST
i = {j ∈ Ni : j is strongly dependant on i}.

The coarse grid selection algorithm splits the fine grid variables into sets of fine grid

only (F ) variables and coarse grid (C) variables using the information in the strong

coupling set Si. The selection process is based on the following heuristics:

1. For each i ∈ F , a point j ∈ Si that is strongly coupled with i should be a coarse

grid point or strongly coupled with at least one coarse grid point that is strongly

coupled with i.

2. No coarse grid point should be strongly coupled with another coarse grid point.

Satisfying both these heuristics is not always possible, and the second heuristic is used

to control the size of the coarse grid. The larger the coarse grid, the more accurate

the interpolation of the smooth errors onto the fine grid, but this also reduces the

coarsening factor, defined in Remark 4.7.2 below. Thus the second heuristic is used to

maximize the number of coarse grid points without any two such points being strongly

coupled.
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The coarse grid selection starts by choosing some variable i to become a C-variable.

Then all variables j that are strongly coupled with i become F -variables. From the

remaining variables, one is chosen as a C-variable and all others strongly coupled to

it become F -variables. We repeat this process until all the variables have been taken

care of.

However, we would like to avoid randomly distributed patches of C/F -variables,

thus the selection process must be performed in a certain order. Let U be the set of

undecided variables, where initially U = {1, 2, . . . , n}. Then we introduce a measure of

importance, λi, of any i ∈ U to become the next C-variable, as follows:

λi = |ST
i ∩ U |+ 2|ST

i ∩ F | , i ∈ U ,

where |X| denotes the number of elements in set X. λi is a measure of how important

i would be as a C-variable. The variable i ∈ U with the highest measure will be

selected as a C-variable, and all strongly coupled points of i become F -variables. We

then update U , calculate λi for each i ∈ U and select another C-variable to repeat the

process again until U = φ. Note that there are further heuristics to deal with special

cases and to improve the quality of the coarse grid (e.g. avoiding isolated nodes).

Once the coarse grid has been selected, we use the Galerkin method to calculate

the coarse grid operator:

Aℓ−1 = RℓAℓPℓ .

Remark 4.7.2. The coarsening factor, cfℓ, between levels ℓ−1 and ℓ is defined as the

ratio of the number of nodes at these levels, i.e.

cfℓ =
# nodes on level ℓ

# nodes on level ℓ− 1
, ∀ℓ ≥ 2

The greater the coarsening factor, the less work is required on the coarser level.

4.7.4 The Interpolation Operator

The final ingredient in AMG is an operator-dependant interpolation operator. To

construct this, we split the set of variables on the fine grid as a set C of coarse grid

variables and a set F of variables only on the fine grid. Now, for each i ∈ F , we aim

to define the interpolation weights ωik in

ei =
∑

k∈C
wikek, ∀i ∈ F (4.7.3)
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such that the interpolation operator P : C → C ∪ F is such that (4.7.3) is a good

approximation to any algebraically smooth error on the coarse grid. Let us recall Ni

from Section 4.7.3 and denote

Ci = {j ∈ C ∩Ni : j strongly influences i}, the coarse interpolatory set for i ,

Di = {j ∈ F ∩Ni : j strongly influences i}, the strongly connected neighbours of i ,

Qi = {j ∈ F ∩Ni : j weakly influences i}, the weakly connected neighbours of i .

Assuming vertex centred interpolation is used, we define the interpolation operator by

(Pℓe)i =

{
ei if i ∈ C

∑
j∈Ni

ωijej if i ∈ F
, (4.7.4)

for some weights ωij. By the algebraic smoothness of the error, we can write (4.7.1) as

aiiei ≈ −
∑

j∈Ni

aijej ,

or

aiiei ≈ −
∑

j∈Ci

aijej −
∑

j∈Di

aijej −
∑

j∈Qi

aijej .

In order to find the weights ωij, we must replace ej in the second and third sums

with ei or ej , for j ∈ Ci. We do this by considering (4.7.2), where we deduce that

the algebraically smooth error varies slowly in the direction of strong coupling. This

also implies that algebraically smooth error can be well approximated by a weighted

average of its strongly coupled neighbours.

Now, if j ∈ Qi, then ei doesn’t depend strongly on ej and so by (4.7.2), |aij | must

be small. Therefore the sum
∑

j∈Qi
aijej will also be small, and so can be replaced

with
∑

j∈Qi
aijei with a relatively insignificant error, giving


aii +

∑

j∈Qi

aij


 ei ≈ −

∑

j∈Ci

aijej −
∑

j∈Di

aijej . (4.7.5)

If j ∈ Di, then there is a strong coupling between ei and ej, and so ej can be approxi-

mated accurately by a weighted sum of the values ek from the coarse interpolatory set

of the point i, i.e.

ej =

∑
k∈Ci

ajkek∑
k∈Ci

ajk
. (4.7.6)
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Combining (4.7.5) with (4.7.6), we find that

ei = −
∑

j∈Ci
aijej +

∑
j∈Di

aij

∑

k∈Ci
ajkek

∑

k∈Ci
ajk

aii +
∑

j∈Qi
aij

,

and so the weights from (4.7.4) are

ωij = −
aij +

∑
m∈Di

(
aimamj

∑

k∈Ci
amk

)

aii +
∑

n∈Qi
ain

.

Again, there are further heuristics, for example to deal with positive off-diagonal entries.

As for the restriction operator, we simply take the transpose of the interpolation,

i.e.

Rℓ = P T
ℓ .

The idea of AMG was devised by Brandt, McCormick and Ruge [18]. AMG methods

are very popular because of their applicability to complex industrial problems on un-

structured grids and more recently because there has been a major surge of interest

in solving increasingly larger systems of billions of unknowns with variable coefficients.

Many practical implementations of AMG exist, such as the AMG1R5 by Ruge and Stüben

[63] and BoomerAMG by Henson and Yang [46], a very robust and efficient parallel im-

plementation of AMG within the hypre library [37]. However, for certain types of

problems where further information is available, it is possible to take the ideas from

AMG and use them within a geometric approach instead. This will eliminate the need

for a large setup cost whilst giving the robustness of an AMG code. Experiments have

been devoted to testing such ideas in several application fields (e.g. [90]), but to the

best of my knowledge not for problems posed on spherical polar grids that are of in-

terested for this thesis. Such problems will have degenerating coefficients towards the

poles, causing large anisotropies, and in Chapter 5 we will give a detailed account how

they can be treated effectively using the ideas from AMG.



Chapter 5

Non-Uniform Multigrid for

Spherical Polar Grids

In this chapter we introduce a novel conditional coarsening strategy within a geometric

multigrid method for elliptic problems in tensor product form, and apply it to problems

in spherical geometries that are of interest in numerical weather prediction. It is well

known that simple isotropic problems can be solved optimally using geometric multigrid

methods with full coarsening and point-wise smoothers, as described in Chapter 4 and

several books and articles, e.g. [20, 75]. We also showed in Chapter 4 that the optimal

convergence of this method can been proven both experimentally and theoretically (cf.

[44, 88]), and the theory extends to the V-cycle (see [16]), which is the method used

for all experiments in this thesis. This standard method, however, is not robust for

problems with anisotropy, such as the ones studied in this thesis, but there are well-

known remedies in certain situations. For example, if the anisotropy is grid–aligned,

then there are two standard ways of retaining optimality: (a) semi-coarsening and (b)

line or plane relaxation. For problems in spherical geometries, geometric multigrid

methods with line and plane smoothers, and “uniform” semi-coarsening, have already

been studied in [7], and theoretical results for line smoothers and semi-coarsening can

be found in [17, 58].

In this chapter, these existing methods are adapted to deal with the particular “in-

homogeneous” anisotropies arising from spherical polar grids, by using a “conditional”

semi-coarsening strategy. Conceptually, this is a simple idea which uses semi coarsen-

ing in the anisotropic regions near the poles and full coarsening in the isotropic regions

near the equator. We demonstrate numerically that this strategy gives rise to an op-

timal method for solving elliptic problems on the sphere. We have not yet succeeded

in fully proving this robustness, but we will also make some theoretical considerations

100
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that strongly support our numerical findings.

Theoretical results for planar polar coordinates can be found in [14], but only with

line smoothers and uniform semi-coarsening. The idea of conditional semi-coarsening

in the latitudinal direction proposed here has only been explored for edge and corner

singularities so far (cf. [40, 55, 90]) but not for spherical polar grids (even in two

dimensions). It is inspired by algebraic multigrid (AMG) ideas (see e.g. [20, 71]). AMG

methods are fully automatic and only based on algebraic information in the matrix A.

Coarse grid unknowns are chosen based on the relative size of the off-diagonal entries

in the matrix which in the application here will lead to very similar coarse grids to our

conditionally semi-coarsened grids. However, AMG methods are known to require a

large setup cost to design these coarse grids and the operator-dependent interpolation

and restriction operators, especially in three dimensions (3D). Our geometric method

on the other hand, requires almost no setup cost to obtain the same robustness, which

is why it is expected to comfortably outperform AMG methods in terms of CPU-time.

The chapter is organized as follows. We motivate the type of problems we wish

to study in Section 5.1. The two dimensional (2D) model problem in this section will

be solved on the unit square and will have particular anisotropies similar to those

arising from spherical polar grids. We use traditional multigrid methods to solve this

model problem, focusing particularly on the approach of line relaxation in one direction

together with semi coarsening in the other, a method whose convergence rate has

been proved analytically in [14]. In Section 5.2, we introduce the new approach of

conditional semi-coarsening with point relaxation on this model problem, which aims to

beat all the existing multigrid methods, including algebraic multigrid (AMG) methods,

by exploiting the structure of the anisotropies. We give a heuristic argument to justify

that this method performs optimally, and back this up with numerical results. The

model problem is extended to 3D in Section 5.3, where we discuss the techniques for

tackling additional anisotropies in the third dimension, and give some numerical results.

We then give theoretical results in Section 5.4. We begin by following the 2D tensor

product proof from [14] (see also [13, §2]) to show that a general 2D elliptic problem

with grid-aligned anisotropy can be solved optimally with the multigrid V-cycle using

line smoothers and semi coarsening. This theory will cover the 2D model problem from

Section 5.1. We then extend the theory to prove that general anisotropic 3D elliptic

problems, including the model problem from Section 5.3, can be solved optimally using

a line smoother and no coarsening in the third coordinate direction. Finally in Section

5.5, we apply the techniques developed in this chapter to 2D and 3D problems in

spherical polar coordinates which are of a particular interest to the Met Office, noting

that particular issues must be accounted for at the poles. Numerical results will be
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given, and comparisons will be made with methods such as AMG and a particular

variant of the preconditioned generalized conjugate residual (GCR) Krylov subspace

method [34] used operationally at the Met Office.

5.1 Motivation by Studying Anisotropic Problems on the

Unit Square

Let us first consider two dimensions only, where problems with grid aligned anisotropy

can be written in the form

−∇ ·
((

α1(x, y) 0

0 α2(x, y)

)
∇u
)

= g, (5.1.1)

with α1 = α1
1(x)α

2
1(y), α2 = α1

2(x)α
2
2(y) uniformly positive almost everywhere. The

simplest model problem with grid aligned anisotropy is α1 ≡ δ ≪ 1 constant and

α2 ≡ 1. For this model problem, it is shown theoretically in [70] that x-line relaxation

with full coarsening leads to an optimal multigrid convergence. In the more general case

of varying coefficients α1, α2, i.e. when the anisotropy is inhomogeneous, it seems that

it is necessary to combine line relaxation with semi-coarsening to still get an optimal

method at least theoretically (cf. [14]). The methods outlined in [14] appear to be most

popular for dealing with inhomogeneous grid aligned anisotropy despite the larger cost

of line relaxation (compared with point relaxation) resulting from solving tridiagonal

systems of equations at each relaxation sweep (cf. Chapter 4).

We use the following model problem in this section to analyze the effects of inho-

mogeneous grid-aligned anisotropy on the convergence of existing multigrid methods:

−∂
2u

∂x2
− ∂

∂y

(
sin2(πy)

∂u

∂y

)
= g on Ω = (0, 1) × (ε, 1− ε), 0 < ε≪ 1 (5.1.2)

subject to the Dirichlet boundary condition u = 0 on ∂Ω. This is clearly of the type

(5.1.1), with α1(x, y) = 1 and α2(x, y) = sin2(πy) and for ε > 0 the coefficient is

uniformly positive. The finite volume discretisation of problem (5.1.2) on the unit

square yields a matrix with the following stencil at the interior nodes:




−hx

hy
sin2(πyj+ 1

2
)

−hy

hx
−∑ −hy

hx

−hx

hy
sin2(πyj− 1

2
)


 . (5.1.3)

where subscript j denotes the mesh line in the y-direction. We observe from this stencil
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that the strength of the anisotropy varies only in the y-direction since sin2(πy) is the

only variable in the stencil. We observe a strong anisotropy for y → ε and y → 1 − ε

where sin2(πy) → 0. For ε≪ 1 the singular behaviour of the differential operator close

to y = 0 and y = 1 becomes more pronounced, and the anisotropy becomes stronger.

We test the traditional and existing multigrid methods discussed in chapter 4 on this

model problem to determine which methods deal with inhomogeneous anisotropy most

effectively.

5.1.1 Standard Geometric Multigrid Approaches

Firstly, we test full coarsening in conjunction with point relaxation (FCPR), which is

expected to perform badly for solving (5.1.2) since we saw in Chapter 4 that it cannot

even deal with simpler anisotropies. Similarly, semi coarsening with point relaxation

(SCPR) is expected to be suboptimal for problems with inhomogeneous anisotropy.

Line relaxation, however, is known to be very effective for dealing with anisotropy as

long as the direction of the weak coupling does not change throughout the domain.

This is indeed the case for problem (5.1.2), so the performance of line relaxation with

full coarsening is (FCLR) likely to be optimal, though the cost of line relaxation is

significantly higher than point relaxation. Finally we test using line relaxation in

conjunction with semi coarsening (SCLR), a more robust method whose convergence

rate can be proved theoretically (cf. [14]).

For each of the methods FCPR, SCPR, FCLR and SCLR, the model problem (5.1.2)

is solved using the standard multigrid V-cycle as a stand alone solver. Note, however,

that it is also common to use multigrid as a preconditioner to a Krylov subspace

method, with one V-cycle as the preconditioner. Results using multigrid as a stand

alone solver or as a preconditioner typically give similar results. As in Chapter 4, we

denote the sequence of grids as Tℓ, ℓ = 1, . . . , F , where T1 and TF are the coarsest and

finest grids respectively, and the operator on grid Tℓ as Aℓ. The main problem we are

solving is on the finest grid TF , and we denote this as

AFuF = bF .

The matrices Aℓ are each computed by the finite volume discretisation of PDE (5.5.1)

on the sequence of grids. The interpolation operator, Pℓ is a mapping from Tℓ−1 to

Tℓ, and the restriction operator, Rℓ is a mapping from Tℓ to Tℓ−1. We use linear

interpolation and full weighting restriction, which means the restriction matrix is the
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transpose of the interpolation matrix, i.e.

Pℓ = RT
ℓ , ∀ℓ = 2, . . . , F.

The ratio of the fine grid cells to the coarse grid cells is known as the coarsening factor

(cf. Remark 4.7.2). The coarsening factor varies depending on the coarsening method

used, but the higher the coarsening factor the fewer grid cells on the coarse grids and so

fewer computations are required on the coarse levels. We choose the right-hand-side,

bF by choosing a random solution uF and pre-multiplying it by AF . This ensures

that the exact solution is known which can be compared with the approximate solution

using multigrid, as well as ensuring that the right-hand-side is in the range of AF (if AF

is a singular matrix). The structure of the algorithm for the multigrid V-cycle method

is unchanged from algorithm 4.5 given in Chapter 4. Depending on the method used,

suitable changes will be made to the individual components of the algorithm, such as

the choice of smoother and coarsening strategy.

All tests in this section are carried out on a single 1.8GHz processor of a Dual

dual-core 64bit AMD Opteron 2210 (Cache size 1.0MB and 2GB memory) using the

Fortran95 compiler ifort. The initial guess for the iteration is taken to be zero, with a

relative residual reduction of tol = 10−8 as the stopping criterion. The number of pre-

and post-smoothing steps will be set to ν1 = 3 and ν2 = 2, but tests will also be carried

out for other values, especially for comparisons with the algebraic multigrid (AMG)

methods in later sections. On T1, we use the conjugate gradient (CG) method [74]

to solve the coarse grid problem. Numerical experiments showed that the coarse grid

problem only needs to be solved to a residual tolerance of 0.1, and any greater accuracy

made no difference to the total number of V-cycle iterations required. Finally we set

ε = 0 in (5.1.2). Note that this means we no longer have uniform ellipticity of the

operator as we allow y = 0, 1, but this does not make a difference from an algorithmic

point of view since none of the degrees of freedom are located at these points.

The performance of each of these methods for solving (5.1.2) with ε = 0 is given

in Tables 5.1, 5.2 and 5.3. Table 5.1 measures the number of iterations, Nits, of each

method with respect to problem size, and for an optimal method Nits will be robust

to problem size. Table 5.2 measures the total CPU time taken for each method. Note

that we normally give the total CPU time as a breakdown of the setup time and solve

time, which is is done particularly for results concerning AMG problems where the

setup time makes up a significant fraction of the total time. However, for the problems

discussed here, the setup time is small and typically less than 25% of the solve time, so

we do not give a breakdown of the total CPU time. For an optimal method, the CPU
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time will grow linearly with problem size. Finally, Table 5.3 measures the geometric

average of the V-cycle convergence factor, defined in [62], i.e.

µavg =
(
‖r(Nits)

F ‖/‖r(1)F ‖
)1/(Nits−1)

.

Note that the first cycle is excluded, and this is a common indicator of the convergence

factor. If the number of iterations is robust with respect to problem size, then the same

will apply to µavg.

Full Coarsening with Point Relaxation (FCPR)

FCPR performes optimally for isotropic problems on a regular grid, as described in

Chapter 4. It is a very fast method because the work done on the coarse grids is small

due to a high coarsening factor (cf. Remark 4.7.2), where the number of nodes on

the coarse grid is halved in both directions. FCPR is fast also because the cost of the

point smoother is small, being proportional to the number of unknowns (Note that

the cost of line relaxation is also proportional to the number of unknowns, but the

constant of proportionality is much higher). However, for problems even with a small

uniform anisotropy, FCPR will not perform optimally, and so the number of iterations

is expected to rise with respect to the problem size. Table 5.1 clearly confirms this, as

the number of iterations increases rapidly with problem size. Consequently the CPU

time also grows more than linearly with respect to problem size, and µavg is not robust

with respect to problem size, as shown in Tables 5.2 and 5.3. FCPR is therefore not

optimal.

Semi Coarsening with Point Relaxation (SCPR)

SCPR imposes coarsening only in the direction of the strong coupling, i.e. the x-

direction for problem (5.1.2), and as a result the coarsening factor is only 2 instead

of 4 as in the case of FCPR. As we saw in Chapter 4, semi coarsening will reduce

the strength of anisotropy and optimally solve grid aligned and uniformly anisotropic

problems. Conversely, semi coarsening will not be optimal if used on isotropic problems

because it will introduce anisotropy to the problem. Near the region at which y = 0.5,

problem (5.1.2) is almost isotropic, hence SCPR will not be an optimal method for this

problem. The growing number of iterations with respect to problem size in Table 5.1

confirms this.
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Full Coarsening with Line Relaxation (FCLR)

Here, a standard multigrid V-cycle with a linewise Gauss−Seidel smoother and full

coarsening is used. The linewise smoother will solve a tridiagonal system for each line

of constant y using the Thomas algorithm [50, Chapter 9]. The cost of the Thomas

algorithm is proportional to the number of unknowns, but with a larger constant than

the point smoother.

In Chapter 4, it was shown that FCPR will be optimal for solving anisotropic

problems provided that line relaxation was imposed in the direction of the strong

coupling, and if the direction of strong coupling doesn’t change at different points on

the domain. Tables 5.1 – 5.3 demonstrate that FCLR indeed performs optimally, with

the number of iterations and average convergence factors unaffected by problem size,

and the CPU time increasing linearly with problem size.

Semi Coarsening with Line Relaxation (SCLR)

Finally, we test line relaxation with semi coarsening, where we coarsen only in one

direction and apply line relaxation in the other. Since line relaxation with full coars-

ening works very efficiently, line relaxation with semi coarsening is only likely to slow

down the method due extra work required on the coarse grids as a result of the smaller

coarsening factor. However, the advantage of this approach is that it makes no assump-

tions about the direction of the strong or weak coupling, and is optimal even when the

direction of the weak coupling switches in different regions of the domain. This is a

particularly important factor that needs to be taken into account for the 3D problems,

as we will see later in this chapter.

In addition, tests using this method were carried out in order to confirm the theory

from [14]. In that paper, a V-cycle convergence proof using line relaxation with semi

coarsening for a grid-aligned inhomogeneous anisotropic problem is given. We outline

their proof for model problem (5.1.2) in Section 5.4.1 and extend it to 3D in Section

5.4.2.

Problem size No. of coarse grids FCPR SCPR FCLR SCLR
32x32 2 65 8 5 5
64x64 3 203 11 5 4
128x128 4 631 17 5 4
256x256 5 1828 50 5 4
512x512 6 5309 139 5 4

Table 5.1: Number of iterations, Nits, required to solve (5.1.2).



CHAPTER 5. NON-UNIFORM MULTIGRID 107

Problem size No. of coarse grids FCPR SCPR FCLR SCLR
32x32 2 3.04E-2 8.26E-3 6.57E-3 8.76E-3
64x64 3 3.40E-1 3.93E-2 2.56E-2 3.19E-2
128x128 4 4.94 2.41E-1 1.08E-1 1.40E-1
256x256 5 66.13 5.68 4.59E-1 5.94E-1
512x512 6 940.2 74.1 1.95 2.59

Table 5.2: Total CPU time taken (including setup time) to solve (5.1.2).

Problem size No. of coarse grids FCPR SCPR FCLR SCLR
32x32 2 0.796 0.102 0.030 0.029
64x64 3 0.931 0.213 0.034 0.029
128x128 4 0.978 0.405 0.032 0.030
256x256 5 0.992 0.742 0.030 0.030
512x512 6 0.997 0.900 0.028 0.030

Table 5.3: Average convergence factor, µavg , when solving (5.1.2).

The theory in [14] suggests it may be necessary to combine semi-coarsening with line

relaxation to prove the uniform convergence of general elliptic problems of type (5.1.1).

The numerical experiments using this method on (5.1.2), given in Tables 5.1 – 5.3, have

shown that this method is indeed robust with respect to problem size, thus confirming

the theory. However, as we have already seen with FCLR, other more efficient variants

of multigrid exist. Thus it is not absolutely necessary (from an experimental point

of view) to combine line relaxation with semi coarsening for an optimal solver to grid

aligned anisotropic problems, and so we investigate a new multigrid strategy in Section

5.2.

5.1.2 Algebraic Multigrid (AMG) for Anisotropic Problems

Before we do this let us study another very popular multigrid approach which has been

experimentally proven in several articles (e.g. [20, 71, 63]) to be efficient in cases of

strong anisotropies (even extending to anisotropies that are not grid aligned), namely

AMG. As discussed in Section 4.7, AMG methods are highly successful as they can be

used in any complex geometric situations which are out of reach of geometric multigrid

methods. The versatility and robustness of AMG methods are a result of using matrix-

dependent prolongation operators, particularly for problems with large (non-smooth)

coefficient variation. AMG methods are normally robust with respect to problem size

and solve almost all elliptic problems nearly optimally.

There are several versions of AMG, and we test its performance on problem (5.1.2)

using the popular BoomerAMG implementation from the hypre library [46, 37]. We
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use the default settings for BoomerAMG, i.e. a symmetric-SOR smoother (with 1 pre-

and post-smoothing step), Falgout coarsening, classical Ruge-Stüben interpolation and

Gaussian Elimination as the coarse grid solver. Some experiments with other settings

were also carried out, but did not lead to a significant improvement of the method.

Thus far in this chapter, we have only used multigrid as a stand alone iterative

solver. Thus we test the AMG method as a stand-alone solver for a direct comparison

with the geometric multigrid approaches from the previous section, but also as a pre-

conditioner to the conjugate gradient (CG) method with one V-cycle per iteration. In

Table 5.4, the notation CG + AMG means the CG algorithm is preconditioned with

one V-cycle of multigrid, with the number of CG iterations measured. The notation

V-cycle only means the multigrid V-cycle is used as a stand-alone solver, with the

number of V-cycle iterations measured.

We observe from Table 5.4 that CG + AMG is robust with respect to grid refine-

ment. However, the solve time of CG + AMG is nearly twice as large as FCLR. As

for the setup time, FCLR is approximately four times as fast as CG + AMG, and in

total FCLR is faster than CG + AMG by a factor of approximately 2. Note that when

FCLR is used as a preconditioner to CG (we call this CG + FCLR), then the results

are virtually the same as FCLR, hence CG + FCLR also performes approximately 2

times faster than CG + AMG. When used as a stand-alone solver, AMG is not fully

robust. The number of iterations and the average convergence factor per iteration grow

slightly with the problem size, and the number of iterations required is always greater

than CG + AMG. This clearly affects the CPU time and it is consequently slower than

CG + AMG.

BoomerAMG (V-cycle only) CG + AMG
Problem size Setup time Solve time Nits µavg Solve time Nits µavg

32x32 5.54E-3 1.29E-2 8 0.091 1.12E-3 5 0.020
64x64 1.73E-2 4.70E-2 8 0.090 4.03E-2 6 0.030
128x128 7.47E-2 2.23E-1 10 0.151 1.71E-1 6 0.044
256x256 3.12E-1 1.07 11 0.172 8.29E-1 7 0.054
512x512 1.27 4.90 12 0.209 3.52 7 0.067

Table 5.4: The BoomerAMG method applied to model problem (5.1.2) as a stand alone
solver and a preconditioner for the CG method. CPU times in seconds.

Thus, although AMG can be used for many complex problems, the flexibility of

AMG comes at a price: its setup cost. The selection of coarse nodes, the construction

of interpolation operators and the construction of coarse level operators is slower for

AMG than for geometric methods (especially in 3D), since everything has to be deduced

algebraically from the system matrix A via graph theoretical techniques. Also, the
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coarse grid operators generally become very dense and expensive to apply. Therefore,

AMG is usually less efficient than geometric multigrid on problems for which geometric

multigrid can be suitably adapted.

5.2 New Approach – Conditional Semi-Coarsening

Model problem (5.1.2) is highly anisotropic with degenerate coefficients, but as dis-

cussed in Section 5.1 the anisotropy is grid aligned and it can be dealt with efficiently

and robustly using geometric approaches. Line relaxation with full coarsening clearly

performs very well, but can certain components of the multigrid method be combined

differently to yield an even more efficient method? In contrast to standard geometric

multigrid approaches, which adapt the smoother and keep the structure of the coarse

grid simple, AMG methods adapt the coarse grid so that the smoother is kept sim-

ple (ie. a point smoother). Such techniques used in AMG methods motivate the key

idea of this chapter – a “conditional semi-coarsening” strategy. We aim to show that

in practice line relaxation is not necessary for problems of type (5.1.2), provided an

alternative coarsening strategy is used to exploit the particular structure of the grid

anisotropy.

Recall the stencil (5.1.3) for problem (5.1.2):




−hx

hy
sin2(πyj+ 1

2
)

−hy

hx
−∑ −hy

hx

−hx

hy
sin2(πyj− 1

2
)


 .

at an interior point {(i, j, k) : i = 1, . . . , nx, j = 1, . . . , ny, k = 1, . . . , nz} with suit-

able modifications at the boundary. nx, ny and nz denote the number of grid points

in the x-, y- and z-directions respectively. Since y ∈ [ε, 1 − ε], we observe a strong

anisotropy for y → ε and y → 1 − ε caused by the degeneracy of the coefficients

of the differential operator, where sin(πy) → 0. Thus the entries in the x-direction

are significantly larger than the entries in the y-direction at these regions, suggesting

that semi-coarsening would be effective. However, semi-coarsening is only effective for

strongly anisotropic problems, and will introduce anisotropy if the original problem is

isotropic. Near y = 0.5, the problem is close to isotropic (as sin(πy) ≈ 1), suggesting

that it would be better to use full coarsening there instead of semi-coarsening. This

motivates the key idea of conditional semi-coarsening, i.e. to perform full uniform coars-

ening near y = 0.5 and semi-coarsening (in x-direction only) near the y-boundaries.

More specifically, we compare the ratio of the x and y off-diagonal entries in stencil

(5.1.3) at each y-line. On line j, the x off-diagonal entries are −hy

hx
and the two y off-
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diagonal entries are −hx

hy

(
sin2(πyj− 1

2
)
)
and −hx

hy

(
sin2(πyj+ 1

2
)
)
, so we take the average

which is approximately −hx

hy

(
sin2(πyj)

)
. We fully coarsen that line only if the ratio is

sufficiently close to 1. We observe from (5.1.3) that on the fine grid with a uniform

mesh, ie. hx ≈ hy, the ratio is approximately sin2(πyj). In the actual computations,

since 0 ≤ sin2(πφj) ≤ 1, we fully coarsen only if sin2(πyj) is greater than 1
2 which in

numerical experiments proved to be the optimal value. Note the anisotropy only varies

in the y-direction, ie. there is no value in the stencil that is a function of i, so the grid

is always uniformly fully coarsened in the x-direction.

Now on subsequent coarse grids we no longer have a uniform mesh. Additionally

the mesh width and number of grid points must be distinguished on each grid level,

thus we introduce a small change in notation to account for this. The mesh width in

the y-direction varies as a function of j on the coarse grids, so we denote the mesh

width in the y-direction at the j-th mesh line on Tℓ by h(ℓ)y,j . Similarly, h
(ℓ)
x denotes the

mesh width in the x-direction on Tℓ, which is constant on each grid, and the stencil for

the finite volume discretisation of (5.1.2) on the coarse grids becomes




− h
(ℓ)
x

h
(ℓ)
y,j

sin2(πyj+ 1
2
)

−h
(ℓ)
y,j

h
(ℓ)
x

−∑ −h
(ℓ)
y,j

h
(ℓ)
x

− h
(ℓ)
x

h
(ℓ)
y,j

sin(πyj− 1
2
)



.

at a point {(i, j, k) : i = 1, . . . , n
(ℓ)
x , j = 1, . . . , n

(ℓ)
y , k = 1, . . . , n

(ℓ)
z }, where n

(ℓ)
x ,

n
(ℓ)
y and n

(ℓ)
z are the number of grid points in the x-, y- and z-directions respectively

on grid Tℓ. The ratio of the off-diagonal entries on line j is now compensated by a

factor (h
(ℓ)
x /h

(ℓ)
y,j)

2 which varies as a function of j. We call this strategy ‘conditional

semi-coarsening’ and it is summarized as follows:

On grid Tℓ:
x-direction – Double the mesh width ie. h

(ℓ−1)
x = 2h

(ℓ)
x

y-direction – Scan through each y-line (i.e. from j = 1 to j = n
(ℓ)
y ):

ratio = (h
(ℓ)
x /h

(ℓ)
y,j)

2 sin2(yj)

if ratio < 0.5 then

semi coarsening: i.e. no coarsening on that y-line

else

full coarsening: i.e. coarsen on that y-line

end if

The two key factors that make this strategy so simple and feasible are:
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→

Figure 5-1: Conditional semi-coarsening on a 16× 8 grid
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Figure 5-2: Conditional semi-coarsening on a 400 × 200 grid (after four refinements)

• The anisotropy is grid-aligned and changes only as a function of y. Thus it is

sufficient to scan through the ratio of off diagonal entries at each y-line only.

• The direction of the strong coupling, i.e. the x-direction, doesn’t change through-

out the domain. If the y off diagonal entry was stronger at certain points in the

domain, then additional strategies will be required to fully take care of all the

anisotropies.

The result of this simple strategy is a non-uniform coarse grid, and Figure 5-1 shows

the non-uniform coarsening strategy applied to a 16 × 8 uniform grid where half the

region is fully coarsened and the other half semi coarsened. Repeating the coarsening

strategy successively yields a graded mesh with coarse square cells near the equator and

fine elongated cells near the poles, as shown in Figure 5-2 for a 400× 200 uniform grid

coarsened four times using conditional semi-coarsening. The region of full coarsening

grows on successively coarser grids, which gives the coarse grids a graded appearance.

The coarsening factor from the finest grid to the first coarse grid is approximately 3.

The full algorithm for constructing the coarse grids using conditional semi-coarsening

is given in Algorithm 5.1. The inputs of the routine are the number of grid points

n
(ℓ)
x and n

(ℓ)
y , the grid level ℓ, the mesh width h

(ℓ)
x and the vector of mesh widths
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Algorithm 5.1 Conditional semi-coarsening for model problem (5.1.2):

Conditional(h
(ℓ)
x , h

(ℓ)
y , n

(ℓ)
x , n

(ℓ)
y , ℓ, h

(ℓ−1)
x , h

(ℓ−1)
x , n

(ℓ−1)
x , n

(ℓ−1)
y )

incr = 1 (incrementing up the y-line)

for j = 1, n
(ℓ)
y

ratio = (h
(ℓ)
x /h

(ℓ)
y,incr)

2 sin2(πyincr) (ratio of off-diag entries at line incr)

if ratio ≥ 0.5 then

h
(ℓ−1)
y,j = h

(ℓ)
y,incr + h

(ℓ)
y,incr+1 (mesh width doubled in y

incr = incr + 2 at line incr (i.e. full coarsening))
else

h
(ℓ−1)
y,j = h

(ℓ)
y,incr (mesh width unchanged in y

incr = incr + 1 at line incr (i.e. semi coarsening))
end if

if incr > n
(ℓ)
y exit

end for

h
(ℓ−1)
x = 2h

(ℓ)
x (mesh width doubled in x on grid Tℓ−1)

n
(ℓ−1)
y = j (no. of grid points in x- and y-

n
(ℓ−1)
x = n

(ℓ)
x /2 direction on grid Tℓ−1)

{(h(ℓ)y,j), j = 1, . . . , n
(ℓ)
y }. The outputs of the routine are the number of grid points

n
(ℓ−1)
x and n

(ℓ−1)
y on Tℓ−1 and the mesh widths h

(ℓ−1)
x and {(h(ℓ−1)y,j ), j = 1, . . . , n

(ℓ−1)
y }.

This coarsening strategy has a significant effect on the transfer operators, where

linear interpolation and full weighting restriction are used. When imposing full coars-

ening on a uniform mesh, the fine node is a quarter of the way along the distance

between the coarse nodes (cf. Chapter 4.4.2 and Figure 5-3). However, when imposing

full coarsening on a non-uniform mesh, this is not necessarily the case. Adjacent cells

in the y-direction may not be the same size thanks to conditional semi-coarsening, so a

fine node will a fraction t along the distance between two coarse nodes, where 0 < t < 1.

Let j be the mesh line of the coarse grid and k be the corresponding mesh line on the

fine grid, then t is calculated at line k as follows:

t =
h
(ℓ)
y,k

h
(ℓ−1)
y,j + h

(ℓ−1)
y,j+1

.

This value will change at each y-line because of the variable cell sizes caused by condi-

tional semi-coarsening. However, in the x-direction, full coarsening is always imposed

so the fine node will always be a quarter of the way along the distance between the

coarse nodes. Note that t = 1
4 when h

(ℓ)
y,k = 1

2h
(ℓ−1)
y,j ∀j, k, i.e. for a uniform mesh.
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Figure 5-3: The weighting of values from adjacent nodes in (a) a uniform mesh, and
(b) a non-uniform mesh.

Figure 5-3 demonstrates the differences between a uniform and non-uniform mesh. For

a uniform mesh with full coarsening, recall from Section 4.4.2 the restriction matrix

(4.4.3) in stencil notation for the finite volume discretisation in 2D:




0.25 0.25

0.25 0.5 0.5 0.25

0.25 0.5 0.5 0.25

0.25 0.25



.

With conditional semi-coarsening, however, the stencil takes the following form:




tk tk

0.25 1− tk 1− tk 0.25

0.25 1− tk 1− tk 0.25

tk tk



.

where we denote tk as the ratio calculated on line k of the fine grid.

5.2.1 Heuristic Explanation of the Effectiveness

The motivation for using the non-uniform coarsening strategy is to make the problem

on the coarser grids more isotropic, which is the same heuristic as semi coarsening for

a problem which is uniformly anisotropic (cf. Section 4.5.1). The more isotropic the

problem is on each coarser grid, the more effective the smoother will be in smoothing
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the errors in all directions. Since we have already observed that the region of full

coarsening increases on coarser grids, the problem on the coarse grids clearly becomes

more isotropic. Looking at stencil (5.1.3), we observe that an isotropic problem is

obtained if

−
h
(ℓ)
y,j

h
(ℓ)
x

≈ −h
(ℓ)
x

h
(ℓ)
y,j

sin2(πyj) ⇔
h
(ℓ)
y,j

h
(ℓ)
x

≈ sin(πyj) , (5.2.1)

where h
(ℓ)
x is constant on each grid whilst h

(ℓ)
y,j varies as a function of j on the coarser

grids. Equality in (5.2.1) cannot be achieved on a uniform grid, thus we seek

h
(ℓ)
y,j

h
(ℓ)
x

→ sin(πyj) (5.2.2)

as the grid is coarsened. Near y = 1
2 , equality in (5.2.1) is achieved immediately since

sin(πyj) ≈ 1 and the aspect ratio
hy,j

hx
≈ 1 because of full coarsening in this region.

However, sin(πyj) → 0 as y → ε or y → 1 − ε, hence semi coarsening is required at

these regions on successive grids to ensure that the factor
h
(ℓ)
y,j

h
(ℓ)
x

is halved in size until it

is of the same order of magnitude as sin(πyj).

Figure 5-4 monitors the aspect ratio
h
(ℓ)
y,j

h
(ℓ)
x

obtained by our algorithm on progressively

coarser grids, with TF having a grid resolution of 400 × 200. The stars represent the

aspect ratio at each y-line, and it becomes clear that this ratio does indeed converge

to sin(πyj) as the grid is coarsened. After seven refinements, the stars are all very

close to the curve of sin(πyj) and this is still the case even when we zoom in to the

bottom right hand corner of the graph. Hence our new coarsening strategy yields an

isotropic problem on the coarser grids, which is a heuristic explanation of the optimal

convergence. We confirm this claim with numerical tests in the next section. Unfor-

tunately, we did not manage to turn these arguments into a rigorous proof yet but we

believe that this should be possible, perhaps using Fourier analysis as in Appendix A

but without uniform grids.

5.2.2 Numerical Experiments

The model problem (5.1.2) is solved with ε = 0 as in Section 5.1 using the standard

multigrid V-cycle as a stand-alone solver with the pointwise Gauss−Seidel smoother

combined with the conditional semi-coarsening described above. The coarsening factor

from grid level to grid level is about 3. The sequence of matrices Aℓ, ℓ = 1, . . . , F ,

corresponding to PDE (5.1.2) are all computed by finite volume discretisation on each

of the grids. We use linear interpolation and full weighting restriction to move between
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Figure 5-4: Aspect ratio
hy

hx
for (top left) zero, (top right) one, (bottom left) four

and (bottom right) seven refinements

grids. The right hand side is formed by multiplying AF with a random chosen exact

solution. We use the same machine as in Section 5.1, ie. a single 1.8GHz processor of a

Dual dual-core 64bit AMD Opteron 2210 (Cache size 1.0MB and 2GB memory) and the

Fortran95 compiler ifort. The initial guess is zero, with a relative residual reduction

of tol = 10−8 as the stopping criterion. The number of pre- and post-smoothing steps

used is ν1 = 3 and ν2 = 2, but we also test other values. We give the CPU times, the

numbers of iterations, Nits, required for convergence, and the (geometric) average of

the V-cycle convergence factor (excluding the first cycle), µavg.

Table 5.5 shows the results for this method. The setup time and solve times increase

linearly with the problem size and the number of iterations and the average convergence

factor remain constant, indicating that the multigrid method is robust with respect to

problem size, and performs optimally. It also outperformes line relaxation with full

coarsening (FCLR) as we can see from Table 5.2. We therefore treat this as the optimal

method to solve (5.1.2), and we call this method ‘non-uniform multigrid ’ (NUMG).

We conclude this section with the same tests as above, but using multigrid as a
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Problem size # Coarse grids Setup time (s) Solve time (s) Nits µavg

32x32 2 2.38E-3 3.67E-3 7 0.075
64x64 3 8.49E-3 1.35E-2 7 0.070
128x128 4 3.16E-2 6.17E-2 7 0.066
256x256 5 1.22E-1 2.44E-1 6 0.057
512x512 6 4.87E-1 1.10 6 0.057

Table 5.5: Model problem (5.1.2) solved using NUMG as a stand alone solver. CPU
time in seconds.

preconditioner to the CG method (with one V-cycle per iteration) for a direct com-

parison. The setup times are identical for the two methods, so only the solve times

are given, together with the number of iterations and the average convergence factor.

The results, shown in Table 5.6, indicate that the number of iterations, the average

convergence factor and the number of iterations are all near identical to using multigrid

as a stand alone solver.

Problem size # Coarse grids Solve time (s) Nits µavg

32x32 2 3.66E-3 7 0.074
64x64 3 1.42E-2 7 0.075

128x128 4 6.30E-2 7 0.076
256x256 5 2.66E-1 7 0.078
512x512 6 1.290 7 0.078

Table 5.6: Model problem (5.1.2) solved using NUMG as a preconditioner to the CG
method. CPU time in seconds.

5.3 Extensions to Three Dimensions

Let us now consider how the non-uniform multigrid method can be extended to opti-

mally solve 3D elliptic problems. We start again by studying a suitable model problem

on a cube:

−∂
2u

∂x2
− ∂

∂y

(
sin2(πy)

∂u

∂y

)
− Lz sin

2(πy)
∂2u

∂z2
= g on Ω , (5.3.1)

where Ω = (0, 1)× (ε, 1− ε)× (0, 1). A finite volume discretisation of (5.3.1), described

in detail in Section 3.2.1, gives the stencil

−Lz sin
2(πyj)

hxhy
hz




− sin2(πyj+ 1
2
)hxhz

hy

−hyhz

hx
−∑ −hyhz

hx

− sin2(πyj− 1
2
)hxhz

hy


− Lz sin

2(πyj)
hxhy
hz

.
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In section 5.3.1 we will solve (5.3.1) with Lz = 104, using a z-line smoother and uniform

full coarsening in the z-direction, with the conditional semi-coarsening strategy on the

x− y plane as before. We observe optimal convergence results using this approach, but

not so when Lz is decreased to, say Lz = 1, as we see in Section 5.3.2. In Section 5.3.3

we find that by not coarsening in the z-direction we retain optimal convergence even

for small Lz. This subsection is concluded in Section 5.3.4 which investigates whether

conditional semi-coarsening is really necessary on the x− y plane by comparing it with

full and semi-coarsening.

5.3.1 Dealing with the Additional Anisotropy in the z-Direction

Let us assume first that Lz = 104, which is a typical situation in meteorology, i.e. in a

very shallow 3D region, and is of a similar type to the Helmholtz equation from Section

2.1. In this case, in addition to the anisotropy on the x − y plane (which is exactly

the same as that of the 2D model problem (5.1.2)), a second source of anisotropy is

introduced in the z-direction. This is created by the large coefficient, Lz, and near

the region y = 0.5 in particular, where sin(πy) ≈ 1, this term is the main source of

anisotropy, i.e:

O (Lzh)




O(h)

O(h) −∑ O(h)

O(h)


O (Lzh).

where we have used a generic mesh width h because hx ≈ hy ≈ hz. Since Lz ≫ 1, the

off diagonal entries in the z-direction are very large in comparison to those in the x- and

y-directions, thus causing the large anisotropy. We deal with this by simply introducing

z–line relaxation, namely z–line Gauss–Seidel, and combine this with full-coarsening

in the z-direction. However, the further away from y = 0.5, the more prominent the

anisotropy on the x− y plane is, i.e.

O
(
Lz sin

2(πyj)h
)



O(sin2(πyj+ 1
2
)h)

O(h) −∑ O(h)

O(sin2(πyj+ 1
2
)h)


O

(
Lz sin

2(πyj)h
)
,

and we tackle this anisotropy with conditional semi-coarsening on the x−y plane. The

coarsening factor using this strategy is approximately 6. For numerical experiments,

we use the same settings as in the experiments in Sections 5.1 and 5.2, in particular

ν1 = 3 and ν2 = 2, but with a z-line Gauss–Seidel method as the coarse grid solver.

We also set ε = 0 as before. However, we can also use the CG method as we did in

Sections 5.1 and 5.2 for similar results. We see in Table 5.7 that this method leads
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to an extremely efficient method with a V-cycle convergence factor of between 10−7

and 10−8 in the first iteration. Hence convergence to the required tolerance of 10−8

can occur in one iteration, which is the case for the smaller problem sizes. Even for

the larger problem sizes, two iterations are sufficient, though the convergence factor

reduces to about 10−2 after the first iteration.

Problem size # Coarse grids Setup time (s) Solve time (s) Nits µavg

32x32x32 2 6.30E-2 4.34E-2 1 –
64x64x64 3 4.69E-1 4.63E-1 1 –

128x128x128 4 4.53 8.64 2 0.007
256x256x256 5 35.4 70.32 2 0.010

Table 5.7: Three dimensional model problem (5.3.1) with Lz = 104 solved using NUMG.
CPU time in seconds.

Note that, as discussed in Chapter 4, z-line relaxation on its own will be also very

effective as a solver if the direction of the strongest coupling does not change throughout

the domain. As y → ε and y → 1 − ε, the off-diagonal entry in the y-direction,

i.e. − sin2(πyj± 1
2
)hxhz

hy
, will decrease but the off-diagonal entry in the x-direction, i.e.

−hyhz

hx
, will be unchanged. The size of the off-diagonal entry in the z-direction, i.e.

−Lz sin(πyj)
hxhy

hz
, will also decrease near the y-boundaries. However, it must remain

larger than the coupling in the x-direction for z-line relaxation to be effective, and as

long as

Lz sin
2(πyj) > 1 (5.3.2)

holds at each node in the domain, the coupling in the z-direction will remain largest.

With Lz = 104, (5.3.2) will hold even at nodes closest to the y boundaries unless there

are over 150 grid points in the y-direction. Hence line relaxation as a stand alone solver

can also be expected to perform well for this problem for moderate problem sizes, and

the results given in Table 5.8 confirm that this is the case. For larger problem sizes,

however, it is clear that the performance of line relaxation deteriorates and NUMG

becomes far superior.

Recall though, that ν1 = 3 and ν2 = 2 and so one multigrid V-cycle uses five sweeps

of line relaxation. Comparing the times for problem size 64 × 64 × 64 in Tables 5.7

and 5.8, we see that the extra work on the coarse grids is insignificant and essentially

comes for free, and it is only the additional setup cost we have to take into account.

Therefore, we believe that it is always worth using multigrid.
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Problem size Total time (s) Nits
32x32x32 3.85E-2 4
64x64x64 8.63E-1 10

128x128x128 42.84 70
256x256x256 > 1000 621

Table 5.8: Three dimensional model problem (5.3.1) with Lz = 104 solved using z-line
relaxation. CPU time in seconds.

5.3.2 Reducing the Anisotropy in the z-Direction

Now consider (5.3.1) with 0 < Lz ≪ 104. This is effectively reducing the strong

coupling in the z-direction, which results in anisotropies that are similar to those in

the Quasi-Geostrophic Omega equation from Section 2.2. We investigate the effect of

this reduced anisotropy on the efficiency of NUMG, and these tests are of importance

because it is necessary for the method to be robust ∀Lz ∈ (0, 104]. We have seen in

Chapter 2 that problems of these types are of great importance at the Met Office.

Table 5.9 shows that the method becomes less robust to problem size the smaller

the value of Lz. As Lz is decreased, the number of iterations rises with respect to

problem size, and for Lz = 1, more than 300 iterations are required. Hence NUMG is

not fully robust in this form and we need to further adapt it.

Lz = 104 Lz = 102 Lz = 1
Problem size Nits Total time Nits Total time Nits Total time
32x32x32 1 8.64E-2 2 1.64E-1 11 5.45E-1
64x64x64 1 9.32E-1 3 1.91 32 12.1

128x128x128 2 13.2 5 23.7 97 386
256x256x256 2 106 7 227 302 > 1000

Table 5.9: NUMG used to solve (5.3.1) for varying strengths of the vertical anisotropy.
CPU time in seconds.

The reason why the performance degrades for smaller values of Lz is because as

we decrease Lz, the off-diagonal entries in the z-direction also decrease, so they are no

longer dominated by Lz but by sin(πy):

O
(
sin2(πyj)h

)



O(sin2(πyj+ 1
2
)h)

O(h) −∑ O(h)

O(sin2(πyj+ 1
2
)h)


O

(
sin2(πyj)h

)
.

As Lz → 1, (5.3.2) will hold at fewer and fewer grid points, particularly near the y

boundaries, and so at these points the z off-diagonal entry will be smaller than the x
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off-diagonal entry, making z-line relaxation alone unable to cope with the anisotropy.

By reducing Lz we are effectively creating a problem where the direction of anisotropy

changes as one moves along the y-axis. When Lz = 1, (5.3.2) doesn’t hold anywhere

in the domain, causing line relaxation to be ineffective. Therefore, NUMG needs to be

suitably adapted to be able to deal with any uncertainties in the direction of the strong

coupling caused by the size of Lz.

5.3.3 Line Relaxation and No Coarsening in z

We established in Section 5.1.1 for the 2D model problem (5.1.2) that line relaxation

with full coarsening was very efficient provided that the direction of strong coupling

didn’t change. However, if the direction of strong anisotropy was unknown, then it

was necessary to combine line relaxation in one direction with semi coarsening in the

other. This is exactly the situation we find ourselves in for problem (5.3.1), where the

direction of the strong coupling switches between x and z. Hence the best remedy to

improve the performance of NUMG for this problem is to construct the coarse grids

without coarsening in the z-direction, ie. we impose line relaxation with no coarsening

in the z-direction. In the x− y plane we use again conditional semi-coarsening to deal

with the additional anisotropy caused by the coefficient variation, i.e. by sin2(πy).

This would then be expected to deal with the anisotropy that switches between the x-

and z-directions to produce an optimal solver. In fact the theory in Section 5.4.2 shows

that this is indeed the case.

Intuitively this strategy makes sense, because by not coarsening in z, the z off-

diagonal entries on the coarse grids will become relatively larger than the x and y off

diagonal entries. Hence (5.3.2) will hold at a larger percentage of grid points on each

successively coarser grid which will make z-line relaxation more effective.

The obvious drawback to this method is that the coarsening factor will be reduced

to approximately 3, so more work is required on the coarse grids. However, this is

hardly a compromise if robustness with respect to problem size is achieved for each of

the values of Lz and thus the number of iterations is largely reduced. The results from

Table 5.10 – the key results from this section – confirm that the method is robust with

respect to problem size for each of the tested values of Lz, unlike the method tested in

Table 5.9. Thus by not coarsening in the z-direction, the NUMG method with z-line

relaxation and conditional semi-coarsening on the x− y plane optimally solves (5.3.1)

for any value of Lz > 0.
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Lz = 104 Lz = 102 Lz = 1

Problem size Nits Total time Nits Total time Nits Total time

32x32x32 1 1.13E-1 3 0.26 8 4.23E-1
64x64x64 2 1.41 4 2.89 9 4.37

128x128x128 3 15.19 5 23.6 10 39.9
256x256x256 3 126 5 189 10 326

Table 5.10: NUMG with conditional semi-coarsening on the x− y plane, z-line relax-
ation and no vertical coarsening applied to (5.3.1). CPU time in seconds. The method
is optimal for all values of Lz > 0.

5.3.4 Comparison with Full Coarsening and Semi Coarsening

To confirm the importance of conditional semi-coarsening in the x − y plane, we con-

clude this section with tests for solving (5.3.1) using multigrid with line relaxation and

no coarsening in the z-direction in conjunction with full or semi coarsening on the x–y

plane. We use all the same settings as for the tests in Section 5.3.3 but without using

conditional semi-coarsening. The purpose of this test is to determine whether condi-

tional semi-coarsening is really necessary for optimally solving (5.3.1) for all Lz > 0.

The results, when using full coarsening, are given in Table 5.11 for the same values of Lz

as before, so that the performance of the method is measured for different anisotropies.

We compare the results with those in Table 5.10.

Lz = 104 Lz = 102 Lz = 1
Problem size Nits Total time Nits Total time Nits Total time
32x32x32 1 9.88E-2 8 4.90E-1 27 1.25
64x64x64 2 1.23 30 15.18 80 36.4

128x128x128 11 48.81 92 376 – –
256x256x256 48 > 1000 – – – –

Table 5.11: Solving (5.3.1) using NUMG with z-line relaxation, no vertical coarsening
and full coarsening on the x–y plane. CPU time in seconds.

The results can be interpreted as follows. When Lz = 104, we have seen in Section

5.3.1 that z-line relaxation is effective even as a stand alone solver. When combined with

full coarsening the results are improved further, but the method is clearly not optimal

since the number of iterations grows with problem size. Therefore it is clear that the

additional anisotropy on the x-y plane is not handled effectively by full coarsening,

which we have already demonstrated when using FCPR to solve (5.1.2) in Section 5.1.

For smaller values of Lz, the method becomes less optimal, and a large number of

iterations are required to solve even the smaller problem sizes. This is because z-line



CHAPTER 5. NON-UNIFORM MULTIGRID 122

relaxation is less effective as a result of the direction of the strongest coupling changing

as one moves up the y-axis, confirming the need for semi-coarsening.

However, when using semi-coarsening everywhere on the x–y plane (i.e. coarsening

only in the x-direction) similar results are produced, see Table 5.12. Compared with

Table 5.11, the performances are not quite as poor, because SCPR is more efficient

than FCPR when solving (5.1.2) on the x-y plane, as demonstrated in Section 5.1.

However, the method is nevertheless suboptimal for Lz ≪ 104, and is clearly inferior

to the conditional semi-coarsening method from Section 5.3.3. Hence it is evident from

the results in this section that z-line relaxation must be combined with conditional

semi-coarsening on the x–y plane in order to optimally solve (5.3.1) for all Lz > 0.

Lz = 104 Lz = 102 Lz = 1
Problem size Nits Total time Nits Total time Nits Total time
32x32x32 1 1.15E-1 3 3.11E-1 13 6.55E-1
64x64x64 2 1.51 5 3.40 33 17.88

128x128x128 3 15.40 8 38.92 101 416
256x256x256 3 135 11 381 – –

Table 5.12: Solving (5.3.1) using NUMG with z-line relaxation, no vertical coarsening
and coarsening only in the x-direction. CPU time in seconds.

5.4 Convergence Theory Using a Tensor Product Approach

Let us start again by looking at a general 2D problem. In this section we prove that,

when combining line relaxation in one direction with semi coarsening in the other (i.e.

SCLR), the convergence rates of the multigrid V-cycle applied to 2D elliptic problems

on tensor product grids are bounded independently of the problem size and any existing

grid-aligned anisotropies in the coefficients. This includes the degenerate cases where

the operator features a singular perturbation in one coordinate direction. Given the

convenient feature of the anisotropy being aligned with the coordinate directions, the

construction of a robust multigrid method is greatly facilitated. Such a multigrid

method that relies on the grid alignment of the anisotropy will be referred to in this

section as tensor product multigrid. The analysis in this section follows the work of

Börm and Hiptmair [14] (see also [13, §2]). We extend their theory to prove robustness

of the method also in 3D when combining z-line relaxation with no coarsening in the

z-direction.

Problems (5.1.2) and (5.3.1) are exactly the type of problems amenable to tensor

product multigrid analysis. For theoretical purposes they will be discretised here using

bilinear and trilinear finite elements, respectively (cf. Section 3.3.1). As we have seen



CHAPTER 5. NON-UNIFORM MULTIGRID 123

in Section 3.3.2, these are directly linked also to the finite volume scheme by using

particular quadrature formulas. Hence the convergence theory covered in this section

will also be applicable to a finite volume discretisation of (5.1.2) and (5.3.1).

Taking the idea from classical Fourier analysis [44] of multigrid, eigenspace tech-

niques are employed to separate the coordinate directions, such that the 2D problem is

reduced to a family of problems in subspaces involving only one coordinate direction.

Thus, when employing line relaxation in one coordinate direction with semi coarsen-

ing in the other, the comparatively simple one-dimensional (1D) multigrid analysis of

Braess and Hackbusch [16] translates directly into results for the 2D problem. In our

extension of the theory to 3D, we use similar techniques to reduce the 3D problem to

a family of problems in subspaces involving two coordinate directions only.

In Section 5.4.1 we recall the theory from [14] to prove the robustness of the multi-

grid method using SCLR applied to the 2D problem (5.1.2). Then in Section 5.4.2,

we extend the theory to 3D and prove that the multigrid V-cycle is robust for solv-

ing (5.3.1) when combining z-line relaxation with no coarsening in the z-direction and

conditional semi-coarsening on the x− y plane.

5.4.1 Convergence Theory for NUMG in Two Dimensions

Recall problem (5.1.1) which is

−∇ · (K(x, y)∇u) = g on Ω = Ωx × Ωy, (5.4.1)

with

K(x, y) =

[
α1(x, y) 0

0 α2(x, y)

]
,

for separable functions α1 and α2 and where Ωx = (cx, dx) and Ωy = (cy, dy) for some

constants cx, dx, cy , dy ∈ R. As in Section 3.3.1, we write (5.4.1) in weak form as follows:

Find u ∈ H1
0 (Ω) such that

a(u, v) = (g, v)L2(Ω) ∀v ∈ H1
0 (Ω), (5.4.2)

where

a(u, v) =

∫

Ω
∇v · (K∇u) dxdy and (g, v)L2(Ω) =

∫

Ω
gv dxdy .

Thanks to the grid aligned anisotropy we have K12 ≡ K21 ≡ 0, and so a(·, ·) can be

decomposed into two bilinear forms a1(·, ·) and a2(·, ·) as follows

a(u, v) = a1(u, v) + a2(u, v),
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where a1(·, ·) and a2(·, ·) are given by

a1(u, v) =

∫

Ω
α1(x, y)

∂

∂x
u(x, y)

∂

∂x
v(x, y) dxdy,

a2(u, v) =

∫

Ω
α2(x, y)

∂

∂y
u(x, y)

∂

∂y
v(x, y) dxdy.

Now we formulate an approximate weak form by firstly decomposing Ω into a mesh of

rectangular elements, and then choosing a finite dimensional space Vh ⊂ H1
0 (Ω) on this

mesh. Noting that the bilinear forms a1(·, ·) and a2(·, ·) correspond to the derivatives

in the x- and y-directions respectively, we introduce continuous, piecewise linear finite

element spaces V x ⊂ H1
0 (Ωx) and V

y ⊂ H1
0 (Ωy), and suitable nodal basis functions for

each finite element space. Then the finite element space Vh is defined as

Vh = V x ⊗ V y,

where V x ⊗ V y = span{u(x)v(y) : u ∈ V x, v ∈ V y}. The basis of Vh will be the set

of products of any two basis functions of V x and V y.

Recalling that α1(x, y) = α1
1(x)α

2
1(y) and α2(x, y) = α1

2(x)α
2
2(y), for functions

uh = ux ⊗ uy ∈ Vh and vh = vx ⊗ vy ∈ Vh with ux, vx ∈ V x and uy, vy ∈ V y, we have

a(ux ⊗ uy, vx ⊗ vy) = a1(u
x ⊗ uy, vx ⊗ vy) + a2(u

x ⊗ uy, vx ⊗ vy)

= ax(u
x, vx) by(u

y, vy) + bx(u
x, vx) ay(u

y, vy) , (5.4.3)

where

ax(ux, vx) =

∫

Ωx

α1
1(x)

∂

∂x
ux(x)

∂

∂x
vx(x) dx ,

ay(uy, vy) =

∫

Ωy

α2
2(y)

∂

∂y
uy(y)

∂

∂y
vy(y) dy ,

bx(ux, vx) =

∫

Ωx

α1
2(x)u

x(x)vx(x) dx ,

by(uy, vy) =

∫

Ωy

α2
1(y)u

y(y)vy(y) dy .

Using the definition of the Kronecker product, ⊗, given in (3.3.22), and the bases for

V x and V y, the bilinear form (5.4.3) can be written in matrix notation as

Ah = Ax ⊗By +Bx ⊗Ay , (5.4.4)

where Ah ∈ R
n×n is the symmetric positive definite (SPD) stiffness matrix correspond-
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ing to a(·, ·) with respect to Vh, with nx = dim V x, ny = dim V y and n = nx×ny = dim

Vh. Similarly, Ax ∈ R
nx×nx and Ay ∈ R

ny×ny are the stiffness matrices corresponding

to ax and ay, respectively, and B
x ∈ R

nx×nx and By ∈ R
ny×ny are the mass matrices

corresponding to bx and by, respectively. These are also SPD matrices. Finally bh ∈ R
n

is the load vector of the right-hand-side of (5.4.2) and the resulting system of linear

equations is written as

Ahuh = bh , (5.4.5)

which corresponds to the Galerkin discretisation of (5.1.2) by means of bilinear finite

elements.

Tensor Product Multigrid

The key idea of tensor product multigrid is to split Vh into a number of Ay-orthogonal

subspaces on which it is possible to reduce the two-dimensional problem to problems

involving only the bilinear forms ax and bx. The Ay-orthogonality of the subspaces

relies on two basic properties:

Semi coarsening: We only coarsen in the x-direction, thus picking a nested sequence

of finite element spaces

V x
1 ⊂ V x

2 ⊂ · · · ⊂ V x
F = V x

and the space Vℓ := V x
ℓ ⊗ V y is used to discretise problem (5.1.2) on level ℓ,

ℓ = 1, . . . , F , where V y does not change from level to level.

Line relaxation: All the degrees of freedom located at grid points with the same

x-coordinate are relaxed together, i.e. y-line relaxation is used. The relaxation

occurs in the subspaces span{φℓi ⊗ uy : uy ∈ V y}, i = 1, . . . , nℓx where {φℓi}
nℓ
x

i=1 is

the set of nodal basis functions of V x
ℓ , ℓ = 1, . . . , F and nℓx = dim V x

ℓ .

The complete proof of the convergence rate of the multigrid method using line re-

laxation in one direction and semi coarsening in the other will be given later in this

section.

Let us first define the operators required for multigrid methods in a tensor product

setting. It is known that the vector space R
n and the finite element space Vh are

isomorphic. Thus, as in the proof of the approximation property (given in Appendix

C), we define a bijective mapping from a vector uℓ ∈ R
nℓ

(where nℓ = nℓx×ny = dim Vℓ)

to a function uℓ ∈ Vℓ via the operator pℓ : R
nℓ → Vℓ such that

uℓ = pℓuℓ ,
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with the adjoint mapping from uℓ to uℓ as rℓ = pTℓ such that

< rℓuℓ,uℓ >= (uℓ, pℓuℓ)L2(Ω) ,

where < ·, · > is the scalar product of vectors, i.e.

< a,b >=
nℓ∑

i=1

a(i)b(i) .

Using pℓ, we define the canonical interpolation operator Pℓ : R
nℓ−1 → R

nℓ
, by

Pℓ = p−1ℓ pℓ−1

for ℓ = 2, . . . , F . The canonical restriction operator, Rℓ : Rnℓ → R
nℓ−1

, is defined as

the adjoint of Pℓ, i.e. Rℓ = P T
ℓ such that

< Pℓuℓ−1,wℓ >=< uℓ−1, Rℓwℓ > .

Now, thanks to semi-coarsening, the global transfer matrices Rℓ and Pℓ between R
nℓ

and R
nℓ−1

can be written as

Pℓ = P x
ℓ ⊗ P y = P x

ℓ ⊗ I ∈ R
nℓ
xny×nℓ−1

x ny ,

Rℓ = Rx
ℓ ⊗Ry = Rx

ℓ ⊗ I ∈ R
nℓ−1
x ny×nℓ

xny ,

where the matrices P x
ℓ and Rx

ℓ are transfer operators between R
nℓ
x and R

nℓ−1
x , and we

have P y = Ry = I, thanks to not coarsening in the y-direction.

In addition to semi-coarsening, we use y-line relaxation, where we recall from Sec-

tion 4.2 that relaxation methods are written as iterations of the following general form

u
(new)
ℓ = u

(old)
ℓ −W−1ℓ

(
Aℓu

(old)
ℓ − bℓ

)
, (5.4.6)

whereWℓ ∈ R
nℓ×nℓ

approximates Aℓ. For a block-Jacobi smoother, damped by θ ∈ R
+,

it is shown in [14] that

Wℓ =WAx

ℓ ⊗By +WBx

ℓ ⊗Ay , (5.4.7)

where WBx

ℓ and WAx

ℓ are the diagonals of Bx
ℓ and Ax

ℓ , multiplied by θ, respectively.

Similarly, a block Gauss–Seidel smoother can be cast in the form (5.4.7).
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Using the following tensor product rules

(C ⊗D)(x⊗ y) = (Cx)⊗ (Dy) for matrices C, D and vectors x, y, (5.4.8)

< α⊗ β,γ ⊗ δ > =< α,γ >< β, δ > for vectors α, β, γ and δ, (5.4.9)

it can easily be seen, e.g. in [14], that for any ux
ℓ ,v

x
ℓ ∈ R

nℓ
x and uy,vy ∈ R

ny we have

< Wℓ(u
x
ℓ ⊗ uy),vx

ℓ ⊗ vy >

=< WAx

ℓ ux
ℓ ,v

x
ℓ >< Byuy,vy > + < WBx

ℓ ux
ℓ ,v

x
ℓ >< Ayuy,vy > ,

which shows (5.4.7), as required. Note that, for a block-Jacobi smoother, Wℓ corre-

sponds to the diagonal blocks of Aℓ multiplied by θ.

Now we aim to use a block-diagonalisation procedure to accomplish a separation of

coordinate directions, which will reduce the 2D problem into a problem involving only

the matrices Ax
ℓ , W

Bx

ℓ and WAx

ℓ . This is done by considering Ay-orthogonal subspaces

induced by tensor products of

• eigenvectors {eyj}
ny

j=1 of Ay, and

• arbitrary x-components.

Let the vectors {eyj}
ny

j=1 be a basis of Rny which form a By-orthonormal generalized

eigenbasis of (Ay, By), i.e.

Ayeyj = ωjB
yeyj

< Byeyj , e
y
k >= δjk

}
. (5.4.10)

Such a basis exists since Ay and By are both SPD. Here, {ωj}ny

j=1 are the strictly

positive eigenvalues for the pair (Ay, By), a consequence of Ay and By being positive

definite. If (5.4.10) holds, then we also have

< Ayeyj , e
y
k >= ωjδjk . (5.4.11)

so the vectors {eyj}n
y

j=1 are also Ay-orthogonal. Using this Ay-orthogonality of the

eigenvectors, and the two tensor product rules (5.4.8) and (5.4.9), we deduce that for

all j, k = 1, . . . , ny and for all ux
ℓ ,v

x
ℓ ∈ R

nℓ
x ,

< ux
ℓ ⊗ eyk, Aℓ(v

x
ℓ ⊗ eyj ) >

=< ux
ℓ ⊗ eyk, (A

x
ℓ ⊗By)(vx ⊗ eyj ) + (Bx

ℓ ⊗Ay)(vx
ℓ ⊗ eyj ) > (by definition of Aℓ)

=< ux
ℓ , A

x
ℓv

x
ℓ >< eyk, B

yeyj > + < ux
ℓ , B

x
ℓ v

x
ℓ >< eyk, A

yeyj > (by (5.4.8), (5.4.9))

= δj,k < ux
ℓ , (A

x
ℓ + ωjB

x
ℓ )v

x
ℓ > (by (5.4.10), (5.4.11)) , (5.4.12)
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for ux
ℓ , v

x
ℓ ∈ R

nℓ
x , and similarly

< ux
ℓ ⊗ eyk,Wℓ(v

x
ℓ ⊗ eyj ) >= δjk < ux

ℓ , (W
Ax

ℓ + ωjW
Bx

ℓ )vx
ℓ > .

Now we define

Ax
ℓ,ω = ωBx

ℓ +Ax
ℓ ,

W x
ℓ,ω = ωWBx

ℓ +WAx

ℓ .

and for j = 1, . . . , ny, we define matrices Q
(j)
ℓ ∈ R

(nℓ
xny)×nℓ

x by

Q
(j)
ℓ ux

ℓ = ux
ℓ ⊗ eyj .

for all ux
ℓ ∈ R

nℓ
x. Then the matrix Qℓ = (Q

(j)
ℓ )

ny

j=1 ∈ R
(nℓ

xny)×(nℓ
xny), ie.

Qℓ =




...
...

...

Q
(1)
ℓ Q

(2)
ℓ · · · Q

(ny)
ℓ

...
...

...


 ,

is an orthogonal matrix and the following is a similarity transformation that transforms

Aℓ into a blockdiagonal matrix Âℓ, i.e.

Âℓ = QT
ℓ AℓQℓ =

ny∑

j=1

ny∑

k=1

Q
(k)T
ℓ AℓQ

(j)
ℓ .

This block diagonalisation procedure is the key step in the analysis, explained as follows:

Let ux
ℓ and uy be random vectors in R

nℓ
x and R

ny respectively. Then because

{eyj}
ny

j=1 is an eigenbasis of Rny we can write

ux
ℓ ⊗ uy =

ny∑

j=1

αju
x
ℓ ⊗ eyj =

ny∑

j=1

αjQ
(j)
ℓ ux

ℓ ,

for some αj ∈ R, j = 1, . . . , ny. Now, for all j, k = 1, . . . , ny we have

αjαk < ux
ℓ , Q

(k)T
ℓ AℓQ

(j)
ℓ ux

ℓ > = αjαk < ux
ℓ ⊗ eyk, Aℓ(u

x
ℓ ⊗ eyj ) >

= αjαkδj,k < ux
ℓ , A

x
ℓ,ωj

ux
ℓ >
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by the calculations in (5.4.12). Hence Q
(k)T
ℓ AℓQ

(j)
ℓ = δj,kA

x
ℓ,ωj

and so Âℓ is defined by

Âℓ = QT
ℓ AℓQℓ = blockdiag

{
Ax

ℓ,ωj
: j = 1, . . . , ny

}
.

Similarly Qℓ transforms Wℓ into a blockdiagonal matrix Ŵℓ:

Ŵℓ = QT
ℓ WℓQℓ = blockdiag

{
W x

ℓ,ωj
: j = 1, . . . , ny

}
.

For the transfer operator Pℓ, we deduce that:

< ux
ℓ ⊗ eyk, Pℓ(v

x
ℓ−1 ⊗ eyj ) >

=< ux
ℓ ⊗ eyk, (P

x
ℓ ⊗ I)(vx

ℓ−1 ⊗ eyj ) > (by definition of Pℓ)

=< ux
ℓ ⊗ eyk, Pℓv

x
ℓ−1 ⊗ Ieyj > (by (5.4.8))

=< ux
ℓ , P

x
ℓ v

x
ℓ−1 > < eyk, e

y
j >︸ ︷︷ ︸

δj,k

(by (5.4.9))

for ux
ℓ ∈ R

nℓ
x and vx

ℓ−1 ∈ R
nℓ−1
x . Thus

< ux
ℓ , Q

T
ℓ,kPℓQℓ−1,jv

x
ℓ−1 > =< ux

ℓ ⊗ eyk, Pℓ(v
x
ℓ−1 ⊗ eyj ) >

= δj,k < ux
ℓ , P

x
ℓ v

x
ℓ−1 >,

and we obtain the following block-diagonalisation using the matrix Qℓ:

P̂ℓ = QT
ℓ PℓQℓ−1 = blockdiag {P x

ℓ : j = 1, . . . , ny} ,

Note that without semi-coarsening, it would not have been possible to transform Pℓ

into a blockdiagonal matrix.

Similarly,

R̂ℓ = QT
ℓ−1RℓQℓ = blockdiag {Rx

ℓ : j = 1, . . . , ny} .

Thus we observe that the similarity transformations using Qℓ have reduced the oper-

ators in the 2D problem to a family of operators for a simpler 1D problem on each of

the ay(·, ·)-orthogonal subspaces.

Convergence Theory

Thanks to the Galerkin discretisation we have used, problem (5.4.5) is sparse and

symmetric positive definite (SPD). For such problems it is possible to resort to the

classical multigrid convergence theory of Hackbusch [44, Chapter 7]. We recall Theorem
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4.6.10, the convergence of the multigrid V-cycle (c.f. [44, Theorem 7.2.5]):

Theorem 5.4.1. Let AF be SPD and assume that

1. Wℓ =W T
ℓ > 0 for all ℓ = 1, . . . , F . (ie. the smoother is symmetric)

2. Aℓ ≤Wℓ for all ℓ = 1, . . . , F . (ie. the smoothing property holds)

3. There exists a constant CA > 0 independent of ℓ ∈ {2, . . . , F} such that

0 ≤ A−1ℓ − PℓA
−1
ℓ−1Rℓ ≤ CAW

−1
ℓ .

(ie. the approximation property holds)

Then the iteration matrix of the multigrid V-cycle, MV
F (see Lemma 4.6.9), satisfies

‖MV
F ‖AF

≤ CA

CA + ν
,

where ν is the total number of smoothing steps.

Assumption 1 is automatically satisfied for both the line Jacobi and symmetric line

Gauss–Seidel smoothers. Now in order to prove the smoothing property (SP) and the

approximation property (AP), we use the block-diagonalisation procedure described

above to reduce the analysis of the 2D problem to the analysis of simpler 1D problems.

We do this by applying the matrices Qℓ from the right and QT
ℓ from the left to the

inequalities in the SP and AP. This similarity transformation using Qℓ yields equiva-

lent inequalities since Qℓ is orthogonal and therefore non-singular. The transformed

inequalities feature block-diagonal matrices, and so the SP and AP from Theorem 5.4.1

can be investigated for each diagonal block separately.

In detail, for the SP, applying the similarity transformation gives

Aℓ ≤Wℓ ⇔ QT
ℓ AℓQℓ ≤ QT

ℓ WℓQℓ (since Qℓ is non-singular)

⇔ Âℓ ≤ Ŵℓ

⇔ Aℓ,ωj
≤Wℓ,ωj

∀j = 1, · · · , ny , (5.4.13)

and for the AP, we have

0 ≤ A−1ℓ − PℓA
−1
ℓ−1Rℓ ≤ CAW

−1
ℓ

⇔ QT
ℓ A
−1
ℓ Q−Tℓ −QT

ℓ PℓQℓ−1Q
−1
ℓ−1A

−1
ℓ−1Q

−T
ℓ−1Q

T
ℓ−1RℓQℓ ≤ CAQ

T
ℓ W

−1
ℓ Q−Tℓ

⇔ Â−1ℓ − P̂ℓÂ
−1
ℓ−1R̂ℓ ≤ CAŴ

−1
ℓ

⇔ A−1ℓ,ωj
− Pℓ,ωj

A−1ℓ−1,ωj
Rℓ,ωj

≤ CAW
−1
ℓ,ωj

∀j = 1, · · · , ny. (5.4.14)
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Thus, thanks to the block-diagonalisation procedure accomplished by y-line relaxation,

coarsening only in the x-direction and the use of invariant subspaces induced by a

tensor product of the eigenvectors of Ay and arbitrary x-components, the SP and AP

need only be investigated for diagonal blocks corresponding to each of the subspaces.

Using these diagonal blocks, the main theorem for the convergence of the multigrid

V-cycle using tensor product multigrid is given as follows:

Theorem 5.4.2. For all j = 1, . . . , ny, suppose that there exists a constant CA > 0

such that

Ax
ℓ,ωj

≤W x
ℓ,ωj

ℓ = 1, . . . , F (5.4.15)

0 ≤ (Ax
ℓ,ωj

)−1 − P x
ℓ (A

x
ℓ−1,ωj

)−1Rx
ℓ ≤ CA(W

x
ℓ,ωj

)−1 ℓ = 2, . . . , F (5.4.16)

hold. Then the iteration matrix of the multigrid V-cycle, based on a y-line smoother

and coarsening in only the x-direction satisfies

‖MV
F ‖AF

≤ CA

CA + ν
,

where ν is the total number of smoothing steps.

The proof of this theorem relies on the fact that (5.4.15) and (5.4.16) are equivalent

to the inequalities of the SP and AP from Theorem 5.4.1, when using y-line relaxation

and coarsening in x only. Therefore, showing that (5.4.15) and (5.4.16) are satisfied

means the SP and AP from Theorem 5.4.1 are also satisfied, and since AF is SPD we

can deduce from Theorem 5.4.1 that the 2D V-cycle will converge independently of

problem size.

We can prove the assumptions (5.4.15) and (5.4.16) of Theorem 5.4.2 by resorting

to the theory given in Section 4.6. Recall that ωj ≥ 0, which implies Ax
ℓ,ωj

andW x
ℓ,ωj

are

SPD matrices. Therefore Lemmas 4.6.4 and 4.6.6 show that (5.4.15) and (5.4.16) hold

because (4.6.13) is satisfied for any symmetric smoothing iteration and the regularity

assumption is satisfied for the family of 1D problems used in Theorem 5.4.2.

Finally we can apply Theorem 5.4.2 to the particular case we have been studying

in this chapter, i.e. α1 = 1, α2 = sin2(πy) and Ω = (0, 1) × (ε, 1 − ε) for 0 < ε ≪ 1.

The coefficients degenerate towards the boundary in the y-direction, but by using y-

line relaxation and x-semi coarsening, the problem is reduced to a family of simple

1D Poisson-type problems in the x-direction which have no anisotropy. Hence the SP

(5.4.15) and AP (5.4.16) will hold for these problems and Theorem 5.4.2 can be applied.
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5.4.2 Convergence Theory for NUMG in Three Dimensions

In this section, we extend the theory from Section 5.4.1 (cf. [14]) to prove the robustness

of the NUMGmethod in 3D for solving (5.3.1) when combining z-line relaxation with no

z-coarsening. We resort to the eigenspace techniques used in Section 5.4.1 to separate

the z-coordinate from the x- and y-coordinates and to reduce the 3D problem to a

family of 2D problems on the x − y plane only. We have already shown heuristically

in Section 5.2 that the convergence rate of NUMG when solving these 2D problems is

bounded independently of the problem size. As in Section 5.4.1, we resort to a finite

element setting and use suitable quadrature rules to infer the results for the finite

volume settings used otherwise in this thesis.

Let us first recall from problem (5.3.1) the type of equation we wish to solve using

NUMG, namely

−∇ · (K(x, y, z)∇u) = g on Ω = Ωxy ×Ωz ,

with

K(x, y, z) =



α1(x, y, z) 0 0

0 α2(x, y, z) 0

0 0 α3(x, y, z)


 ,

for separable functions α1, α2 and α3, i.e. α1(x, y, z) = α1
1(x)α

2
1(y)α

3
1(z) etc, and

where Ωxy = (cx, dx) × (cy, dy) and Ωz = (cz, dz). The only additional condition that

this general PDE must satisfy is that α3
1(z) = α3

2(z) =: α3(z), i.e. the coefficients α1

and α2 have the same z-dependency. In order to solve (5.3.1) we write the PDE in

weak form and then approximate the weak form, as done in Sections 3.3.1 and 5.4.1,

by trilinear finite elements. The weak form of (5.3.1) is:

Find u ∈ H1
0 (Ω) such that

a(u, v) = (g, v)L2(Ω) ∀v ∈ H1
0 (Ω), (5.4.17)

where

a(u, v) =

∫

Ω
∇v · (K∇u) dxdydz and (g, v)L2(Ω) =

∫

Ω
gv dxdydz .

Matrix K is diagonal thanks to the grid aligned anisotropy, meaning that a(·, ·) can be

decomposed into two bilinear forms a1(·, ·) and a2(·, ·) as in Section 5.4.1 as follows

a(u, v) = a1(u, v) + a2(u, v),
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where a1(·, ·) and a2(·, ·) are given by

a1(u, v) =

∫

Ω
K̂(x, y, z)∇xyu(x, y, z) · ∇xyv(x, y, z) dxdydz,

a2(u, v) =

∫

Ω
α3(x, y, z)

∂

∂z
u(x, y, z)

∂

∂z
v(x, y, z) dxdydz,

where K̂ = K(1:2,1:2) and ∇xy is the 2D gradient ∂
∂xe1 +

∂
∂ye2 on the x − y plane

(with e1 and e2 denoting the unit vectors in the x- and y-directions respectively). Now

we approximate the weak form by firstly decomposing Ω into a mesh of cubes and

choosing a finite element space Vh ⊂ H1
0 (Ω) on this mesh. We introduce a piecewise

bilinear finite element space V xy ⊂ H1
0 (Ωxy) as in Section 5.4.1, as well as a continuous

piecewise linear finite element space V z ⊂ H1
0 (Ωz), with suitable piecewise (bi-)linear

model basis functions for each of the spaces. Then we define Vh as

Vh = V xy ⊗ V z,

where V xy ⊗ V z = span{u(x, y)v(z) : u ∈ V xy, v ∈ V z}. We define the nodal basis

functions of Vh as the set of products of any two basis functions of V xy and V z.

For functions uh = uxy ⊗ uz ∈ Vh and vh = vxy ⊗ vz ∈ Vh with uxy, vxy ∈ V xy and

uz, vz ∈ V z, we have

a1(u
xy ⊗ uz, vxy ⊗ vz)

=

∫

Ω

([
α1
1(x)α

2
1(y)α

3
1(z) 0

0 α1
2(x)α

2
2(y)α

3
2(z)

][
∂
∂xu

xy

∂
∂yu

xy

])
·
[

∂
∂xv

xy

∂
∂yv

xy

]
uzvz dxdydz

=

∫

Ω

(
α1
1(x)α

2
1(y)α

3
1(z)

∂

∂x
uxy

∂

∂x
vxy + α1

2(x)α
2
2(y)α

3
2(z)

∂

∂y
uxy

∂

∂y
vxy
)
uzvz dxdydz

=

∫

Ωxy

[
α1
1(x)α

2
1(y) 0

0 α1
2(x)α

2
2(y)

]
∇xyu

xy · ∇xyv
xy dxdy

︸ ︷︷ ︸
axy(uxy,vxy)

∫

Ωz

α3(z)uzvz dz

︸ ︷︷ ︸
bz(uz ,vz)

.

where the separation of coordinate directions in the last line was possible because

α3
1(z) = α3

2(z). Similarly,

a2(u
xy ⊗ uz, vxy ⊗ vz)

=

∫

Ωxy

α1
3(x)α

2
3(y)u

xyvxy dxdy

︸ ︷︷ ︸
bxy(uxy ,vxy)

∫

Ωz

α3
3(z)

∂

∂z
uz

∂

∂z
vz dz

︸ ︷︷ ︸
az(uz ,vz)

.
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Using the bases for V xy and V z, the approximate weak form can be written in matrix

notation as

Ah = Axy ⊗Bz +Bxy ⊗Az ,

where Ah ∈ R
n×n is the SPD stiffness matrix for a(·, ·) with respect to Vh, with nxy =

dim V xy, nz = dim V z and n = nxy × nz = dim Vh. Axy ∈ R
nxy×nxy and Az ∈

R
nz×nz are the stiffness matrices for axy and az respectively, whilst Bxy ∈ R

nxy×nxy

and Bz ∈ R
nz×nz are the mass matrices for bxy and bz respectively. Finally bh ∈ R

n is

the Galerkin vector of the right-hand-side of (5.4.17) and the resulting system of linear

equations is written as

Ahuh = bh ,

which corresponds to a discretisation of (5.3.1) by means of trilinear finite elements.

Now, as in Section 5.4.1, we use a block diagonalisation procedure to split Vh into

a number of subspaces that are Az-orthogonal, and this relies on the two properties

used by the 3D NUMG method:

No coarsening in the z-direction: Coarsening only occurs on the x–y plane, thus

we pick a nested sequence of finite element spaces

V xy
1 ⊂ V xy

2 ⊂ · · · ⊂ V xy
F = V xy

and the space Vℓ := V xy
ℓ ⊗ V z is used to discretise problem (5.3.1) on level ℓ,

ℓ = 1, . . . , F , where V z does not change from level to level.

z-line relaxation: All the degrees of freedom located at grid points with the same

x- and y-coordinate are relaxed together, i.e. z-line relaxation is used. The

relaxation occurs in the subspaces span{φℓi ⊗ uz : uz ∈ V z}, i = 1, . . . , nℓxy, where

{φℓi}
nℓ
xy

i=1 is the set of nodal basis functions of V xy
ℓ , ℓ = 1, . . . , F and nℓxy = dim

V xy
ℓ .

Before giving the main theorem of this section, let us define the remaining operators

used in the multigrid method. The global transfer operators Pℓ and Rℓ between R
nℓ−1

and R
nℓ

(which are isomorphic to Vℓ−1 and Vℓ respectively) are defined as

Pℓ = P xy
ℓ ⊗ P z = P xy

ℓ ⊗ I ∈ R
nℓ
xynz×nℓ−1

xy nz ,

Rℓ = Rxy
ℓ ⊗Rz = Rxy

ℓ ⊗ I ∈ R
nℓ−1
xy nz×nℓ

xynz .

The matrices P xy
ℓ and Rxy

ℓ are transfer operators between R
nℓ−1
xy and R

nℓ
xy , and we have

P z = Rz = I thanks to not coarsening in the z-direction.
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The z-line block smoother has the form (5.4.6) with

Wℓ =WAxy

ℓ ⊗Bz +WBxy

ℓ ⊗Az ,

where WAxy

ℓ ,WBxy

ℓ ∈ R
nℓ
xy . For a block Jacobi smoother, these correspond to the

diagonals of Axy
ℓ and Bxy

ℓ respectively. As done in Section 5.4.1, we can show that, for

any uxy
ℓ ,v

xy
ℓ ∈ R

nℓ
xy and uz,vz ∈ R

nz , we have

< Wℓ(u
xy
ℓ ⊗ uz),vxy

ℓ ⊗ vz >

=< WAxy

ℓ uxy
ℓ ,v

xy
ℓ >< Bzuz,vz > + < WBxy

ℓ uxy
ℓ ,v

xy
ℓ >< Azuz,vz > ,

as required. This is obtained by decomposing uxy
ℓ and vxy

ℓ into a linear combination

of an orthonormal basis of Rnℓ
xy and using tensor product rules (5.4.8) and (5.4.9), as

done in [14] for a block Jacobi smoother applied to a 2D problem.

Now, as in Section 5.4.1 we aim to use a block-diagonalisation procedure to ac-

complish a separation of coordinate directions. This time, we separate the z-direction

from the x- and y-directions and reduce the 3D problem into a problem involving only

matrices Axy
ℓ , WBxy

ℓ and WAxy

ℓ . This is done by considering Az-orthogonal subspaces

induced by tensor products of

• eigenvectors {ezj}nz

j=1 of Az, and

• arbitrary components on the x–y plane.

Let the vectors {ezj}nz

j=1 be a basis of V z which form an Bz-orthonormal generalized

eigenbasis of (Az , Bz), i.e.

Azezj = ωjB
zezj

< Bzezj , e
z
k >= δjk

}
. (5.4.18)

{ωj}nz

j=1 are eigenvalues of (Az, Bz) that are strictly positive since Az and Bz are

positive definite. If (5.4.18) holds, then we also have

< Azezj , e
z
k >= ωjδjk , (5.4.19)

so Az-orthogonality is obtained.

As in Section 5.4.1, we set Axy
ℓ,ωj

= ωjB
xy
ℓ +Axy

ℓ and W xy
ℓ,ωj

= ωjW
Bxy

ℓ +WAxy

ℓ , and

we also set

Sxy
ℓ,ωj

= I −
(
W xy

ℓ,ωj

)−1
Axy

ℓ,ωj
,
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Mxy
ℓ,ωj

=
(
Sxy
ℓ,ωj

) ν
2

[
I − P xy

ℓ

(
Axy

ℓ−1,ωj

)−1
Rxy

ℓ A
xy
ℓ,ωj

] (
Sxy
ℓ,ωj

) ν
2

+
(
Sxy
ℓ,ωj

) ν
2

[
P xy
ℓ Mxy

ℓ−1,ωj

(
Axy

ℓ−1,ωj

)−1
Rxy

ℓ A
xy
ℓ,ωj

](
Sxy
ℓ,ωj

) ν
2
,

where Sxy
ℓ,ωj

and Mxy
ℓ,ωj

are the smoother and the V-cycle iteration matrix for the family

of 2D problems. Using these matrices, we state and prove the main theorem of this

chapter, which establishes the robustness of the NUMG method in 3D by reducing the

problem to a family of 2D problems, for which the uniform convergence is assumed.

Theorem 5.4.3. (Uniform convergence of the NUMG method in 3D) Suppose that for

all j = 1, . . . , nz,

‖Mxy
F,ωj

‖AF
< δ(ν) < 1 (5.4.20)

holds, where δ is dependant only on the total number of smoothing steps, ν. Then the

iteration matrix of the multigrid V-cycle (see Lemma 4.6.9) for the 3D problem, based

on a z-line smoother and no coarsening in the z-direction, satisfies

‖MV
F ‖AF

≤ δ(ν) < 1 . (5.4.21)

Proof. Using the Az-orthogonality and Bz-orthonormality of the eigenvectors {ezj}, and
the two tensor product rules (5.4.8) and (5.4.9), we deduce that for all j, k = 1, . . . , nz

and for uxy
ℓ , v

xy
ℓ ∈ R

nℓ
xy ,

< uxy
ℓ ⊗ ezk, Aℓ(v

xy
ℓ ⊗ ezj ) >= δj,k < uxy

ℓ , (A
xy
ℓ + ωjB

xy
ℓ )vxy

ℓ > . (5.4.22)

which follows the same computations as (5.4.12). Similarly

< uxy
ℓ ⊗ ezk,Wℓ(v

xy
ℓ ⊗ ezj ) >= δjk < uxy

ℓ , (W
Axy

ℓ + ωjW
Bxy

ℓ )vxy
ℓ > .

Now, as in Section 5.4.1 for j = 1, . . . , nz, we define matrices Q
(j)
ℓ : Rnℓ

xy → R
nℓ
xynz by

Q
(j)
ℓ uxy

ℓ = uxy
ℓ ⊗ ezj .

for uxy
ℓ ∈ R

nℓ
xy . We write vectors uz ∈ R

nz as a linear combination of the eigenbases

{ezj}nz

j=1 of Rnz and by the calculations of (5.4.22) we have for all j, k = 1, . . . , nz,

< uxy
ℓ , Q

(k)T
ℓ AℓQ

(j)
ℓ vxy

ℓ >=< uxy
ℓ ⊗ ezk, Aℓ(v

xy
ℓ ⊗ ezj ) >= δij < uxy

ℓ , A
xy
ℓ,ωj

vxy
ℓ > ,

and so we define the blockdiagonal matrix Âℓ by
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Âℓ = QT
ℓ AℓQℓ = blockdiag

{
Axy

ℓ,ωj
: j = 1, . . . , nz

}
.

Similarly Qℓ transforms Wℓ into a blockdiagonal matrix:

Ŵℓ = QT
ℓ WℓQℓ = blockdiag

{
W xy

ℓ,ωj
: j = 1, . . . , nz

}
.

For the transfer operator Pℓ, we perform similar computations to (5.4.22) and obtain,

for j, k = 1, . . . , nz,

< uxy
ℓ , Q

(k)T
ℓ PℓQ

(j)
ℓ−1v

xy
ℓ−1 > =< uxy

ℓ ⊗ ezk, (P
xy
ℓ ⊗ I)(vxy

ℓ−1 ⊗ ezj ) >

= δj,k < uxy
ℓ , P

xy
ℓ vxy

ℓ−1 > ,

for uxy
ℓ ∈ R

nℓ
xy and vxy

ℓ−1 ∈ R
nℓ−1
xy , using (5.4.8) and (5.4.9). We have Pℓ = P xy

ℓ ⊗ I

because we do not coarsen in the z-direction, and because of the identity matrix the

similarity transformation of Pℓ produces a block-diagonal matrix:

P̂ℓ = QT
ℓ PℓQℓ−1 = blockdiag

{
P xy
ℓ : j = 1, . . . , nz

}
.

Similarly,

R̂ℓ = QT
ℓ−1RℓQℓ = blockdiag

{
Rxy

ℓ : j = 1, . . . , nz
}
.

Now we use these similarity transformations to reduce the convergence analysis of

the 3D problem to the analysis of problems on each of the invariant subspaces that

correspond to a family of 2D problems.

Since Qℓ is non-singular and orthogonal for ℓ = 1, . . . , F , we have

Q−1F MV
F QF = Q−1F S

ν
2
F (I − PFA

−1
F−1RFAF )S

ν
2
FQF +Q−1F S

ν
2
F (PFM

V
F−1A

−1
F−1RFAF )S

ν
2
FQF

= blockdiag{Mxy
F,ωj

: j = 1, . . . , nz} .

The matrices Mxy
F,ωj

satisfy

‖Q−1F MV
F QF ‖2 = max{‖Mxy

F,ωj
‖2 : j = 1, . . . , nz} ,

and since the multiplication by orthogonal matrices QF or Q−1F does not change the

spectral norm of a matrix (cf. [74, Chapter 2]), we have

‖MV
F ‖2 = max{‖Mxy

F,ωj
‖2 : j = 1, . . . , nz} ≤ δ(ν) < 1 ,

by (5.4.20). Hence the result (5.4.21) is obtained.
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We now discuss the conditions in which (5.4.20) holds for a family of 2D problems

on the x–y plane. We know from Theorem 5.4.2 that the 2D iteration matrix of the

multigrid V-cycle, based on a line smoother in one coordinate direction and coarsening

only in the other, will converge for 2D problems with grid-aligned anisotropies bounded

by a contraction number δ(ν) = CA/(CA+ ν). Hence, this is one possible condition for

which (5.4.20) will hold.

In addition we would also like to show that the condition will hold when conditional

semi-coarsening and a point smoother are used, since we have shown experimentally in

Section 5.2.2 that this is the most efficient method for solving the 2D model problem

(5.1.1). Unfortunately, a rigorous theoretical proof for the robustness of this method is

missing. However, since we have shown this to be true both heuristically (cf. Section

5.2.1) and experimentally (cf. Section 5.2.2), there is strong evidence to support the

statement that the 2D multigrid V-cycle based on conditional semi-coarsening and a

point smoother is robust with respect to problem size and grid anisotropies.

Finally, we apply the theory to problem (5.3.1), i.e. with α1 = 1, α2 = sin2(πy),

α3 = Lz sin
2(πy) and Ω = (0, 1) × (ε, 1 − ε) × (0, 1) for ε ≪ 1. For Lz, we can use

any of 0 < Lz as in the experiments in Section 5.3. Regardless of the value of Lz,

the use of z-line relaxation and conditional semi coarsening reduces the analysis of

the full problem to that of a family of 2D problems on the x − y plane of the form

(5.1.2). Experimental results for these 2D problems have already been carried out to

show the robustness of the 2D NUMG method (see Table 5.5). Hence, assuming this

robustness, we use Theorem 5.4.3 to deduce that the 3D NUMG method applied to

(5.3.1) is optimal.

5.5 Non-Uniform Multigrid in Spherical Geometries

Having established the optimality of the NUMG method – both experimentally and

theoretically – on model problems with inhomogeneous anisotropy, we now apply the

method to problems of greater interest to the Met Office, i.e. anisotropic problems

in spherical polar coordinates. We will begin by investigating the 2D Poisson-type

equations in spherical geometries, which is similar to model problem (5.1.2), but with an

added difficulty due to the singularity of the equation at the poles. We then investigate

the 3D Poisson-type equations which are similar to model problem (5.3.1). In both

cases the performance of NUMG will be compared against implementations of AMG as

well as against existing solvers that are currently used at the Met Office to solve these

type of problems.
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5.5.1 Poisson-Type Equations on the Unit Sphere

In this section we solve the Poisson-type equation in spherical coordinates using the

techniques developed in Section 5.1. The equation, in a nondimensionalized form (see

Section 3.2.4) is:

− ∂

∂φ

(
Lφ(λ) sin(πφ)

π2
∂u

∂φ

)
− ∂

∂λ

(
Lλ(φ)

4π2 sin(πφ)

∂u

∂λ

)
= g2D sin(πφ) , (5.5.1)

Ω = (0, 1)2.

Note that we do not have uniform ellipticity of the operator here, since we allow φ = 0, 1

(i.e. equivalent to setting ε = 0 in (5.1.2)). This is solved with periodic boundary

conditions at the boundary coinciding with λ = 0 and λ = 1, and a polar boundary

condition at φ = 0 and φ = 1. The equation can be written in the form (5.1.1), with

α1(φ, λ) = Lφ(λ) sin(πφ)/π
2 and α2(φ, λ) = Lλ(φ)/(4π

2 sin(φ)). The finite volume

discretisation of problem (5.5.1), given in Section 3.2.4, on the spherical polar grid

introduced in Section 3.2.1 yields a matrix Aℓ ∈ R
n(ℓ)×n(ℓ)

with the following stencil




−h
(ℓ)
λ

h
(ℓ)
φ

Lφ(λk)

π2 sin(πφj+ 1
2
)

−h
(ℓ)
φ,j

h
(ℓ)
λ

Lλ(φj)
4π2 sin(πφj)

−∑ −h
(ℓ)
φ,j

h
(ℓ)
λ

Lλ(φj)
4π2 sin(πφj)

−h
(ℓ)
λ

h
(ℓ)
φ

Lφ(λk)
π2 sin(πφj− 1

2
)



,

at all nodes expect the nodes at the poles, i.e. the nodes {(φj , λk) : j = 1, . . . , n
(ℓ)
φ , k =

1, . . . , n
(ℓ)
λ }, where j and k represent the mesh lines of latitude and longitude respec-

tively and n
(ℓ)
φ and n

(ℓ)
λ are the nodes in the φ- and λ-directions respectively. The

dimension of the problem is n(ℓ) = (n
(ℓ)
φ × n

(ℓ)
λ ) + 2, with the two additional degrees of

freedom corresponding to the pole nodes. Tℓ denotes the sequence of grid levels, where

ℓ = 1, . . . , F , with TF being the grid with the finest resolution of points. The system

of equations we solve on TF is

AFuF = bF , (5.5.2)

where bF is a vector containing the finite volume discretisation of g2D sin(πφ) at each

grid point (including the poles). The coarse grid operators Aℓ, ℓ = 1, . . . F − 1 are all

obtained via an identical finite volume discretisation of (5.5.1) on Tℓ.
Now, let us firstly consider the case Lφ = Lλ = 1, i.e. the Poisson equation. We

assume that the fine grid is uniform, but in typical grid resolutions used a the Met

Office, the number of grid points in the λ-direction is approximately double those in
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the φ-direction. Thus, since the grid is defined on the unit square, we have hφ ≈ 2hλ.

The stencil is comparable to that of (5.1.3) for model problem (5.1.2), with a variation

in anisotropy only in the polar (φ) direction. We observe a stronger anisotropy near

the poles caused by a degenerating φ-coefficient of the differential operator, hence the

conditional semi-coarsening strategy from Section 5.2 can also be used here. Recall

that the strategy relies on the ratio of the off-diagonal entries of the stencil, which

is approximately
(
2hλ

hφ

)2
sin2(πφj), and that for each j-line the type of coarsening

depends on whether the ratio is greater than 1
2 . There is no variation of anisotropy in

the λ-direction, so the grid is uniformly fully coarsened in this direction.

Algorithm 5.2 is the full algorithm for conditional semi-coarsening on problem

(5.5.1), and is only a small modification to that of algorithm 5.1.

Algorithm 5.2 Conditional semi-coarsening for the Poisson-type equation on the

sphere: Cond spherical(h
(ℓ)
λ , h

(ℓ)
φ , n

(ℓ)
λ , n

(ℓ)
φ , ℓ, h

(ℓ−1)
λ , h

(ℓ−1)
λ , n

(ℓ−1)
λ , n

(ℓ−1)
φ )

incr = 1 (incrementing up the φ-line)

for j = 1, n
(ℓ)
φ

ratio = (Lφ/Lλ)(2h
(ℓ)
λ /h

(ℓ)
φ,incr)

2 sin2(πφincr) (ratio at line incr)

if ratio ≥ 0.5 then

h
(ℓ−1)
φ,j = h

(ℓ)
φ,incr + h

(ℓ)
φ,incr+1 (mesh width doubled in

incr = incr + 2 φ-direction at line incr)
else

h
(ℓ−1)
φ,j = h

(ℓ)
φ,incr (mesh width unchanged in

incr = incr + 1 φ-direction at line incr)
end if

if incr > n
(ℓ)
φ exit

end for

h
(ℓ−1)
λ = 2h

(ℓ)
λ (mesh width doubled in λ-direction on grid Tℓ−1)

n
(ℓ−1)
φ = j (no. of grid points in λ- and φ-

n
(ℓ−1)
λ = n

(ℓ)
λ /2 directions on grid Tℓ−1)

We solve the Poisson Equation on the sphere using the machine used for the exper-

iments in Sections 5.1 and 5.2 and the same multigrid components as outlined at the

start of Section 5.1.1. However, we must also note that in 2D the finite volume discreti-

sation of problem (5.5.1) on the grid introduced in Section 3.2.1 results in a singular

system of linear equations with the nullspace of AF spanned by the constant vector.

Therefore, we require a compatibility condition on g2D and we need to regularize the

problem. We discuss the technique for doing this in the following section.
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5.5.2 Dealing with the Singularity of the Problem

The matrices Aℓ, ℓ = 1, . . . , F , are rank-deficient by one and their null space is spanned

by the constant vector 1ℓ, which is a vector of ones of length n(ℓ). Provided the right-

hand-side vector on each grid level, denoted bℓ, is in the range of the operator (i.e.

bℓ ∈ range(Aℓ)), an iterative solver such as the conjugate gradient method will find

the solution to the problem despite the matrix being singular. Thus, we project bℓ

onto range(Aℓ) on each grid level to ensure the existence of a solution.

In order to do this, we use the following relation from [74] which relates the range

and null space of A:

range(Aℓ) = null(AT
ℓ )
⊥ =: 1⊥ℓ ,

where Aℓ = AT
ℓ so null(Aℓ) = null(AT

ℓ ). From this result we deduce that the projection

onto range(A) is accomplished by eliminating all components in the direction 1ℓ, and

this is done by the following orthogonal projector

Qℓ = Iℓ −
1ℓ1

T
ℓ

< 1ℓ,1ℓ >
= Iℓ −

1

n(ℓ)
1ℓ1

T
ℓ , ℓ = 1, . . . , F

where Qℓ and Iℓ are the projection operator and identity matrix on Tℓ, respectively. Qℓ

is applied to the right-hand-side on Tℓ which ensures Qℓbℓ ∈ range(Aℓ), ∀ℓ = 1, . . . , F .

In theory this projection is superfluous if the right hand side g2D satisfies the

following compatibility condition

∫

Ω
g2D dV = 0 .

The solution is then determined up to a constant. However, even if this compatibility

condition is satisfied for the continuous right hand side, g2D, it is not necessarily the

case that the discrete compatibility condition

< bF ,1F >= 0 , (5.5.3)

is automatically satisfied. The reason for this is because of inexact arithmetic within the

discretisation. Therefore bF must be projected onto the range of AF if (5.5.3) doesn’t

hold. Similarly, (5.5.3) must hold on each of the coarse grids. In exact arithmetic,

the right-hand-side bℓ on the coarser grids would be in range(Aℓ) by definition, thus

satisfying (5.5.3), but due to the rounding errors this is not the case in practice so the

projection is in fact necessary on each grid.

Remark 5.5.1 (Other methods of dealing with the singularity). The projection of the

right-hand-side is not the only approach that can be used to deal with the singularity
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of the problem. Here we discuss two other approaches that have been tested, but they

lead to exactly the same number of multigrid V-cycle iterations:

Block Elimination

By ordering the degrees of freedom such that the final two rows of matrix AF correspond

to the pole nodes, we can write the matrix as

AF =

[
Ã B

BT C

]
,

with a full rank, sparse matrix Ã ∈ R
n(F )×n(F )

. B ∈ R
n(F )×2 contains only two columns

irrespective of mesh refinement, thus we can solve (5.5.2) by block elimination by

writing it in the following form:

AF =

[
Ã B

BT C

][
ũ

ṽ

]
=

[
f̃

g̃

]
.

We first solve for a matrix X ∈ R
n(F )×2 and a vector y ∈ R

n(F )
satisfying

ÃX = B and Ãy = f̃ . (5.5.4)

Then ṽ is a solution to

(C −BTX)ṽ = g̃ −BTy,

which is a 2×2 system of rank 1 (which can easily be solved directly). Thus the solution

ṽ is unique up to a constant only. Finally we obtain ũ by calculating

ũ = y−Xṽ.

However, (5.5.4) consists of solving three systems with Ã using multigrid, as opposed

to one system with AF in the projection technique above.

Fixing the Solution at one of the Poles

Another method is to fix the solution at one of the poles, reducing the problem to

solving only the following system

Âû = b̂,

where Â ∈ R
n(F )−1×n(F )−1 takes the first n(F ) − 1 rows and n(F ) − 1 columns of AF .

Similarly, b̂ takes the first n(F ) − 1 entries of bF . The singularity is eliminated by

removing a degree of freedom at a pole, therefore the resulting solution is unique.
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5.5.3 Numerical Results

The experiments carried out in this section are done using the same settings as in

Section 5.2.2, in addition applying the projection of the right-hand-side on each grid.

The results of this experiment are given in Table 5.13. The setup time and solve time

increases linearly with the problem size and the number of iterations and the average

convergence factor remains constant, indicating that the multigrid method is robust

with respect to problem size, and performes optimally. Without the projection on each

grid level, the multigrid method did not converge because the rounding errors caused

the right-hand-side vectors on each coarse grid to lie outside the range of the operator,

hence (5.5.3) was not satisfied.

Problem size # Coarse grids Setup time (s) Solve time (s) Nits µavg

32x16 2 1.23E-3 2.27E-3 9 0.102
64x32 3 5.12E-3 8.63E-3 9 0.114
128x64 4 1.80E-2 3.61E-2 9 0.118
256x128 5 6.86E-2 1.70E-1 9 0.118
512x256 6 2.67E-1 7.86E-1 9 0.119

Table 5.13: Two dimensional Poisson’s equation on the unit sphere solved using NUMG
(with a projection onto the range of AF in each iteration). CPU time in seconds.

Now, consider equation (5.5.1) with Lλ 6= 1 and Lφ 6= 1. Let us look at what an

additional anisotropy introduced by changing Lφ and Lλ does to the method. As long

as Lλ ≥ Lφ is satisfied, NUMG is expected to retain optimality because the direction

of the strong coupling (i.e. the λ direction) will not change throughout the domain,

which is an important factor in conditional semi-coarsening as discussed in Section 5.2.

However, if Lλ < Lφ, then the direction of the strong coupling will change direction

near the equator and so additional coarsening strategies would need to be considered to

retain optimality. We have already seen examples of this earlier in Sections 5.3.2 and

5.3.4 for the 3D model problem, where the changes in the direction of strong coupling

resulted in a modification of the standard techniques in order to gain optimality of the

method. The purpose of these tests is to show how the coarse grids adapt to the ratio
Lφ

Lλ
. The smaller the ratio, the stronger the anisotropy becomes even at the equator, so

the coarse grids will have to compensate for this by increasing the region in which semi

coarsening occurs. The case
Lφ

Lλ
= 1 has already been tested, and we compare this with

cases
Lφ

Lλ
= 10−1, Lφ

Lλ
= 10−2 and

Lφ

Lλ
= 10−4. We also test

Lφ

Lλ
= 10 to demonstrate

that the method requires modifications when Lλ < Lφ.

For the case
Lφ

Lλ
= 1, we know already that the problem is isotropic at the equator

and strongly anisotropic at the poles, and so the first coarse grid is evenly partitioned
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into fully coarsened and semi coarsened regions (cf. Figure 5-1). However, as the ratio

of Lφ and Lλ is reduced, the anisotropy becomes stronger by a factor of
Lφ

Lλ
in all

regions, and the problem will no longer be isotropic at the equator. Therefore the first

coarse grid will have coarsening only in the λ-direction, i.e. uniform semi coarsening

everywhere. If the value of
Lφ

Lλ
is sufficiently close to 1, successive coarse grids may have

regions where the grid is fully coarsened, but these regions will not be as pronounced

as when
Lφ

Lλ
= 1.

We demonstrate this for a 512x256 grid. Recall that the ratio of the off-diagonal

entries on line j for problem (5.5.1) is approximately (2hλ/hφ,j)
2 sin2(πφj). For (3.2.13),

however, this is compensated by a factor Lφ/Lλ. At the equator, sin2(πφj) = 1 so the

ratio is
Lφ

Lλ

(
2hλ
hφ,j

)2

.

Firstly, setting
Lφ

Lλ
= 10−1, we measure the ratio at the equator on each grid:

fine grid 0.1 (less than 0.5 so semi coarsening),

first coarse 0.4 (less than 0.5 so semi coarsening),

second coarse 1.6 (greater than 0.5 so full coarsening).

Therefore full coarsening occurs near the equator only from the third coarse grid on-

wards. Likewise for
Lφ

Lλ
= 10−2 we have

fine grid 0.01 (less than 0.5 so semi coarsening),

first coarse 0.04 (less than 0.5 so semi coarsening),

second coarse 0.16 (less than 0.5 so semi coarsening),

third coarse 0.64 (greater than 0.5 so full coarsening),

and so full coarsening only occurs at the equator from the fourth coarse grid onwards.

For
Lφ

Lλ
= 10−4, however, full coarsening does not occur on any grid we used because the

anisotropy is so strong even at the equator. Therefore non-uniform multigrid manages

to adapt to the strength of anisotropy by changing the structure of the coarse grids, and

Table 5.14 shows that it performs optimally regardless of the strength of anisotropy.

However, this is only true as long as the direction of the strong coupling never changes.

Note that for
Lφ

Lλ
= 10, where the direction of strong coupling switches between the

poles and the equator, the results in Table 5.14 show that the method is not optimal,

although we still observe good convergence rates. However, luckily such a situation

never occurs in any of the problems of interest to the Met Office.
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Lφ/Lλ = 10−1 Lφ/Lλ = 10−2

Problem size Nits Total time Nits Total time
32x16 7 4.05E-3 7 4.68E-3
64x32 7 1.40E-2 7 1.66E-2
128x64 8 6.02E-2 7 6.06E-2
256x128 8 2.59E-1 8 2.75E-1
512x256 8 1.14 8 1.20

Lφ/Lλ = 10−4 Lφ/Lλ = 10
Problem size # Iterations Total time # Iterations Total time

32x16 7 5.16E-3 12 4.28E-3
64x32 7 2.07E-2 13 1.58E-2
128x64 7 8.16E-2 14 6.87E-2
256x128 7 3.43E-1 14 3.03E-1
512x256 7 1.39 16 1.54

Table 5.14: Two dimensional Poisson’s equation on the unit sphere with varying
anisotropy solved using NUMG (CPU time in seconds).

5.5.4 The Galerkin Approach

Thus far, all the methods used have been set up with the sequence of matrices Aℓ

computed via a finite volume discretisation on each grid. Here we compute each coarse

grid operator by the Galerkin Product, i.e. Aℓ−1 = RℓAℓPℓ for ℓ = 1, . . . , F (see Section

4.4.2 and [75, §2.3.2]). This is the usual situation in algebraic multigrid. The Poisson

equation (5.5.1) on the unit sphere is solved using a standard multigrid V-cycle with

pointwise Gauss−Seidel smoother combined with conditional semi-coarsening. We use

linear interpolation and full weighting restriction and the stopping criterion is 10−8.

We test this method because the majority of multigrid convergence theory relies

on using the Galerkin product to form the coarse grid operators. The immediate issue

that arises in practice is that, in the case of linear interpolation and full weighting

restriction, the coarse grid operator created by the Galerkin product AF−1 = RFAFPF

has extra fill-in, that is, it has more non-zero entries per row than a direct finite volume

discretisation on the same grid would have. In fact, AF−1 computed via the Galerkin

product has a 21-point stencil (see Figure 5-5).

The operator computed on each successively coarser grid (i.e. T1, . . . ,TF−1) will also
have a 21-point stencil. This means more work is needed on the coarse grids when the

matrix-vector multiplications and smoother are used. In addition, the setup cost will

increase because the computation of each coarse grid operator via the multiplication of

three matrices will be more expensive than by directly discretising on each grid. The

results from Table 5.15 confirm this claim, with particularly the setup time going up

considerably compared to the results in Table 5.13, by a factor of up to six. The extra
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Figure 5-5: AF has a 5-point stencil and Aℓ, for ℓ = 1, . . . , F −1 have a 21-point stencil,
the extra fill-in created as a result of the Galerkin Product

fill-in causes further problems in three dimensions which will be discussed in Section

5.6.1. However, one non-negligible benefit is that the denser stencils on the coarse grids

lead to a significantly smaller number of iterations, five instead of nine, resulting in a

faster solve time by a factor of approximately 1.5. The method is also fully robust to

grid refinement.

Problem size # Coarse grids Setup time (s) Solve time (s) # Iterations µavg

32x16 2 3.17E-3 1.53E-3 5 0.012
64x32 3 1.39E-2 5.91E-3 5 0.011
128x64 4 6.36E-2 2.54E-2 5 0.011
256x128 5 3.03E-1 1.21E-1 5 0.012
512x256 6 1.59 5.53E-1 5 0.012

Table 5.15: Two dimensional Poisson’s equation on the unit sphere solved using NUMG,
the Galerkin product and full-weighting restriction

The easiest way to reduce the fill-in is to simplify the restriction operator to the

four-point average restriction (see Section 4.4.2 and [75, §2.8.4]). This is in fact the same

order of accuracy as full weighting restriction (both second order accurate, as stated in

[75] and Remark 4.4.1), so the required condition from Remark 4.4.1 is still satisfied.

However, the symmetry of the multigrid iteration will be lost because Rℓ 6= P T
ℓ . This

yields a more sparse 9-point stencil for the operators on all coarse levels, but the coarse

grid matrices are non-symmetric so a different coarse grid solver is needed. We choose

Bi-CGSTAB [76] as together with GMRES [65] it is one of the fastest Krylov methods

for non-symmetric and sparse linear systems. The results of using a four point average

restriction are in Table 5.16. We evidently observe a significant speedup from Table 5.15

in the setup, but it is still considerably slower than using finite volume discretisations

on each grid, due the cost of the Galerkin product in the setup phase. Also the solve

time is slower compared to the results in Table 5.15 due to the additional cost in using

Bi-CGSTAB instead of CG and because of the larger number of iterations required.
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Problem size # Coarse grids Setup time (s) Solve time (s) # Iterations µavg

32x16 2 1.92E-3 1.86E-3 6 0.041
64x32 3 7.48E-3 6.68E-3 6 0.039
128x64 4 3.52E-2 3.12E-2 7 0.056
256x128 5 1.85E-1 1.45E-1 7 0.070
512x256 6 1.13 6.91E-1 7 0.071

Table 5.16: Two dimensional Poisson’s equation on the unit sphere solved using NUMG,
the Galerkin product and four-point averaging restriction

The experimental results have therefore shown that from a point of view of com-

putational cost, it is not preferable to use the Galerkin product to set up the matrices

Aℓ, ℓ = 1, . . . , F − 1 on each coarse grid level, despite the method still performing

optimally. This indicates how efficient the NUMG solver given in Table 5.13 is.

5.5.5 Comparison with Algebraic Multigrid (AMG)

The success of non-uniform (conditional) coarsening strategies for anisotropic elliptic

problems has already been demonstrated in the literature, such as [71, 63, 18], by

the highly successful algebraic multigrid (AMG) methods. However, as discussed and

demonstrated in Section 5.1.2, its setup cost is expected to be significantly larger than

that of geometric methods as a consequence of the graph-based coarse grid selection

and interpolation algorithms and the need to use the Galerkin product to compute

the coarse grid matrices. Therefore, for problems that can be solved using geometric

multigrid, it is typically less efficient to use AMG.

To test this assertion, problem (5.5.1) is solved using BoomerAMG as a preconditioner

to the conjugate gradient method (CG + AMG) and as a stand alone solver (V-cycle

only). As in Section 5.1.2, the default settings for BoomerAMG were used. However, in

order to solve this problem using BoomerAMG, a degree of freedom had to be removed

at the north pole to remove the singularity. Table 5.17 shows the results and clearly

neither approach achieves a similar performance to the NUMG solver from Table 5.13.

On the finest grid resolution 512 × 256, NUMG is faster in total by a factor 2.5.

V-cycle only CG + AMG

Problem size Setup time Solve time # Its µavg Solve time # Its µavg

32x16 4.52E-3 5.71E-3 8 0.088 6.90E-3 5 0.020
64x32 1.18E-2 2.49E-2 10 0.149 2.17E-2 6 0.028
128x64 3.85E-2 1.23E-1 12 0.209 9.55E-2 7 0.062
256x128 1.59E-1 5.50E-1 12 0.218 7.52E-1 7 0.060
512x256 6.62E-1 2.56 13 0.242 1.81 7 0.076

Table 5.17: BoomerAMG used to solve model problem (5.5.1). CPU times in seconds.
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5.6 Extension to 3D Elliptic Problems in NWP

In this section we use the techniques developed in Section 5.3 to motivate the multigrid

method for 3D Poisson-type equations on a spherical shell and then more specifically for

the Quasi-Geostrophic Omega equation (2.2.16) and the Helmholtz problem (2.1.24).

Let us first recall from Section 3.1 the general nondimensionalized 3D problem

(3.1.2) on a spherical shell, with a zeroth order term also included:

− ∂

∂r

(
α1(ξ)

∂u

∂r

)
− ∂

∂φ

(
α2(ξ)

∂u

∂φ

)
− ∂

∂λ

(
α3(ξ)

∂u

∂λ

)
+ c(ξ)u = f(ξ) (5.6.1)

on Ω = (0, 1)3 ,

with the stencil (assuming a uniform mesh in the φ- and λ-directions only):

−α1(ξi− 1
2
,j,k

)
hλhφ

h−

r,i










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−α1(ξi+ 1
2
,j,k

)
hλhφ
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,

where h±r,i =
1
2(hr,i + hr,i±1) and the coefficients are

α1(ξi± 1
2
,j,k) = α1(ri± 1

2
, φj , λk) = Lr(φj , λk)(a+ dri± 1

2
)2 sin(πφj)/d

2 , (5.6.2)

α2(ξi,j± 1
2
,k) = α2(ri, φj± 1

2
, λk) = Lλ(ri, λk) sin(πφj± 1

2
)/π2 , (5.6.3)

α3(ξi,j,k± 1
2
) = α3(ri, φj , λk± 1

2
) = Lφ(ri, φj)/(4π

2 sin(πφj)) . (5.6.4)

Recall that a ≈ 6371km and d ≈ 63km are the Earth’s radius and depth of the

atmosphere respectively. We enforce Lr, Lφ and Lλ to be separable, i.e. Lr(φ, λ) =

Lφ
r (φ)Lλ

r (λ), which will ensure that αi, i ∈ {1, 2, 3} are all separable too, i.e. α1 =

α1
1(r)α

2
1(φ)α

3
1(λ). In addition, if we set Lr

φ(r) = Lr
λ(r), then the coefficients α2 and α3

will have the same r dependency, i.e. α1
2(r) = α1

3(r), which means that problem (5.6.1)

is amenable to the convergence theory from Section 5.4.2, based on a r-line smoother

and no coarsening in r.

The boundary conditions of (5.6.1) are periodic at λ = 0 and λ = 1, polar at φ = 0

and φ = 1 and either Dirichlet or Neumann at r = 0 and r = 1. If c = 0 and Neumann

boundary conditions are imposed, then the discretisation of (5.6.1) will result in a

singular system with the solution being unique only up to a constant, hence projection

techniques will have to be enforced as described in Section 5.5.2. Firstly we consider the

case Lλ(φ, r) = Lφ(λ, r) = Lr(λ, φ) = 1 and c = 0, ie. the three dimensional Poisson

equation in spherical coordinates. Note that with c > 0 this becomes a Helmholtz-type

problem, and the greater the value of c the better conditioned the problem becomes.
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Hence we consider the only worst case with c = 0 until Section 5.6.5. With a and d as

above, (5.6.1) is similar to problem (5.3.1) with Lz = 104, where the off diagonal entry

the radial direction is much larger than those of the φ- and λ-directions. In addition

the mesh is graded in the radial direction (but uniform in the φ- and λ-directions)

with a smaller grid spacing near the lower boundary to obtain a higher resolution in

the regions of most interest. In typical computations at the MET Office, the grid size

is 216 × 163 × 70 and so the mesh widths on the unit square are hλ = O(10−3) and

hφ = O(10−3), whereas in the radial direction we have a graded mesh with

hr,1 = O(10−4) ≤ hr,i ≤ hr,nr = O(10−1),

where hr,1 is the mesh width closest the earth’s surface and hr,nr is the mesh width

closest to the upper boundary. Thus we have that hr,i < hλ and hr,i < hφ only near the

surface of the Earth, i.e. for small i. This graded mesh width in fact causes the direction

of strongest coupling to change at different entries. We have that (a+dr)2/d2 = O(104),

and near the equator we have sin(πφ) = O(1). Thus at the equator, the relative sizes

of the entries can be approximately calculated as:

Top of atmosphere Surface of Earth
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




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(5.6.5)

so with Lr = Lφ = Lλ = 1, the off-diagonal entry in the radial direction is always the

largest. However, near the poles, where sin(πφ) ≈ O(10−2), the entries are:

Top of atmosphere Surface of Earth
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
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
−Lr10
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(5.6.6)

and so the off-diagonal entry in the λ-direction becomes the largest for entries that are

both near the poles and towards the top of the atmosphere. However, for the majority

of entries, the r off-diagonal entry is still in general the largest.

The solution of these Poisson- and Helmholtz-type problems on the sphere are of

great importance in numerical weather forecasting, but the traditional solvers, such as

the ones employed at the MET Office, are coping well with this problem, as we shall see

below. We have seen that for most nodes in the domain, there is a large off-diagonal
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entry in the radial direction in comparison to those of the λ and φ off-diagonal entries,

meaning that the anisotropy is very large. Thus, as we did for solving (5.3.1), we use

r–line relaxation, namely r–line Gauss–Seidel, and combine this with full-coarsening in

the r-direction. We see in Table 5.18 that in combination with the conditional semi-

coarsening strategy in the λ − φ plane this is an extremely efficient method, despite

the r off-diagonal entry not being the largest in all parts of the domain, with similar

results to those from Table 5.7.

Problem size # Coarse grids Setup time (s) Solve time (s) # Iterations µavg

32x16x8 2 5.05E-3 4.37E-3 1 –
64x32x16 3 3.87E-2 3.80E-2 1 –
128x64x32 4 3.08E-1 7.25E-1 2 0.007
256x128x64 5 2.54 6.23 2 0.010

Table 5.18: Three dimensional Poisson’s equation on the unit sphere solved using
NUMG. CPU time in seconds.

Note that the anisotropy is in general so large that r-line Gauss–Seidel on its own

(as we saw in Section 5.3) and conjugate gradients (CG) preconditioned with r-line

Gauss–Seidel – which is essentially the same as the method currently employed by

the MET Office [28] – work very well too at least for moderate grid sizes (cf. Table

5.19, columns 2 and 3). However, neither of these two other methods is robust to grid

refinement and the number of iterations grows as the grid resolution is increased, such

that for large (typical) problem sizes the non-uniform multigrid method outperforms

both of them.

NUMG with Galerkin product r-line Gauss-Seidel r-line preconditioned CG
Problem size # Iterations Total time # Iterations Total time # Iterations Total time

32x16x8 5 5.16E-2 3 2.00E-3 4 6.22E-3
64x32x16 5 4.02E-1 6 3.11E-2 5 5.96E-2
128x64x32 5 3.65 26 1.08 13 9.68E-1
256x128x64 5 30.59 253 121.81 39 19.51

Table 5.19: Three dimensional Poisson’s equation on the unit sphere solved using (col-
umn 1) NUMG with coarse grid operators created using the Galerkin product, (column
2) r-line Gauss-Seidel and (column 3) CG preconditioned with the r-line Gauss–Seidel
smoother. CPU time in seconds.

5.6.1 The Galerkin Approach

In the non-uniform multigrid method above, all coarse grid operators Aℓ, ℓ = 1, . . . , F−
1 were computed via finite volume discretisations, as they were for the 2D prob-

lems. However, in this section we also experiment with using the Galerkin product
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Aℓ−1 = RℓAℓPℓ. In 3D, when using linear interpolation and full weighting restriction,

the coarse grid operators computed via the Galerkin product have an 81-point sten-

cil. This is more than ten times the number of non-zeros per row than the 7-point

stencil operator resulting from discretising on each grid and so the efficiency of the

matrix/vector multiplications and the smoother will be severely affected.

More significantly, each node has four non-zero neighbours in each coordinate di-

rection as opposed to the standard two, thus the line smoother used in the vertical

direction no longer requires a tridiagonal solver but a pentadiagonal solver instead.

The Thomas algorithm (a solver for tridiagonal systems) must therefore be replaced

by a pentadiagonal solver.

Alternatively, replacing full weighting restriction with four-point averaging (as we

did in section 5.5.4) greatly reduces the fill-in for the coarse grid operators to a 27-

point stencil. In addition, there are now only two non-zero vertical neighbours at each

node and so the Thomas algorithm can be used. Thus the settings we use for the

experiments in this section are linear interpolation, four-point average restriction, the

Galerkin product to construct coarse grid operators and the Thomas algorithm to solve

tridiagonal systems in the r-line smoother. The results are listed in the first column

of Table 5.19, which indicate that this method works well, with a constant number

of iterations and a linear increase in CPU time. However, the number of iterations

required is larger than what we observed in Table 5.18. Additionally, as in the two

dimensional case, the cost of setting up the coarse grid operators is far larger than

when using finite volume discretisations, and the application of the matrix/ vector

multiplications and the smoother also takes longer on the coarse grids. In fact, even

the CG method preconditioned with r-line Gauss–Seidel outperforms multigrid with

the Galerkin approach for this problem, hence the Galerkin approach is clearly not the

fastest solver for this problem and will no longer be considered.

5.6.2 Reducing the Anisotropy in the Radial Direction

Now consider (5.6.1) with Lλ(φ, r) = Lφ(λ, r) = 1, c = 0 and Lr(λ, φ) ≪ 1, ie. reducing

the strength of coupling in the radial direction. We keep Lλ(φ, r) and Lφ(λ, r) fixed

to 1 as we have already investigated the efficiency of the method when varying these

values in section 5.5. These tests are significant because in addition to the Helmholtz

problem, other elliptic problems on the sphere used in the Met Office are of the type

where Lr(λ, φ) ≪ Lφ(λ, r), Lλ(φ, r), e.g. the Quasi-Geostrophic Omega equation. We

know from Section 5.3 that because of the theory from Section 5.4.2, NUMG will still

be optimal (even though the number of iterations may be larger but still robust to

grid refinement), but other traditional solvers described earlier do not cope as well.
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CG preconditioned with r-line Gauss–Seidel performed strongly when Lr(λ, φ) = 1 (cf.

Table 5.19), but as Table 5.20 shows, its performance is substantially worse when we

set Lr = 10−4. This is because, looking at stencils (5.6.5) and (5.6.6), we see that the

λ off-diagonal entries are larger than the r off-diagonal entries in many more regions

of the domain when Lr = 10−4, causing r-line smoothing to be far less effective.

Problem size Solve time (s) # Iterations
32x16x8 2.83E-2 57
64x32x16 0.70 132
128x64x32 20.03 370
256x128x64 397.24 879

Table 5.20: Preconditioned CG method (with r-line Jacobi preconditioner) used to
solve (5.6.1) with Lλ = Lφ = 1 and Lr = 10−4.

As for NUMG, in order to ensure the method is optimal for Lr ≪ 1 we resort to the

technique from Section 5.3 of combining r-line relaxation and no vertical coarsening

with conditional semi-coarsening on the φ− λ plane, which was shown to be a robust

method for solving (5.3.1). Thus, despite the direction of strongest coupling changing

throughout the domain as discussed above, the r-line smoother will take care of strong

coupling in the r-direction and conditional semi-coarsening will take care of the strong

coupling in the λ-direction. We test the method for Lr = 1, 10−2 and 10−4, and it is

crucial for NUMG to be able to deal with the varying strengths of vertical anisotropy

described in this chapter so that it is able to optimally solve each type of elliptic

problem in NWP that was described in Chapter 2. Table 5.21 confirms that the method

is robust in each case and that it easily outperformes the CG method preconditioned

with r-line Gauss–Seidel. Therefore this is the method that will be used to replace the

preconditioned GCR method currently operational at the Met Office.

Lr = 1 Lr = 10−2 Lr = 10−4

Problem size Nits Total time Nits Total time Nits Total time

32x16x8 1 1.60E-2 3 2.95E-2 6 3.50E-2
64x32x16 2 1.82E-1 4 2.88E-1 7 4.09E-1
128x64x32 3 1.94 5 2.93 8 4.16
256x128x64 3 11.24 5 23.7 8 34.94

Table 5.21: NUMG with conditional semi-coarsening on the φ− λ plane, r-line relax-
ation and no vertical coarsening applied to (5.6.1), with Lλ = Lφ = 1 and various
values of Lr. CPU time in seconds.
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Problem size No. of iterations Setup time, s Solve time, s Total time, s
32x16x8 5 4.16E-2 7.81E-2 1.20E-1
64x32x16 5 6.05E-1 1.10 1.71
128x64x32 6 6.69 12.1 18.8
256x128x64 7 57.5 106.9 164.4

Table 5.22: Three Dimensional Poisson-type Equation (5.6.1) with Lλ = Lφ = 1 and
Lr = 10−4 solved using BoomerAMG as a preconditioner to CG.

5.6.3 Comparison with Algebraic Multigrid (AMG)

Unlike for the 2D model problems in this chapter, it was not possible to provide a simple

non-uniform coarsening strategy that also considers the anisotropy in the radial direc-

tion too, because of the direction of strongest coupling not being consistent. Therefore,

we resorted to using r-line relaxation instead. However, suppose we had resorted to

the geometric multigrid method of SCLR on the φ − λ plane (which is a commonly

used approach) instead of conditional semi-coarsening with a point smoother. This, in

conjunction with an r-line smoother, would then result in a plane smoother with coars-

ening only in the one direction which the smoother wasn’t applied. The plane smoother

will be very costly, and moreover, the coarsening factor is only two which means there

will be a significant amount of work done on the coarse grids too. Thus, our NUMG

method will be comparatively cheaper than other such geometric approaches.

The only issue with using line relaxation is that it could potentially result in NUMG

being less efficient than algebraic multigrid methods which will use more sophisticated

coarsening strategies such that a simple point smoother can be used, even in 3D.

However, we already know from the 2D tests that the setup cost for AMG methods is

a particular bottleneck, and this only gets worse in 3D. Therefore NUMG can still be

expected to outperform AMG methods.

As in Section 5.1.2, we use BoomerAMG implementation of AMG on problem (5.6.1)

for the three cases Lr(λ, φ) = 1, Lr(λ, φ) = 10−2 and Lr(λ, φ) = 10−4 (Lφ(λ, r) =

Lλ(φ, r) = 1 for each case). Results are given in Table 5.22, and in fact they show that

AMG methods are outperformed by NUMG more easily in 3D, with the total CPU

time up to five times slower than NUMG.

5.6.4 The Quasi-Geostrophic Omega Equation

Let us now use the NUMG method described in Section 5.6 to solve the Quasi-

Geostrophic Omega equation (2.2.16), which we recall is:
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− N2(R)

θref (R)ρref (R)
∇2

h(ρrefw
′)− f20

∂
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(
1

θref (R)ρref (R)

∂

∂R
(ρrefw

′)
)

= −Pw

on {(R,Φ,Λ) : a ≤ R ≤ a+ d, 0 ≤ Φ ≤ π, 0 ≤ Λ ≤ 2π} ,

where we recall from Section 2.2.4 that θref and ρref are the reference values of the

potential temperature and density, respectively, N2 is a stability parameter (approx-

imated to be a function of R only), f20 is the constant Coriolis parameter and Pw

contains all the sources of quasi-geostrophic forcing. (R,Φ,Λ) are the usual spherical

polar coordinates, and the equation is solved with Dirichlet boundary conditions w′ = 0

at the lower and upper vertical boundaries (i.e. R = a and R = a+ d). It is solved for

ρrefw
′, where ρref is already known. We nondimensionalize the equation as in Section

3.1 and write it in the general form (5.6.1), with coefficients

α1(r, φ, λ) =
a2

d2
sin(πφ)f20

θ̂ref (r)ρ̂ref (r)
, (5.6.7)

α2(r, φ, λ) =
N̂2(r) sin(πφ)

π2θ̂ref (r)ρ̂ref (r)
, (5.6.8)

α3(r, φ, λ) =
N̂2(r)

4π2 sin(πφ)θ̂ref (r)ρ̂ref (r)
, (5.6.9)

where N2(R) = N̂2(r), θref(R) = θ̂ref (r) and ρref (R) = ρ̂ref (r). Note that in (5.6.7),

we have the term a2 instead of (a+ dr)2 as in (5.6.2). This is an approximation made

at the Met Office. The equation is discretised on the Arakawa C-grid and Charney

Phillips grid, which we recall from Figures 2-2 and 2-3. A cell centred finite volume

discretisation yields nodes at the ρ-levels on the Charney Phillips grid, but the w′ points

which we solve for are located at the θ-levels. Thus we make a small approximation in

which we assume that the lower boundary is located at ρ-level 1 instead of θ-level 0,

and the upper boundary at ρ-level Top-1 instead of θ-level Top. Then a finite volume

discretisation will yield cell centres at approximately the θ-levels.

We use stencil (3.2.8) from Section 3.2.1 to deduce the cell centred finite volume

discretisation of (2.2.16):
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where

Xi± 1
2
,j = f20

θ̂ref (ri)ρ̂ref (ri)

θ̂ref(ri± 1
2
)ρ̂ref (ri± 1

2
)

a2

d2
sin(πφj), Yi = N̂2(ri) .

Note that the problem has been scaled by θ̂ref (ri)ρ̂ref (ri) because
θ̂ref (ri)ρ̂ref (ri)

θ̂ref (ri+1
2
)ρ̂ref (ri+1

2
)
≈

θ̂ref (ri)ρ̂ref (ri)

θ̂ref (ri+1
2
)ρ̂ref (ri+1

2
)
= O(1) for all i, hence the sizes of coefficients Lr, Lφ and Lλ are

Lr(φj , λk) ≈ f20 = O(10−8) ,

Lλ(ri, φj) = N̂2(ri) ≈ O(10−4) ,

Lφ(ri, λk) = N̂2(ri) ≈ O(10−4) ,

Thus solving (2.2.16) is similar to solving (5.6.1) with Lλ = Lφ = 1 and Lr = 10−4, with

each term scaled by approximately 10−4. We solve this equation with one processor on

the N72 analysis grid which is used for test problems at the Met Office. This grid is a

smaller than the operational analysis grid and has a resolution of 144×109×70. Figure

5-6 is a visualization of the vertical velocity profile at a roughly 8.8km above ground

level, which corresponds to θ-level 20 on the Charney-Phillips grid. This snapshot was

taken after one iteration of VAR and the data was produced using the NUMG solver

of the quasi-geostrophic omega equation that was implemented into the VAR system.

5.6.5 The Helmholtz Problem

We conclude this chapter by solving the Helmholtz problem as given in (2.1.24). Note

the presence of first and zeroth order terms which have thus far been neglected in this

chapter. However, both these terms can be discretised using the finite volume method,

as shown in Section 3.2.1. Writing the Helmholtz problem in a general tensor product

form (3.1.1), we have

K(r, φ, λ) =




(a+dr)2

d2
sin(πφ)
GA 0 0

0 sin(πφ)
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0 0 1
4π2 sin(πφ)
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sin(πφ), 0, 0

]T
,

c(r, φ, λ) =

(
pn

κCpΠn − κθnρn
)

κΠnθn∆t2α2Cpρnθ(1)A
(a+ dr)2 sin(πφ) .
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Figure 5-6: Snapshot of the vertical velocity, w, after one iteration of VAR at θ-level
20 (roughly 8.8km above ground level)

Recall from the derivation of the Helmholtz equation in Section 2.1 that G = 1 −
α2∆t2Cp

∂θ(1)

∂z
∂Πn

∂z > 0 and A = 1/(1 + α2∆t2f2) > 0. Although these values are not

known exactly, it is a good approximation that A = O(1) and G = O(1), though

we have shown that NUMG can handle different magnitudes of coefficients (see Table

5.21). We solve the problem using the same range of problem sizes as done throughout

this chapter for 3D problems, and the results are highlighted in Table 5.23.

The results indicate that the method is almost robust. We have already discussed

that the presence of a positive zeroth order term (which we have here) improves the

conditioning of a system. However, the presence of a first order term is usually detri-

mental to the conditioning of a system, because we recall from Section 3.2.1 that its

discretisation yields a nonsymmetric operator. The lack of symmetry means that the

CG method cannot be used as a coarse grid solver, but this is not an issue since we

have been using an r-line smoother on the coarse grid for all the 3D experiments. Now,

since we have a first order term only with respect to the radius, the r-line smoother
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Problem size # Coarse grids Setup time (s) Solve time (s) # Iterations µavg

32x16x8 2 1.04E-2 2.32E-2 5 0.039
64x32x16 3 7.94E-2 3.51E-1 7 0.074
128x64x32 4 6.33E-1 3.58 8 0.122
256x128x64 5 5.02 30.4 8 0.128

Table 5.23: Three dimensional Helmholtz problem (2.1.24), as used in NWP, solved on
the unit sphere using NUMG. CPU time in seconds.

will in fact take care of this term on its own, thus creating no additional difficulties for

the solver 3. For this reason, we still achieve optimal convergence results despite the

presence of the first-order term.

3Note that multigrid in the presence of strong advection terms is a major problem in scientific
computing but is not covered in this thesis.



Chapter 6

Parallelization

In this chapter we describe the parallelization of algorithms for the solution of sparse

linear systems, focusing primarily on the particular techniques used for the paralleliza-

tion of the non-uniform multigrid (NUMG) method developed in Chapter 5. Section 6.1

gives a general introduction to parallelism, describing the main tools used and how the

parallel performance of an algorithm is measured relative to its sequential performance

(i.e. with one processor). In Section 6.2, we describe more specifically how each com-

ponent of a multigrid algorithm is parallelized, addressing the main issues that affect

the parallelism, such as how the grid is partitioned into subdomains for each processor

and the necessary communication required between the processors. We then look at

how to modify the parallelization for the NUMG method, where non-uniform coarse

grids and the boundary conditions will have a particularly significant effect. Finally in

Section 6.3, the performance of the parallel NUMG code is tested, with comparisons

to parallel versions of existing solvers.

6.1 Introduction to Parallelism

In parallel computing, several calculations are carried out simultaneously, operating on

the principle that large problems are split into smaller ones which are solved in parallel

using multiple processors. The key to parallel computing is that the problems on each

processor are run independently, that is, one processor may not modify a variable

that another processor might be using or modifying. The rapidly developing parallel

computer hardware and its characteristics must be understood and taken into account

in program and algorithm design. In [32], parallel computers are distinguished into two

main types:

Definition 6.1.1 (Shared memory). For parallel computers with shared memory, the

158
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main memory is shared between all processors, each of which can access all the memory

at the same time.

The advantage of shared memory is that each processor has access to all the data, so

porting the sequential code (i.e. code designed to run on one processor only) to parallel

computers can be done with little difficulty. However, as the number of processors

increases, good scalability, i.e. performance relative to the number of processors (see

Section 6.1.2), cannot be guaranteed unless there is a lot of memory. Also, since all the

processors have access to the same data, there needs to be synchronization between

each processor to ensure exclusive access to any variable for one process at a time to

prevent multiple processors modifying the same variable.

Definition 6.1.2 (Distributed memory). For parallel computers with distributed mem-

ory, the main memory is distributed between each processor.

The advantages of distributed memory are that there are no access conflicts between

processors since data is locally stored, and that well written code can be optimally

scalable (see Section 6.1.2) for a large number of processors. However, there is no

direct access to the data on other processors so if one processor requires data stored in

the memory of another, communication between processors is necessary. This involves

a significant rewrite of the sequential code.

In this chapter we focus on computers with distributed memory, since this is used

for the multiprocessor computers at the University of Bath and at the Met Office.

6.1.1 Message Passing

For processors that do not share their memory, message passing platforms must be used

when communication is required between processors. Message passing is a mechanism

for directly transferring data from one processor to another, and the most common

library in this field is the message passing interface (MPI) [42, 60]. In this section we

focus on the global operations used in message passing for the MPI library.

Send and Receive

All parallel programs need routines to send and receive data from one processor to

another. In the MPI library, these are implemented as

MPI SEND(data, n, type, dest, tag, comm, ierr)

for sending n elements of data, where data is the index of the first element to be sent.

type is the datatype of the elements (e.g. integer, real), and the message is sent from
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Figure 6-1: The MPI BCAST operation

the calling processor to processor dest. The corresponding receiving routine is

MPI RECV(data, n, type, srce, tag, comm, status, ierr)

which receives the message from processor srce. Thus the arguments data, n, type

define the message, and the arguments dest (distribution processor) and srce (source

processor) define the address. The remaining arguments are of no interest for the

purposes of this chapter.

Broadcast

Often, information from one processor must be sent out to all processors. We denote

the processor sending out the information as the root processor, and the MPI routine

that achieves this is

MPI BCAST(data, n, type, root, comm, ierr) ,

where the root processor sends n elements of data with data being the index of the

first element (see Figure 6-1).

All-Reduce

Here, values from each processor are combined and distributed back to all processors.

This is useful for computing arithmetical/ logical operations using data stored across

all the processors. The call

MPI ALLREDUCE(senddata, recvdata, n, type, op, comm, ierr)
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Figure 6-2: The MPI ALLREDUCE operation, with an arithmetic/ logical operation ⊙

is the appropriate function in the MPI library. Elements of length n are sent from

each processor, with senddata being the index of the first element. op is the operation

(e.g addition, multiplication) and recvdata is the index of the first element of the

received data that has been distributed back to all processors. Figure 6-2 illustrates

the All-reduce process. A slight variant, MPI REDUCE is used if the received data is only

required on one processor.

6.1.2 Performance of Parallel Algorithms

The suitability of parallel algorithms for a large number of processors can be measured

in the following ways:

Definition 6.1.3 (Scalability/ weak scalability). This is the property of a program

that indicates its ability to handle growing amounts of work with a proportionally

increasing number of processors. Let Nloc be the local problem size per processor. If

the CPU time of running a problem of size Nloc with one processor is equal to that

of solving a problem of size P ∗Nloc with P processors, then the program is optimally

scalable for P processors.

Definition 6.1.4 (Speedup/ strong scalability). This is a measure of the gain in com-

puting time by parallelism. The speedup, SP , measures the performance gain of a

parallel code running on P processors in comparison with the sequential version, with

the global problem size Nglob fixed. The speedup is measured by

SP =
t1
tP
,

where t1 and tP are the CPU times of running the program on 1 and P processors

respectively. The ideal speedup on P processors is SP = P .

Measuring weak and strong scalability is important to determine the gains of using

more processors. It is generally agreed that strong scalability is harder to achieve due
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Ω1 Ω2

Ω3 Ω4

Figure 6-3: Partitioning Ω into four subdomains

to the memory requirements decreasing proportionally to the number of processors

used. The amount of computation per processor decreases when more processors are

used, and eventually this will lead to the inter-processor communication time becoming

too significant a fraction of the total computation cost. It is therefore more desirable

to measure parallel performance by weak scalability because a fixed local problem size

ensures that the memory access and inter-processor communication costs per processor

remain relatively constant.

6.2 Multigrid in Parallel

6.2.1 Grid Partitioning

The first consideration in the parallelization of a multigrid method is the partitioning

of the grid. The physical domain Ω must be decomposed into several subdomains

Ωi, i = 1 · · · , P corresponding to the number of processors, e.g. as in Figure 6-3

with P = 4. The boundaries of the subdomain must coincide with the boundaries of

control cells, and this condition must similarly hold on all the coarser grids. Also, for

a hierarchy of grids, the partitions on the coarse grids should be located on the same

lines as those on the fine grid to avoid unnecessary additional communication when

using the grid transfer operators. Note that this can always be done if the partitioning

is chosen on the coarsest grid first, since each coarse grid is a subset of finer grids. It is

preferable to choose a partitioning such that there is an even load balance between the

processors, i.e. each subdomain will contain approximately the same number of grid

points so that the work done by each processor is roughly equal. An even load balance

can easily be achieved for uniform grids and when full or semi coarsening is employed.
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6.2.2 Communication

All the components in the multigrid algorithm 4.5 (e.g. interpolation, restriction,

smoothing and the coarse grid solve) can be fully described in terms of vector dot

products and matrix-vector multiplications, in addition to some scalar operations. For

many of these operations, data that is distributed across multiple processors is required,

thus the need for communication is apparent. However, it is obvious that the whole

multigrid method can be parallelized if we can parallelise each of the operations in it.

By a suitable reordering of rows and columns, a global matrix A (i.e. defined on the

whole domain) and a global vector x can be partitioned into local components defined

on the subdomains as follows:

A =




A11 Aoff
12 · · · Aoff

1P

Aoff
21 A22 · · · Aoff

2P
. . .

Aoff
P1 Aoff

P2 · · · APP



, and x =




x1

x2

...

xP



,

Let n denote the global problem size and ni the number of local grid points in Ωi. Then

we have

Aii ∈ R
ni,ni , Aoff

ij ∈ R
ni,nj and xi ∈ R

ni for i, j = 1, . . . , P .

Let us also define the following components of matrix A:

Ai =
[
Aoff

i1 Aoff
i2 · · · Aii · · · Aoff

in

]
.

It is common to store Ai in processor i, for i = 1, . . . , P , and likewise xi in processor

i. This method of partitioning the matrices is in fact what is used for the parallel

computations in this thesis.

Now, for some basic vector operations such as

Copying: y = x i.e. yi = xi, ∀i = 1, . . . , P ,

Scaling: x = ax i.e. xi = axi, ∀i = 1, . . . , P ,

there is no need for communication because the operations on each processor are in-

dependent. However, for parallel vector dot products or matrix vector multiplications,

the operations are not independent.
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Vector Dot Product

The dot product α = (a,b) can be computed in parallel using MPI ALLREDUCE. The

local dot products

αi = (ai,bi) , ∀i = 1, . . . , P

are computed independently for each subdomain Ωi, and the MPI ALLREDUCE call cal-

culates

α =

P∑

i=1

αi,

with the result available on all processors.

Matrix-Vector Multiplication

For a matrix-vector multiplication, the product y = Ax is written in terms of the local

components as




y1

y2
...

yP




=




A11 Aoff
12 · · · Aoff

1P

Aoff
21 A22 · · · Aoff

2P
. . .

Aoff
P1 Aoff

P2 · · · APP







x1

x2

...

xP



. (6.2.1)

Here, the vectors x, y and the matrix A are said to be distributed between processors

(cf. [32]). Suppose the matrix is a finite volume discretisation of the Poisson equation

on Ω, i.e. a 5-point stencil. Then the entries of Aoff
ij correspond to a connection between

a node in Ωi and a node in Ωj and will be zero almost everywhere. On processor i, the

local matrix-vector multiplication will be

yi = Aix = Aiixi +
∑

i 6=j

Aoff
ij xj . (6.2.2)

Recall that we store Aoff
ij locally on processor i. However, the need for communication

arises because the entries of xj are stored in processor j, thus the necessary components

of xj must be sent from processor j to processor i. These are the indices of the vector

that correspond to the nodes in Ωj that are adjacent to the boundary of Ωi, as shown

in Figure 6-4. This is because Aoff
ij is in fact zero almost everywhere, with non-zero

entries only in components that relate to those particular nodes.

Let βji denote the set of nodes in Ωj that are adjacent to the boundary of Ωi. Then

the components of xj that are sent to processor i are stored in a vector xi←j ∈ R
nj
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Ωi Ωj

Figure 6-4: The communication needed for matrix-vector multiplications

belonging to processor i, as follows:

xi←j(k) =

{
xj(k) if k ∈ βji

0 otherwise
(6.2.3)

for k = 1, . . . , nj. This procedure is known as the accumulation of xi, where additional

components of the global vector x are accumulated from other processors whose subdo-

mains share a boundary with Ωi. Using the vectors xi←j from (6.2.3), the matrix-vector

multiplication can be calculated on processor i as

yi = Aiixi +
∑

i 6=j

Aoff
ij xi←j , ∀i = 1, . . . , P .

With matrix A being a 5-point stencil in 2D, for example, this means processor i will

only ever require data from the four processors adjacent to it. This communication

structure therefore resembles a 5-point stencil and will be known as a 5-point stencil

communication topology. Hence, the conversion of a distributed vector to an accumu-

lated vector involves a 5-point stencil communication topology.

This communication strategy is also commonly referred to as a ghost point or halo

strategy [32] since each processor requires data from nodes that are only directly outside

its subdomain, as shown in Figure 6-4.

6.2.3 Parallel Components of Multigrid

We now discuss how each of the components in the multigrid algorithm can be imple-

mented in parallel:
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Figure 6-5: (a) Linear interpolation: some entries of the matrix depend on data from
processors associated with adjacent subdomains only, and (b) bilinear interpolation:
some entries of the matrix depend on data also from processors associated with sub-
domains that share a corner with Ωi. Dotted lines denote the fine grid, the thin lines
denote the coarse grid and the thick lines denote the subdomain boundaries

Interpolation and Restriction

Assuming all the grids are partitioned along the same lines, the interpolation and

restriction matrices are partitioned like the matrix A from (6.2.1), i.e.

Pℓ =




(Pℓ)11 (Pℓ)
off
12 · · · (Pℓ)

off
1P

(Pℓ)
off
21 (Pℓ)22 · · · (Pℓ)

off
2P

. . .

(Pℓ)
off
P1 (Pℓ)

off
P2 · · · (Pℓ)PP



, Rℓ =




(Rℓ)11 (Rℓ)
off
12 · · · (Rℓ)

off
1P

(Rℓ)
off
21 (Rℓ)22 · · · (Rℓ)

off
2P

. . .

(Rℓ)
off
P1 (Rℓ)

off
P2 · · · (Rℓ)PP



.

The matrix-vector multiplication eℓ = Pℓeℓ−1 is calculated in parallel by accumulating

the distributed components of eℓ−1 on each processor, and the components of eℓ on

processor i are found via the calculation (6.2.2), i.e.

(eℓ)i = (Pℓ)ii(eℓ−1)i +
∑

i 6=j

(Pℓ)
off
ij (eℓ−1)j .

If linear interpolation is used (cf. Section 4.4.2), we have a 5-point communication

topology because the entries of (Pℓ)
off
ij will only be non-zero at indices corresponding

to coarse grid nodes that are adjacent to the boundary of Ωi, as illustrated in Figure

6-5(a). However, for bilinear interpolation or any higher order interpolations, then

the entries of (Pℓ)
off
ij can also depend on data from processors with subdomains that

only share a corner with Ωi, as illustrated in Figure 6-5(b), thus resulting in additional

ghost points and a 9-point communication topology. In terms of the performance of the

parallel algorithm it is not desirable to have to communicate with the four additional

processors, and so linear interpolation is sufficient.
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Figure 6-6: (a) Full weighting restriction: some entries of the matrix depend on data
from processors associated with adjacent subdomains, and (b) Four point average: all
the entries of the matrix depend on the data from the local processor. Dotted lines
denote the fine grid, the thin lines denote the coarse grid and the thick lines denote
the subdomain boundaries

The matrix-vector multiplication rℓ−1 = Rℓrℓ is calculated in the same way:

(rℓ−1)i = (Rℓ)ii(rℓ)i +
∑

i 6=j

(Rℓ)
off
ij (rℓ)j .

The communication topology is a 5-point stencil if Rℓ is the transpose of a linear

interpolation operator because the entries of (Rℓ)
off
ij will only be non-zero at entries

corresponding to fine grid nodes that are adjacent to the boundary of Ωi, as shown in

Figure 6-6(a). If Rℓ is the simpler four point average (cf. Section 4.4.2), however, no

inter-processor communication is necessary because no data is needed from components

that correspond to the fine grid nodes in a different subdomain (see Figure 6-6(b)).

Clearly, the advantage of the four point average is that no communication is necessary,

but since it is not the transpose of linear interpolation, the symmetry of the method

will be lost.

Smoothing

Recall the Gauss–Seidel method from Section 4.2:

u(k) = u(k−1) +D−1(b− Lu(k) − Uu(k−1) −Du(k−1)) .

The updated solution at each node depends on the solution at previously updated

nodes. If the previously updated nodes are on a different processor, then the par-

allelization of this method would mean processors have to wait for each other, thus

increasing the amount of time some processors may remain idle.
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However, for the Jacobi method

u(k) = u(k−1) +D−1(b−Au(k−1)) ,

the updated solution only depends on the solution at the previous iteration, and so

the parallelization of the method does not require the processors to have to wait for

each other. All the communication during the calculation of u(k) will be to accumulate

u(k−1) at the start of each iteration.

By splitting the local matrix Aii as Aii = Dii + Lii + Uii, the Jacobi method is

parallelized as

u
(k)
i = u

(k−1)
i +D−1ii (bi −Aiiu

(k−1)
i −

∑

j 6=i

Aoff
ij u

(k−1)
j←i ) , i = 1, . . . , P ,

where u(k−1) is accumulated on each processor to obtain u
(k−1)
j←i , as defined in (6.2.3),

and the same partitioning of A as (6.2.1) is used.

Now, as stated in 4.2, the Gauss–Seidel method is a better smoother than the

Jacobi method, typically reducing the number of multigrid iterations required by ap-

proximately 25% (eg. 8 instead of 12). However, in parallel, the Gauss–Seidel requires

more communication. Therefore it makes sense to modify the smoother to a hybrid

Jacobi/Gauss−Seidel smoother, only making use of the most up-to-date values of the

solution vector if the corresponding node is associated with the same processor (within

one relaxation step). If the node is a ghost point and belongs to another processor

then the value from the previous relaxation sweep is used (as in the Jacobi method).

This may lead to a slight increase in the number of iterations on large numbers of

processors or small local problem sizes, but it avoids unnecessary communication and

data dependencies. The method is then parallelized, on processors i = 1, . . . , P as

u
(k)
i = u

(k−1)
i +D−1ii


bi − Liiũ

(k)
i − Uiiu

(k−1)
i −Diiu

(k−1)
i −

∑

j 6=i

Aoff
ij u

(k−1)
i←j


 .

where

ũ
(k)
i (ℓ) =

{
u
(k)
i (ℓ) if node nℓ ∈ Ωi

u
(k−1)
i←j (ℓ) if node nℓ ∈ Ωj , j 6= i

.

The algorithm for the parallel hybrid Jacobi/Gauss–Seidel smoother is given in Algo-

rithm 6.1.

Note that for block smoothers, entire blocks are updated at each iteration rather

than individual nodes, which requires tridiagonal solves typically using the Thomas
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Algorithm 6.1 The hybrid Jacobi/Gauss–Seidel Method: jac gs(Ai, ui, bi)

Choose u(0)

for k = 1, 2, . . ., until convergence . . . do

Accumulate u
(k−1)
i

u
(k)
i = u

(k−1)
i +D−1ii

(
bi − Liiũ

(k)
i −Riiu

(k−1)
i −Diiu

(k−1)
i −∑j 6=iA

off
ij u

(k−1)
i←j

)

end for

algorithm. This procedure can be parallelized, but the data dependencies are such

that the processors will have to wait for each other, resulting in some processors being

idle for long periods of time. Also, since the tridiagonal blocks are small compared to

the main problem, particularly in 3D, it is preferable for each block to be contained on

only one processor. This usually leads to a 2D partitioning strategy with no partitioning

in the direction which the tridiagonal blocks are updated.

Coarse Grid Solve

The coarse grid solves discussed in thesis are either

• a Krylov subspace solver, or

• a line smoother.

Krylov subspace methods use a combination of matrix-vector multiplications (with

the 5-point stencil operator A), vector dot products and scalar operations. These

components, as discussed already, can all be parallelized. Line-smoothers can also be

parallelized efficiently, provided that a hybrid Jacobi/ Gauss–Seidel smoother is used

and each tridiagonal block is not split between multiple processors.

6.2.4 Parallelization Strategy of NUMG

We will see in this section that the particular strategies used for the NUMG method

lead to necessary alterations of the sequential method in order to obtain an efficient

parallelization. Let us first consider the radial direction in the 3D NUMG method. We

have discussed already that the use of the r-line smoother means it would be detri-

mental to the efficiency of the method to partition the domain in the radial direction.

The tridiagonal solves along each r-line would lead to too much unnecessary commu-

nication and data dependencies between the processors, therefore we partition only in

the longitudinal and latitudinal directions. However, any number of partitions in these
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directions should be admissible. Importantly, this partitioning strategy also conformes

with the codes used at the Met Office.

Now for the longitudinal and latitudinal directions, the main issues that arise are

the partitioning of the coarse grids and the communication at the boundaries.

The grid partitioning strategy is simple: choose a partitioning such that all grids are

partitioned along the same lines (for the 2D method) or planes (for the 3D method) to

avoid extra communication when using the grid transfer operators Rℓ and Pℓ. We have

mentioned one way of achieving this, which is to partition the coarsest grid first, and

then ensure that all finer grids are partitioned along the same lines/planes. However,

this partitioning strategy leads to two major problems:

Load balance: Partitioning on the coarsest grid may have an effect on the load bal-

ance on the finer grids. On the finest grid, where the majority of the work is done,

this becomes an issue as an uneven load balance will cause the processors to have an

uneven distribution of work.

Grid partitioning at the Met Office: The multigrid solver is to be part of a much

larger code (belonging to the Met Office) and the grid partitioning on the finest grid

needs to conform with the partitioning used in the rest of the code. Since one of the

ultimate aims of this project is to implement the multigrid method into the operational

code used at the Met Office, it is vital that the grid partitions are identical in both

codes, and this cannot be achieved if the partitioning is determined on the coarsest

grid first. Typically, the Met Office chooses a partitioning such that there is an evenly

distributed load balance on each processor.

With the above considerations in mind, we must choose the grid partitioning on

the finest grid first. The immediate concern with doing this is that a line on the fine

grid chosen as a partition may not exist on the coarse grid. Thus a small but necessary

modification to the conditional semi-coarsening strategy introduced in Section 5.2 is

required. We enforce an extra condition that coarsening cannot occur across a processor

boundary, even if it is in a region where full coarsening is enforced. This ensures that

the boundaries of each subdomain coincide with the boundaries of control cells and

that the partitioning on each coarse grid is along the same lines/planes as that on the

fine grid. This adjustment to the coarsening strategy results in some additional non-

uniformity in the coarsening near processor boundaries, as shown in Figure 6-7 for two

parallel coarse grids. Note that the mesh width in the θ-direction on grid Tℓ, i.e. h(ℓ)θ ,

is no longer guaranteed to be constant thus it is generalized as h
(ℓ)
θ,k for k = 1, . . . , n

(ℓ)
θ ,
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Figure 6-7: Parallel non-uniform coarsening keeping the location of the processor in-
terface fixed. Grids for one refinement (top) and three refinements (bottom) with a
uniform 4× 4 partitioning onto 16 processors.

where n
(ℓ)
θ is the number of grid points in the θ-direction on grid Tℓ. Figure 6-7 also

shows that the additional non-uniformity can actually become quite severe, which is

detrimental particularly in the θ-direction where uniform full coarsening was imposed

for the sequential code. Hence further adjustments are made to ensure that no cell is

too fine or coarse relative to its adjacent cells. We do this by making sure that the mesh

widths are at least quasi-uniform near the processor boundaries, i.e. h
(ℓ)
θ,k ≤ Cθh

(ℓ)
θ,k+1

and h
(ℓ)
θ,k+1 ≤ Cθh

(ℓ)
θ,k for some constant Cθ. The effect of this is that the same side of

the domain is never semi-coarsened twice in succession, thus avoiding the possibility of

thin cells at the boundaries. In our experiments, Cθ is set to 0.5.

Our partitioning strategy deals with both the above issues, despite introducing some

additional non-uniformity on the coarse grids. However, we will see in Section 6.3 that

the non-uniformity does not have a significant effect on the performance of the parallel

method.
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Ωi

Figure 6-8: Communication for processor subdomains on the periodic boundary

As discussed already, a ghost point (or halo) strategy is used for communication

between processors, which is implemented using MPI. However, the communication at

the boundaries of the domain must be handled differently to account for the poles and

the periodic boundary conditions. For a subdomain Ωi which has a boundary coinciding

with, say, the west boundary of Ω like in Figure 6-8, there is no adjacent subdomain on

the left. However, because of the periodic boundary conditions, communication must

occur with the east-most subdomain as demonstrated in Figure 6-8.

As for the treatment of the poles, each of the southern-most subdomains will require

data from the south pole node, and likewise for the north pole. However, the poles

are only stored on one processor each, so they need to be communicated to all the

relevant processors. Also, the pole nodes themselves will need information from their

adjacent nodes which may be distributed across several processors, so these all need to

be communicated to the processors containing the poles.

In addition to the coarse grid partitioning and the treatment of the communication

at the boundaries, the discretisation scheme is chosen such that it yields a 5-point stencil

on each grid. This means discretising the problem on each grid rather than using the

Galerkin product (cf. Section 4.4.2). Operators with a 5-point stencil mean that any

matrix-vector multiplications or applications of the smoother using these operators

require communication only with processors associated with adjacent subdomains, i.e.

a 5-point communication topology. We also choose Rℓ and Pℓ to conform with the 5-

point communication topology, i.e. linear interpolation and full weighting restriction.

6.2.5 Parallel Multigrid Algorithm

Using the parallel components of multigrid described in this chapter, Algorithm 6.2

describes the parallel V-cycle algorithm. Note that the accumulation of vectors takes

place several times in the algorithm.
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Algorithm 6.2 The parallel V-cycle on processor i: PVcycle((Aℓ)i, (uℓ)i, (bℓ)i, ℓ)

if (ℓ = 1) then
Accumulate (uℓ)i
Solve (Aℓ)i(uℓ)i = (bℓ)i (parallel coarse grid solve)

else
Accumulate (uℓ)i
(uℓ)i = jac gs((Aℓ)i, (uℓ)i, (bℓ)i) (parallel pre-smoothing)

(rℓ)i = (bℓ)i − ((Aℓ)ii(uℓ)i +
∑

j 6=i(Aℓ)
off
ij (uℓ)ji)

Accumulate (rℓ)i
(rℓ−1)i = (Rℓ)ii(rℓ)i +

∑
j 6=i(Rℓ)

off
ij (rℓ)ji (parallel restriction)

(eℓ−1)i = 0
PVcycle((Aℓ−1)i, (eℓ−1)i, (rℓ−1)i, ℓ− 1)
Accumulate (eℓ−1)i
(eℓ)i = (Pℓ)ii(eℓ−1)i +

∑
j 6=i(Pℓ)

off
ij (eℓ−1)ji (parallel interpolation)

(uℓ)i = (uℓ)i + (eℓ)i
(uℓ)i = jac gs((Aℓ)i, (uℓ)i, (bℓ)i) (parallel post-smoothing)

end if

The conditional semi-coarsening strategy is also altered in parallel, as discussed

in Section 6.2.4. We enforce the additional constraint that coarsening cannot occur

across subdomain boundaries whilst also maintaining the quasi-uniform mesh widths

in the θ-direction. The parallel algorithm for conditional semi-coarsening is given in

Algorithm 6.3.

6.3 Parallel Numerical Results – Speedup and Scaling

We test the parallel NUMG code for both the 2D and 3D elliptic problems. Firstly

we test the code for the nondimensionalised 2D Poisson equation (5.5.1) on the unit

sphere with Lφ = Lθ = 1, with results given in Section 6.3.1. Then in Section 6.3.2 the

code is tested on the nondimensionalised 3D problem (5.6.1) on a spherical shell, with

Lθ = Lφ = 1 and Lr = 10−4, and using a graded mesh in the radial direction, i.e. the

problem closely resembles the Quasi-Geostrophic Omega equation (2.2.16) solved on a

typical grid used by the Met Office. We test the code on two different clusters, a 64-bit

AMD Opteron 2210 cluster (wolf) with a total of 24 processors (the same machines as

used in Chapter 5) and a 64-bit Intel Xeon E5462 cluster (aquila) with 2GB memory

and 3MB Cache per processor. aquila has a total of over 800 processors, but it has

only been possible to access a maximum of 256 processors at once. Both clusters use

an Infinipath network.
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Algorithm 6.3 Parallel conditional semi-coarsening for the Poisson-type equation on

the sphere: Cond parallel(h
(ℓ)
θ , h

(ℓ)
φ , n

(ℓ)
θ , n

(ℓ)
φ , ℓ, h

(ℓ−1)
θ , h

(ℓ−1)
θ , n

(ℓ−1)
θ , n

(ℓ−1)
φ )

incr = 1 (incrementing up the φ-line)

for j = 1, n
(ℓ)
φ

ratio = (Lφ/Lθ)(2h
(ℓ)
θ /h

(ℓ)
φ,incr)

2 sin2(πφincr)

if ratio ≥ 0.5 and line incr 6= a processor boundary then

h
(ℓ−1)
φ,j = h

(ℓ)
φ,incr + h

(ℓ)
φ,incr+1 (extra condition enforced for full

incr = incr + 2 coarsening in φ-direction at line incr)
else

h
(ℓ−1)
φ,j = h

(ℓ)
φ,incr

incr = incr + 1
end if

if incr > n
(ℓ)
φ exit

end for
incr = 1 (incrementing up the θ-line)

for k = 1, n
(ℓ)
θ

if mod(nθ, 2) == 0 or line incr 6= a processor boundary or

h
(ℓ)
θ,incr ≤ 0.5h

(ℓ)
θ,incr+1 then

h
(ℓ−1)
θ,k = h

(ℓ)
θ,incr + h

(ℓ)
θ,incr+1 (full coarsening will always occur unless

incr = incr + 2 coarsening across a processor boundary)
else

h
(ℓ−1)
θ,k = h

(ℓ)
θ,incr (semi coarsening used to prevent

incr = incr + 1 coarsening across a processor boundary)
end if

if incr > n
(ℓ)
θ exit

end for

n
(ℓ−1)
φ = j, n

(ℓ−1)
θ = k

6.3.1 2D results

Recall problem (5.5.1) with Lθ = Lφ = 1:

− ∂

∂φ

(
sin(πφ)

π2
∂u

∂φ

)
− ∂

∂θ

(
1

4π2 sin(πφ)

∂u

∂θ

)
= g2D sin(πφ) , Ω = (0, 1)2 ,

which is the Poisson equation in spherical polar coordinates. Recall that we use periodic

conditions in the boundary coinciding with λ = 0 and λ = 1, and polar boundary

conditions at φ = 0 and φ = 1. We firstly perform a speedup (strong scalability) test

of the NUMG code, which we recall is a measure of the performance gain of a parallel
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Figure 6-9: Speedup (strong scalability) test of the 2D NUMG method on wolf for two
different problem sizes.

code running on N processors over the sequential code where the global problem size

remains unchanged. We test this on problem sizes 512× 256 and 2048× 1024, with the

results shown in Figure 6-9. The speedup is very good (almost optimal) on up to about

4 processors. However, for larger numbers of processors the amount of work that each

of the processors has to do becomes smaller relative to the amount of communication

required, and so the speedup drops off slightly from the optimal (linear) growth. The

speedup is slightly better for the larger problem size, which is an expected result since

the larger each subdomain the smaller the relative amount of communication.

A better test for how well the implementation scales on larger numbers of processors

is a scaled efficiency (weak scalability) test, where the problem size per processor is

fixed as the number of processors is increased. In this test the CPU time of a method

that has optimum weak scalability should remain constant as the number of processors

is increased. Figures 6-10 and 6-11 show the weak scalability of the method on the two

different clusters with respect to CPU time and iterations. In Figure 6-10 the problem

size per processor is 1920 × 960 on wolf, and observe that the method has almost

optimal weak scalability, particularly beyond four processors. With 24 processors, it

was possible to solve the problem on the entire globe with a horizontal grid resolution

of approximately 3.5km at the equator and 4.5×107 unknowns in just over 30 seconds.

On aquila we fix the problem size per processor to 512×256 and tested the parallel

performance of the code for much larger clusters of up to 256 processors. We observe

very good parallel scaling with a slight increase of the CPU time for more than 96

processors. This is because the number of iterations jumps from about 9 to 12 when

using more than 96 processors, potentially because of the hybrid smoother, where the
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Figure 6-10: Scaled efficiency (weak scalability) test of 2D NUMG on wolf: Problem
size 1920 × 960 on each processor.
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Figure 6-11: Scaled efficiency (weak scalability) test of 2D NUMG on aquila: Problem
size 512 × 256 on each processor.

Jacobi method – which is less effective as a smoother than the Gauss-Seidel method

(cf. 6.2.4) – has to be used at more nodes on the domain. However, this increase in

iterations when using more than 96 processors is not significant, a factor of only 1.3,

and so good scalability is observed even with a very large number of processors. With

256 processors, the problem was solved on the globe with a resolution of about 5km and

3.5 × 107 unknowns in as little as 6 seconds. With larger problem sizes per processor,

the problem can be solved on even finer resolutions, though the main purpose of the

tests on aquila was to demonstrate the scalability of the method on large clusters.

The results are very encouraging, particularly since the Met Office seeks to increase

the grid resolution and number of processors used for solving their elliptic problems.

The results have shown that both of these changes can clearly be handled effectively

by the parallel NUMG method.
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Figure 6-12: Speedup (strong scalability) test on wolf for 3D NUMG (solid blue line)
and the r-line preconditioned CG method (dotted black line). Global problem size:
360 × 180× 100

6.3.2 3D results

We test the performance of NUMG on problem (5.6.1), i.e.

− ∂

∂r

(
α1(ξ)

∂u

∂r

)
− ∂

∂φ

(
α2(ξ)

∂u

∂φ

)
− ∂

∂θ

(
α3(ξ)

∂u

∂θ

)
= f ,

on Ω = (0, 1)3, where

α1(ξ) = α1(r, φ, θ) = Lr(φ, θ)(a+ dr)2 sin(πφ) ,

α2(ξ) = α2(r, φ, θ) = Lθ(r, θ) sin(πφ)/π
2 ,

α3(ξ) = α3(r, φ, θ) = Lφ(r, φ)/(4π
2 sin(πφ)) .

Recall that a and d represent the radius of the Earth and the depth of the atmosphere,

respectively. The boundary conditions we use are periodic at λ = 0 and λ = 1, polar at

φ = 0 and φ = 1 and Dirichlet at r = 0 and r = 1. In addition, we set Lθ = Lφ = 1 and

Lr = 10−4. Recall from Section 5.6 that we are also interested in the performance of

the Poisson-type equation which we obtain via setting Lr = 1. However, since solving

the Poisson-type equation is essentially easier (see Table 5.21), we give the parallel

results only for the more difficult case, i.e. for Lr = 10−4.

We firstly test the speedup (strong scalability) of NUMG on a problem size of

360 × 180 × 100, with the results shown in Figure 6-12. The speedup is very good

(almost optimal) on up to about 8 processors. However, as with the 2D results, the

speedup drops off slightly from the optimal growth for larger numbers of processors

because the amount of work that each of the processors has to do becomes too small.
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Figure 6-13: Scaled efficiency (weak scalability) test on wolf for 3D NUMG: Problem
size 200 × 100× 50 on each processor.
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Figure 6-14: Scaled efficiency (weak scalability) test on aquila for 3D NUMG: Problem
size 192 × 120× 50 on each processor.

In the scaled efficiency (weak scalability) test, Figures 6-13 and 6-14 show how the

method scales on the two different clusters with respect to CPU time and the number

of iterations. In Figure 6-13 we fix the problem size per processor to 200× 100× 50 on

wolf, and observe that the method scales almost optimally, particularly beyond four

processors. On aquila we fix the problem size per processor to 192 × 120 × 50 and

observe also very good parallel scaling with a slight increase of the CPU time for more

than 96 processors. This is because the number of iterations jumps from about 10

to about 15 when using more than 96 processors. This may be caused by the hybrid

smoother or by the reduced anisotropy in the r-direction (as the grid is more refined in

the horizontal direction than in the vertical). However, this trend was also observed in

Figure 6-11 for the 2D scaling results on aquila, indicating that the hybrid smoother

is likely to be the main cause of the increase in iterations. Despite the small increase
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Figure 6-15: Scaled efficiency (weak scalability) test on wolf for the r-line precondi-
tioned CG method: Problem size 200× 100 × 50 on each processor.

in iterations, we see that on 256 processors with the new parallel 3D NUMG method,

the problem on the entire globe with a resolution of 10km at the equator and 3× 109

unknowns was solved in about 60 seconds. This is extremely fast, particularly since

the method has to deal with anisotropies present in two coordinate directions which

change throughout the domain. On larger clusters, potentially even finer resolutions

could be solved within the same time scale.

Now let us compare the parallel NUMG solver with parallelizations of the other

methods. Krylov subspace methods with r-line Gauss–Seidel preconditioners (such as

the ones used at the Met Office) are extremely well suited to an efficient parallelization,

and the numerical results in Figure 6-12 show this clearly. For our experiments, we

used the r-line preconditioned conjugate gradient (CG) method, and the speedup is

almost optimal (linear) on any number of processors. However, as we saw in Section

5.6, the method is not robust, i.e. the number of iterations grows with the problem size,

and for a grid resolution of 360 × 180 × 100, the NUMG solver is over 10 times faster

than r-line Jacobi preconditioned CG on one processor which we can see in Figure 6-12.

Even when increasing the number of processors for the same problem size, the multigrid

method is still about 10 times faster than preconditioned CG which is substantial.

For finer grid resolutions, such as the ones used in the weak scalability tests in

Figures 6-13 and 6-14, the r-line preconditioned CG method becomes increasingly

inferior to NUMG. This is demonstrated with a scaled efficiency (weak scalability) test

for the preconditioned CG method. We see in Figure 6-15 that the method has poor

weak scalability since the number of iterations using this method grows linearly with

problem size, unlike NUMG. Hence the CPU time also grows at a similar rate, and with

the problem size on 16 processors it takes over 20 times longer than NUMG. Therefore,
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despite the slightly more efficient parallelization, it is never likely to outperform NUMG

even with hundreds of processors, particularly as the problem size increases. This

is a particularly important point to highlight since the results in this section have

clearly shown that the NUMG method can handle an increase in grid resolution that

is expected to occur within the VAR system.

Finally we demonstrate the practical use of the parallel NUMG code within the

VAR system for solving the Quasi-Geostrophic Omega equation. Figure 6-16 is a

visualization of the vertical velocity profile at θ-level 20 on the Charney-Phillips grid,

using the N72 analysis grid which is used for test problems and has a resolution of

144 × 109 × 70. This is exactly the same snapshot as Figure 5-6 but generated using

eight processors instead of one. The two figures show exactly the same image, with no

additional errors on the processor interfaces.

Figure 6-16: Snapshot of the vertical velocity, w, after one iteration of VAR at θ-level
20 (roughly 8.8km above ground level), using eight processors



Chapter 7

Application of Multigrid in the

Potential Vorticity Based Control

Variable Transform

In this final chapter we discuss a novel robust method for solving the balanced potential

vorticity (PV) equation (2.3.7) and the unbalanced anti-PV equation (2.3.9) arising

within the PV-based control variable transform (CVT), as described in Chapter 2.

The vorticity based CVT currently operational at the Met Office has various limi-

tations as discussed in Section 2.3 (see also [53]). Hence a new CVT based on potential

vorticity (PV) variables has been thoroughly investigated in, for example [5, 25]. This

new scheme overcomes the limitations of the old CVT and should replace it in the

operational system if it is feasible to implement and if its computational cost is not

significantly greater.

The main issue arising from the PV-based CVT is the necessity to solve highly

ill-conditioned three dimensional (3D) elliptic problems that are not present in the old

CVT. The operators of these 3D problems are written abstractly in the form

−A∇2
ru −B

∂2

∂r2
(
∇−2r ∇r · f∇ru

)
= g , (7.0.1)

i.e. they have a two dimensional (2D) solve embedded in them and so it is not possible

to discretise them straightforwardly. Moreover the problems are so ill-conditioned that

the solvers used by the Met Office have been unsuccessful in approximating the solutions

to them, even to a low residual tolerance.

Unfortunately the non-uniform multigrid method (NUMG) devised in Chapter 5

cannot directly be used to solve these problems due to the lack of a discrete operator.

181
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However it is possible to use Krylov subspace methods since these only involve applying

the operator, which can be done without an explicit matrix. Nevertheless, due to the

ill-conditioned nature of the problem, the Krylov method will need to be accelerated by

a preconditioner. A novel approach for doing this is to use NUMG to solve a simplified

form of (7.0.1). The simplified problem will have no 2D solve embedded in it so that

it can be discretised. Robust multilevel preconditioners accelerate Krylov methods to

an extent that they perform optimally, so this new approach should not only solve the

3D problems in the PV-based CVT, but it should solve them very efficiently depending

on how well the simplified form of (7.0.1) approximates the original operator and how

efficiently NUMG can solve the simplified problem.

In Section 7.1 we recall the vorticity based CVT that is currently used in the

operational data assimilation code at the Met Office and how the limitations of this

method are overcome by introducing new control variables based on PV. The exact

steps of the PV-based CVT are also given, with details on the equations that need

to be solved at each step and where the variables are located on the grid. Then in

Section 7.2, we investigate the methods for solving the main equations present in the

new transformation, and how NUMG can be used to great effect. Numerical results

are given in Section 7.3 for a simplified test problem, where we not only demonstrate

the performance of the new method for solving the 3D problems, but also show that

the full cycle of transformations yields accurate results. Finally in Section 7.4, we give

the same numerical results for the full PV-based CVT.

7.1 PV-Based Control Variable Transform

Recall from Chapter 2 that the CVT allows the VAR cost function (2.2.2) to be ex-

pressed in terms of certain new variables that have fewer correlations thus reducing

the density of the background error covariance matrix. The CVT is the transformation

between the usual model variables, e.g. wind velocity, pressure and potential tempera-

ture, and a set of variables called control variables. The state of the system in terms of

the model variables x is written as a sum of the background state xb and an increment

x′. Minimizing the VAR cost function with respect to x′ is problematic as the back-

ground error covariance matrix is large, not explicitly known and contains complicated

correlations between errors in the model variables, as stated in [25]. In terms of the

control variable increments, v′, however, the cost function simplifies because the corre-

lations between the variables are much smaller and so the background error covariance

matrix can be approximated to a good degree of accuracy by a block diagonal matrix

(cf. [53]). Special transformations are still necessary to reduce the background error
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covariance matrix to the identity matrix, as described in Section 2.2.3 (cf. [49]).

We also recall from Chapter 2 that the control variables are chosen so that they rep-

resent normal modes of the system. In a linear shallow water system, one third of the

normal modes are characterized as balanced, i.e. corresponding to Rossby waves, and

two thirds as unbalanced, i.e. corresponding to inertia-gravity waves. As stated in [5],

balanced components of flow are associated solely with PV whilst unbalanced compo-

nents of flow have no PV and are associated with anti-PV. Thus PV only exists within

balanced components of flow, where anti-PV = 0, and similarly, only the unbalanced

variables can influence anti-PV, where PV = 0. The same concept can be extended

to a 3D atmosphere, assuming that there are no significant correlations between the

balanced and unbalanced normal modes. The choice of control variables is made based

on this concept, choosing one variable that represents the balanced normal mode and

two that represent the unbalanced modes, so that they have an uncorrelated property.

The “vorticity-based” control variables which are currently used in the Met Office data

assimilation system, described in [80], attempt to capture the balanced part of the flow

entirely by the streamfunction. A limitation to this method is that the streamfunction

is assumed to be a completely balanced variable with no allowance for an unbalanced

component. However, in general, the streamfunction and pressure variables have both

balanced and unbalanced components as follows

ψ = ψu + ψb ,

p = pu + pb .

This suggests that the traditional vorticity based CVT is suboptimal, and so a new

set of control variables based on PV [5, 53, 81] have been introduced. We recall from

Section 2.3 that these are the velocity potential, χ, the balanced streamfunction, ψb and

the unbalanced pressure, pu. The new “PV-based” CVT, formulated in [25], recognizes

the presence of an unbalanced streamfunction and exploits the association between PV

and the balanced component of the flow, hence should not suffer the shortcomings of

the vorticity-based CVT.

We now focus on implementing the PV-based CVT, where we only need to use the

model variable increments u′, v′ and p′ since the calculation of the remaining model

variable increments (cf. (2.2.13) – (2.2.16)) are not affected by the new CVT. Recall

that a staggered Arakawa C-grid is used in the horizontal (cf. Figure 2-2) and a

Charney-Phillips grid in the vertical (cf. Figure 2-3), and each of the variables are

located at specific points on the grid.

Firstly the transformation from the model to control variables, i.e. the T-transform,
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Figure 7-1: (a) The finite volume grid with (a) p′-points as cell centres and (b) ψ′-points
as cell centres

is defined by

v′ = Tx′ ,

with

x′ = (u′, v′, p′) and v′ = (χ′, ψ′b, p
′
u) .

Now, given the model variables, the implementation of the T-transform is summarized

via a succession of:

• finite difference calculations,

• interpolation of values between points on the grid,

• solving 2D and 3D elliptic problems,

and is done via an intermediate set of variables, namely the horizontal divergence, D,

the PV, Q, and the anti-PV, Q. The detailed sequence of steps in the T-transform is

as follows:

Step 1 : (u′, v′, p′) → (D′, ψ′, p′)

The model variables u′ and v′ are located on the edges of each cell in the Arakawa

C-grid and on the ρ-levels in the vertical direction on the Charney-Phillips grid

(see Figures 2-2 and 2-3). p′ is found in the centre of each cell (including the pole

nodes) and also on the ρ-levels, and we call these p′-points (see Figure 7-1(a)).

The horizontal divergence increment, D′, is calculated as the divergence of the

horizontal velocity field, i.e.

D′ = ∇r · u′ =
1

a sinφ

(
∂u′

∂λ
+
∂(v′ sinφ)

∂φ

)
,
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where u′ = (u′, v′). Recall that we solve all equations in a spherical geometry, thus

φ ∈ [0, π] and λ ∈ [0, 2π]. A constant radius of a is used since the normal mode

analysis is done with the shallow atmosphere approximation. The derivatives are

calculated using finite differences. Since u′ and v′ are located on the edges of

each cell, D′ is found naturally at the p′-points. Since the poles are also located

at cell centres, D′ is derived at the poles using the divergence theorem:

A(k)D′ = hλ

nλ∑

i=1

v′(i, hφ/2, k) , k = 1, . . . , nr

where A(k) = π(rkhφ/2)
2 is the approximate area of the pole cell at level k in the

r-direction, hλ and hφ are the mesh widths in the λ- and φ-directions respectively

and nλ and nr are the number of grid points in the λ- and r-directions respectively.

The vorticity, ζ ′, is calculated as the curl of the velocity field, i.e. ζ ′ = ∇r × u′,

and is found naturally on the corners of each cell and on ρ-levels. We call these

ψ′-points (see Figure 7-1(b)). By the Helmholtz decomposition, the horizontal

velocities can be decomposed into rotational and divergent parts as in (2.2.10).

Using the Helmholtz decomposition and the equation for the vorticity, the stream-

function, located at the ψ-points, is obtained by solving

∇2
rψ
′ =

1

a sinφ

(
∂v′

∂λ
− ∂(u′ sinφ)

∂φ

)
, (7.1.1)

where

∇2
r =

1

a2 sinφ

(
∂

∂φ

(
sinφ

∂

∂φ

)
+

1

sinφ

∂2

∂λ2

)
.

This 2D Poisson solve must be solved on each ρ-level. It is solved with periodic

and polar boundary conditions defined in Section 3.2. As a result the system is

rank deficient and is unique only up to a constant, as stated in Section 3.2.4,

and must be solved using the techniques discussed in Section 5.5.2. For the

experiments in this chapter, the constant is set to zero by projection (cf. Section

5.5.2). Variables located at ψ′-points are not defined at the poles.

Step 2 : (D′, ψ′, p′) → (D′, Q′, Q
′
)

We use (2.3.1) to calculate Q′ from p′ and ψ′, i.e.

Q′ = α0∇2
rψ
′ + β0p

′ + γ0
∂p′

∂r
+ ε0

∂2p′

∂r2
. (7.1.2)

α0, β0, γ0 and ε0 are reference state values, defined in [4, Section 5.1]. Before

calculating Q′, however, we realize that not all variables are located at the same
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place. We requireQ′ on the ψ′-points, but p′ is located at the p′-points. Therefore,

p′ must be interpolated onto the ψ′-points before (7.1.2) can be applied.

To calculate Q
′
from p′ and ψ′, we use (2.3.5), i.e.

Q
′
= ∇r · (fρ0∇rψ

′)−∇2
rp
′ , (7.1.3)

where ρ0 is a reference density value and f = −2Ω cos(φ) is the Coriolis force

calculated using the Earth’s angular velocity of Ω = 7.292 × 10−5 rad/s. Q
′
is

required at the p′-points so ψ′ is interpolated before (7.1.3) is applied.

Step 3 : (D′, Q′, Q
′
) → (χ′, ψ′b, p

′
u)

Use (2.3.6) to substitute p′b into (2.3.3), and since the unbalanced components

have no PV, the following ‘balanced equation’ is solved using just for the balanced

component of the streamfunction, i.e. ψ′b:

α0∇2
rψ
′
b + β0

(
∇−2r ∇r · fρ0∇rψ

′
b

)
+ γ0

∂

∂r

(
∇−2r ∇r · fρ0∇rψ

′
b

)
+

ε0
∂2

∂r2
(
∇−2r ∇r · fρ0∇rψ

′
b

)
= Q′

(7.1.4)

This equation is solved using periodic boundary and polar boundary conditions

on the φ-λ plane, and Neumann boundary conditions at the r-boundaries. The

solution to the 2D Poisson solves in (7.1.4) are unique only up to a constant.

However, if this constant is fixed to zero, then (7.1.4) has a unique solution despite

the Neumann boundary conditions, thanks to presence of the zeroth order term

in the 3D problem. ψ′b is found on the ψ′-points.

To obtain p′u, firstly we solve (2.3.4), which we recall is

∇2
rξ
′ = Q

′
, (7.1.5)

on each ρ-level for ξ′ – found at the p′-points – and then use (2.3.8) to substi-

tute p′u into (2.3.2). Since balanced components have no anti-PV, the following

‘unbalanced equation’ is solved just for the unbalanced component of the stream-

function, i.e. ψ′u:

α0∇2
rψ
′
u + β0

(
∇−2r ∇r · fρ0∇rψ

′
u

)
+ γ0

∂

∂r

(
∇−2r ∇r · fρ0∇rψ

′
u

)
+

ε0
∂2

∂r2
(
∇−2r ∇r · fρ0∇rψ

′
u

)
= β0ξ

′ + γ0
∂ξ′

∂r
+ ε0

∂2ξ′

∂r2

(7.1.6)
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which is found at the p′-points, with the same boundary conditions as for (7.1.4).

Then p′u can be found at the p′-points by solving

∇2
r

(
p′u + ξ′

)
= ∇r · (fρ0∇rψ

′
u) , (7.1.7)

i.e. (2.3.8) on each grid level.

Note that there is an alternative equation that can be solved for p′u at the p′-

points, as given in [5, Section 4.7.2]. However, it is simpler to solve (7.1.6) and

(7.1.7) since (7.1.6) is very similar to (7.1.4), only with a different right-hand-side.

Finally, we deduce from the Helmholtz decomposition that

∇2
rχ
′ = D′ , (7.1.8)

which we solve on each ρ-level to find χ′ at the p′-points.

This completes the T-transform. To recapitulate, we have to solve two 3D systems,

(7.1.4) and (7.1.6), and four sets of 2D problems, namely (7.1.1), (7.1.5), (7.1.7) and

(7.1.8), on each grid level. Note that in practice only one 3D solve, namely (7.1.4), is

needed. Since we know ψ′ from (7.1.1), we can easily find ψ′u be method of subtraction,

then use (7.1.7) to find p′u. However, since the purpose of the experiments in this section

is to show that the full cycle of the PV-based CVT works, we must perform each 3D

solve independently to be certain that the 3D solver is accurate and to consequently

ensure no errors are carried over between variables.

We now present the inverse problem, the U-transform, i.e.

x′ = Uv′ .

Given the PV-based control variable increments, the U-transform proceeds as follows:

Step 1 : (χ′, ψ′b, p
′
u) → (χ′, ψ′, p′)

Given ψ′b we can find p′b by interpolating ψ′b onto the p′-points and solving

∇2
rp
′
b = ∇r ·

(
fρ0∇rψ

′
b

)
. (7.1.9)

on each ρ-level. This gives p′b on the p′-points and since we already have p′u on

the p′-points, we find p′, also on the p′-points, by

p′ = p′u + p′b .
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Now, given p′u, we obtain ψ′u by interpolating p′u onto the ψ′-points and solving

∇2
rψ
′
u = (α0)

−1
{
−β0p′u − γ0

∂p′u
∂r

− ε0
∂2p′u
∂r2

}
(7.1.10)

on each ρ-level. We now have ψ′u and ψ′b on the ψ′-points, so ψ′ is found by

ψ′ = ψ′u + ψ′b .

Step 2 : (χ′, ψ′, p′) → (u′, v′, p′)

The Helmholtz decomposition yields

u′ = −1

a

∂ψ′

∂φ
+

1

a sinφ

∂χ′

∂λ
,

v′ =
1

a sinφ

∂ψ′

∂λ
+

1

a

∂χ′

∂φ
.

to obtain u′ and v′ at the edges of each cell. u′ is also defined at the poles where

it is simply set to u′ = 0.

This completes theU-transform, where we had to solve two further sets of 2D problems,

namely (7.1.9) and (7.1.10). Note that both the 3D problems are solved on the ψ′-

points, but some of the 2D problems are also solved on the p′-points. Thus, in order

to discretise these problems using the finite volume method, two grids are required,

one whose cell centres are the p′-points (see Figure 7-1(a)) and another whose cell

centres are the ψ′-points (see Figure 7-1(b)). Both p′- and ψ′-points are located on the

ρ-levels, so interpolation between these points only requires averaging in the horizontal

direction. The number of p′-points on the grid is nλ × nφ + 2 (see Section 3.2.4) and

the number of ψ′-points is nλ× (nφ +1), noting that they are not located at the poles.

Clearly, the T-transform poses the biggest difficulties with the two 3D solves high-

lighted in step 3. The U-transform, in contrast, contains only two 2D Poisson solves on

each ρ-level and some finite difference calculations. Thus, the majority of the cost of

the PV-based CVT is the time taken for solving the 3D problems in the T-transform,

and in the following section we investigate methods for solving these problems.

7.2 Strategy for Solving the Balanced PV-Equation

In this section we focus on the difficulties that arise in attempting to solve the balanced

PV-equation (7.1.4) and possible methods that can be used to overcome these difficul-

ties. The unbalanced equation (7.1.6) can be solved identically. Currently at the Met
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Office, the generalized conjugate residual (GCR) method [34] is used to make an at-

tempt at solving the equation, but even with a high number of iterations, convergence

does not occur to a satisfactory tolerance.

We begin by tackling a simplified model problem, i.e. removing the zeroth and first

order terms from (7.1.4), i.e.

α0∇2
rψ
′
b + ε0

∂2

∂r2
(
∇−2r ∇r · fρ0∇rψ

′
b

)
= Q′ , (7.2.1)

where we set α0 = N2(r) and ε0 = f/ρ0, which are reasonably close to their true values.

We also use the same boundary conditions as for (7.1.4) and (7.1.6). By removing the

zeroth order term, the problem is now singular, thus the solution will be unique only

up to a constant. The immediate issue we observe is that the operator ∇−2r is used

only to indicate that a 2D Poisson solve is embedded within the 3D problem, and so

it cannot be discretised. As a result, (7.2.1) cannot be solved using NUMG alone, but

we incorporate NUMG within the development of an alternative strategy.

Let us introduce the following operator:

A = α0∇2
r + ε0

∂2

∂r2
(
∇−2r ∇r · fρ0∇r

)
.

Since A cannot be discretised, the main task is in finding a method of solving (7.2.1)

without the use of a discrete operator.

The proposed strategy is to use the preconditioned conjugate gradient (PCG)

method (cf. Algorithm 4.3) with the following preconditioner:

P = N2(r)∇2
r + f20

∂2

∂r2
. (7.2.2)

This is a simplified version of A which assumes that f and ρ0 are constant, where

f = f0 ≈ 10−4. The operator ∇−2r has disappeared, so P can be discretised to form

a matrix P . Hence systems involving P can solved, and we do so using NUMG. In

fact, P resembles the operator for the Quasi-Geostrophic omega equation from Section

2.2.4, which we recall can be solved optimally using NUMG (cf. Section 5.6.4). Note

that with the boundary conditions as stated above, P is only semi-definite, since the

constant vector is in the nullspace of P . Hence a projection step is required on each

grid level to ensure that the right-hand-side in is the range of P (recall Section 5.5.2).

Now, the remaining issue with using the PCG method is how to implement the

application of the operator A. This will involve a 2D Poisson solve and finite volume

calculations of second order terms.
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Algorithm 7.1 apply operator(A, p, q)

1. Given a vector p, the discrete analogue of a function p, containing information at
each node in the 3D domain, create a vector p2D containing the same information
as p but only on the first layer, i.e. on the first ρ-level.

2. Let Af be a finite volume discretisation of ∇r · (fρ0∇r). Premultiply p2D with
Af to obtain c, the discrete analogue of ∇r · (fρ0∇rp2D).

3. Let A2D be a finite volume discretisation of ∇2
r. Solve ∇2

rp
∗
2D = ∇r · (fρ0∇rp2D)

using a 2D NUMG solver to obtain p∗2D = A−12Dc. The solution is unique only up
to a constant, which is set to zero.

4. Repeat steps 1-3 on each ρ-level to obtain p∗ which contains p∗2D on every ρ-level.

5. Using a finite volume discretisation, A2, of the second order term ∂2

∂r2 , we apply
q1 = ε0A2p

∗

6. Obtain the discrete analogue of α0∇2
rp2D by applying q∗2 = α0A2Dp2D on each

ρ-level. Then we have q2, a vector containing q∗2 on each layer.

7. Finally add q1 and q2 to obtain q, the desired vector which gives the discrete
values of α0∇2

rp+ ε0∇−2r ∇r · (fρ0∇rp) at each node in the 3D domain.

Thus the two key components of this new PCG method are:

Applying the operator A : Replaces the traditional matrix-vector multiplication in

the Krylov subspace method, since A cannot be discretised.

Preconditioning using the operator P : A solve involving the discrete operator

P can be done optimally using NUMG. It is a good choice for a preconditioner

because P approximates A closely, particularly near the poles where f2 ≈ f20 .

The details of the sequence of steps used to apply the operator A are described in

Algorithm 7.1.

As for the preconditioning step z = P−1r, this is solved using NUMG V-cycle

iterations until a specific tolerance is satisfied. A residual tolerance of 10−4 for the

preconditioner proved to be sufficient in experiments, and stricter tolerances made no

difference to the number of iterations required for the overall PCG method to converge.

The algorithm for solving (7.2.1) using PCG is given in Algorithm 7.2.



CHAPTER 7. APPLICATION IN THE PV-BASED CVT 191

Algorithm 7.2 Preconditioned Conjugate Gradient method: pcg(A, u, b)

Choose u(0) (initial solution) and P (preconditioner)

q = apply operator(A,u(0),q) (apply A to u(0))

r(0) = b− q

Solve z(0) = P−1r(0) (solve using NUMG)

p(0) = z(0)

for k = 0, 1, . . . , until convergence . . .

q = apply operator(A,p(k),q) (apply A to p(k))

αk = (z(k)T r(k))/(p(k)Tq)

u(k+1) = u(k) + αkp
(k)

r(k+1) = r(k) − αkAp
(k)

if r(k+1) sufficiently small exit

Solve z(k+1) = P−1r(k+1) (solve using NUMG)

βk = (z(k+1)T r(k+1))/(z(k)T r(k))

p(k+1) = z(k+1) + βkp
(k)

end for

7.3 Results for the Simplified Model Problem

We firstly test that the transformations do indeed work, i.e. that I = TU. We do this

by using initial predetermined values for the control variable increments ψ′b, p
′
u and

χ′. We apply the full cycle of transformations, i.e. the U-transform followed by the

T-transform, and then measure the resulting error between the initial and final values

of the control variable increments. The values chosen for ψ′b, p
′
u and χ′ are:

ψ′b = 0.5 cos(4πφ) sin(2πλ) cos(πr) ,

p′u = cos(πφ) sin(4πλ) sin(πr) ,

χ′ = 0.2 cos(πλ) sin(2πφ) cos(πr) .

We perform the full cycle of transformations on different grid resolutions and determine

the error with respect to the mesh width. Note that the mesh widths on the two grids

in Figure 7-1 will always be equal.

We use the simplified model problem (7.2.1) to test the PV-based CVT, meaning

that some other equations in the transformations must also be changed. These are:

(7.1.2) which becomes: Q′ = α0∇2
rψ
′ + ε0

∂2p′

∂r2
, (7.3.1)

(7.1.4) which becomes: α0∇2
rψ
′
b + ε0

∂2

∂r2
(
∇−2r ∇r · fρ0∇rψ

′
b

)
= Q′ , (7.3.2)
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(7.1.6) which becomes: α0∇2
rψ
′
u + ε0

∂2

∂r2
(
∇−2r ∇r · fρ0∇rψ

′
u

)
= ε0

∂2ξ′

∂r2
, (7.3.3)

(7.1.10) which becomes: ∇2
rψ
′
u = (α0)

−1
{
−ε0

∂2p′u
∂r2

}
. (7.3.4)

We use the preconditioned conjugate gradient (PCG) method preconditioned with an

NUMG preconditioner at each iteration. Tables 7.1 and 7.2 show the results. In

Table 7.1, errorX denotes the error between the initial values of control variable X

and their values after the full cycle of transformations, measured using the Euclidean

norm. We observe that the error is small and converges for all quantities relatively

rapidly with respect to mesh width (at least quadratically for each variable). This fast

convergence could be aided by the fact that smooth functions have been used for the

control variables, which is likely to reduce the discretisation and interpolation errors.

We will therefore test the full cycle of transformations in the next section with more

oscillatory functions, which will simulate a more realistic representation of the true

values of the control variables.

However, the results from this section confirm that the cycle of transformations is

indeed accurate and that the accuracy can be improved using a finer resolution of grid

points. Table 7.1 also shows the total number of PCG iterations required for solving

(7.3.2) and (7.3.3) to a residual tolerance of 10−4, and also the CPU time required per

PCG solve. The number of iterations fluctuate slightly with problem size, but certainly

do not show a trend of increasing with the problem size. Hence the total CPU time

taken grows approximately linearly with problem size, and this optimality is even more

apparent when measuring the CPU time per iteration on each problem size.

Problem Size errorψ′

b
errorp′u errorχ′ # PCG its Time taken for PCG solve

32x16x8 9.59E-2 0.11 6.68E-2 26/26 1.12/1.13
64x32x16 1.46E-2 1.60E-2 1.05E-2 39/45 14.6/15.6
128x64x32 3.34E-3 3.46E-3 1.03E-3 22/38 69.7/123.5
256x128x64 6.83E-4 5.11E-4 8.97E-6 16/29 463/865

Table 7.1: The magnitude of errors in the PV-based CVT. Column 5 denotes the num-
ber of PCG iterations required for solving (7.3.2) and (7.3.3), respectively. Similarly
column 6 denotes the CPU time (in seconds) required for solving (7.3.2) and (7.3.3),
respectively.

Table 7.2 gives the details of each of the components that is used in the process of

solving the balanced PV-equation (7.3.2) using the PCG method. Since this equation

and equation (7.3.3) are the main bottlenecks in the PV-based CVT, it is important

that each component of these solves performs effectively. Column 2 shows the average

number of iterations required for the 2D Poisson solve on each layer, solved using the
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2D NUMG method from Section 5.5, which is clearly unaffected by the problem size.

Likewise, Column 3 gives the average CPU time of the Poisson solves, which grows

linearly with problem size. Column 4 gives the average CPU time for applying the

operator A at each PCG iteration, which replaces the matrix-vector multiplication.

Once again the CPU time grows linearly with problem size. Column 5 indicates the

average number of V-cycle iterations required for the preconditioning step at each PCG

iteration. Recall that the preconditioning system is solved using the 3D NUMG method

to a residual tolerance of 10−4, and stricter tolerances did not reduce the overall error of

the full cycle of transformations any further. The number of V-cycle iterations required

is robust with respect to the problem size, which is consistent with the experiments and

theory from Chapter 5, and the time of the V-cycle solve grows linearly with problem

size, as shown in Column 6. Hence we observe that all the components of the PCG

method perform optimally, and as a result the PCG method performs almost optimally,

with only a small fluctuation in the number of PCG iterations, as seen in Table 7.1.

Problem Size # Its (2D) 2D solve Apply A # Its (3D) 3D solve
32x16x8 8 2.6E-3 2.4E-2 3 1.8E-2
64x32x16 8 1.0E-2 0.17 4 0.18
128x64x32 9 3.9E-2 1.35 4 1.82
256x128x64 9 0.18 12.9 4 15.4

Table 7.2: Details of each component when solving the 3D balanced equation (7.3.2).
CPU time in seconds. Identical results are found when solving the 3D unbalanced
equation (7.3.3).

The methods just described are completely novel for these kind of problems and

the results will be of great interest to the Met Office who are currently unable to carry

out the PV-based CVT operationally due to the lack of a good enough solver.

7.4 Results for the Full Problem

This chapter is concluded with the results for the PV-based CVT as described in Sec-

tion 7.1, using the balanced PV-equation (7.1.4) and the unbalanced anti-PV equation

(7.1.6). No simplifications are made, and so the results here describe the transforma-

tions as they would be implemented at the Met Office.

We present the results in the same way as in Section 7.3, i.e. show whether the PV-

based CVT yields accurate results, and then give the performance of the preconditioned

Krylov subspace method on each of the 3D problems. The difference between the

two 3D problems in this section and those in Section 7.3 is the inclusion of the first
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and zeroth order terms. In addition, each of the coefficients α0, β0, γ0 and ε0 are

now functions of radius and latitude, e.g. α0 = α0(r, φ), which imposes an additional

difficulty. However, each of the functions varies smoothly in both directions. The

operator for the full 3D problems are

A = α0∇2
r + β0

(
∇−2r ∇r · fρ0∇r

)
+ γ0

∂

∂r

(
∇−2r ∇r · fρ0∇r

)
+

ε0
∂2

∂r2
(
∇−2r ∇r · fρ0∇r

)
,

which is applied at each iteration.

Recall from Section 3.2.1 that the finite volume discretisation of first order terms

yields a non-symmetric matrix. Hence the preconditioned conjugate gradient (PCG)

method will be replaced with the preconditioned stabilized biconjugate gradient (Bi-

CGSTAB) method [76], a fast iterative method for the solution of non-symmetric linear

systems (note that GMRES [65] is also a suitably fast method for this situation). The

preconditioning matrix, P , is a finite volume discretisation of

P = α̃0∇2
r + β̃0fρ0 + γ̃0fρ0

∂

∂r
+ ε̃0fρ0

∂2

∂r2
,

where α̃0, β̃0, γ̃0 and ε̃0 are functions of r only and take the values of α0, β0, γ0 and

ε0 at φ = π/4, i.e. midway between the south pole and the equator. Solves involving

the preconditioning matrix P will be done with NUMG using a tolerance of 10−4 as

before. The inclusion of the zeroth order term ensures that the operator is positive

definite, and a unique solution exists if the constant in the solution to the 2D solves

is fixed. Note also that the first order term in the radial direction poses no additional

difficulties for NUMG (as shown when solving the Helmholtz equation in Section 5.6.5)

because of the r-line smoother we use.

The Bi-CGSTAB method requires two applications of the operator and two NUMG

solves as opposed to one of each as in the case of the PCG method. The algorithm

of the preconditioned Bi-CGSTAB method is given in Algorithm 7.3, as we use this

to solve (7.1.4) and (7.1.6) to a residual tolerance of 10−4 as we did in the previous

section.

The values chosen this time for ψ′b, p
′
u and χ′ are:

ψ′b = 0.5 cos(40πφ) sin(15πλ) cos(8πr) + cos(6πφ) sin(25πλ) cos(12πr) ,

p′u = 2cos(πφ) sin(4πλ) sin(πr)− 0.1 cos(30πφ) sin(40πλ) sin(20πr) ,

χ′ = 3cos(20πλ) sin(25πφ) cos(35πr) + cos(5πφ) sin(10πλ) sin(15πr) .
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Algorithm 7.3 Bi-CGSTAB method with left preconditioning: pcg(A, u, b)

Choose u(0) (initial solution) and P (preconditioner)

t = apply operator(A,u(0), t) (apply A to u(0))

r(0) = b− t

p(0) = v(0) = 0

r̂ = r(0)

α = ω = ρ0 = 1
for k = 0, 1, . . . , until convergence . . .

ρk+1 = r̂T r(k)

β = (ρk+1α)/(ρkω)

p(k+1) = r(k) + β(p(k) − ωv(k))

Solve y = P−1p(k+1) (solve using NUMG)

v(k+1) = apply operator(A,y,v(k+1)) (apply A to y)

α = ρk+1/(r̂
Tv(k+1))

s = r(k) − αv(k+1)

Solve z = P−1s (solve using NUMG)
t = apply operator(A, z, t) (apply A to z)
ω = (tT s)/(tT t)

u(k+1) = u(k) + αy+ ωz

r(k+1) = s− ωt

if r(k+1) sufficiently small exit
end for

which have wavenumbers that are much higher than for the control variables used for

the tests in Section 7.3, and so the functions are much harder to capture accurately,

particularly with the coarse grids.

Table 7.3 shows that the CVT is implemented accurately, with the error between

the initial and final values of each control variable converging between linearly and

quadratically with respect to the mesh width. This is a more expected rate of con-

vergence of the errors than those observed in Section 7.3, since the interpolation and

discretisation operators used are second-order accurate with respect to mesh width.

Note that there is a discrepancy in the number of iterations required for solving (7.1.4)

and (7.1.6), caused by a different right-hand-side. We did not investigate the reason

for the differences, but nevertheless it is clear that for both cases the number of Bi-

CGSTAB iterations does not grow with problem size, hence the total CPU time grows

roughly linearly with problem size. Table 7.4 demonstrates that each of the components

in the preconditioned Krylov subspace method performes optimally, with the number

of iterations independent of the problem size and the CPU times increasing linearly.
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Problem Size errorψ′

b
errorp′u errorχ′ # PCG its Time taken for PCG solve

32x16x8 0.29 0.31 0.27 19/39 2.30/4.61
64x32x16 0.10 0.11 0.12 16/23 12.0/17.1
128x64x32 3.76E-2 4.77E-2 5.15E-2 6/15 48.3/119
256x128x64 1.55E-2 1.70E-2 1.84E-2 6/16 391/988

Table 7.3: The magnitude of errors in the PV-based CVT. Column 5 denotes the num-
ber of PCG iterations required for solving (7.1.4) and (7.1.6), respectively. Similarly
column 6 denotes the CPU time (in seconds) required for solving (7.1.4) and (7.1.6),
respectively.

Problem Size # Its (2D) 2D solve Apply A # Its (3D) 3D solve
32x16x8 8 2.9E-3 2.9E-2 4 2.9E-2
64x32x16 8 9.0E-3 0.16 4 0.21
128x64x32 9 3.8E-2 1.9 4 1.9
256x128x64 9 0.18 16.5 4 15.6

Table 7.4: Details of each component when solving the 3D balanced equation (7.1.4).
The same results are found when solving the 3D unbalanced equation (7.1.6). CPU
time in seconds.

Finally we demonstrate the performance of the method for solving the balanced PV-

equation (7.1.4) within the developmental VAR code for the PV-based CVT. In addition

to the coefficients α0, β0, γ0 and ε0 varying in two coordinate directions (latitude and

radius), the mesh in the radial direction also varies in all three coordinate directions

to take into account orography (relief of mountains) of the Earth’s surface. (7.1.4) was

solved in 38 iterations of the preconditioned Bi-CGSTAB method using the N108 data

assimilation grid which has a resolution of 216× 163 × 70. Figure 7-2 is a snapshot of

the balanced streamfunction plotted at ρ-level 40 which is approximately 29.8km above

the surface of the Earth.

7.5 Summary

We have demonstrated in this chapter that NUMG can also be effectively used as

a preconditioner to Krylov subspace methods in harder problems arising in the PV-

based CVT. The new techniques outlined in the chapter successfully deal with the ill-

conditioned nature of these problems and are able to solve them efficiently irrespective

of the mesh resolution. Since the Met Office’s GCR solver has not even been able to

find a solution to these problems, the method described in this chapter is a big step

towards getting the PV-based CVT operational in the Met Office’s data assimilation

code.
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Figure 7-2: Snapshot of the balanced streamfunction, ψb, at ρ-level 40 (roughly 29.8km
above ground level)



Chapter 8

Future Work and Extensions

The work of this thesis has answered many questions and has made a genuine contri-

bution to the development of the VAR code at the Met Office. Nevertheless, there are

several natural extensions to the thesis that ought to be investigated and would be of

potential use to the Met Office. These are:

1. Solving the main elliptic problems on different grids, e.g. Yin–Yang or icosahedral

grids [9]. These grids will avoid both the “pole problem” and the anisotropies

introduced by the spherical polar grid used in this thesis and at the Met Office.

Hence, the accuracy and speed of the multigrid method that can be achieved on

these grids would be of great interest. Clearly the multigrid method will need to

be modified for each particular grid.

2. Investigating multigrid methods for elliptic problems with a large convection term

in all three coordinate directions. Solving equations with convection dominated

flows will be useful from the point of view of the Met Office.

3. Solving the balanced equation as a coupled problem rather than a single nested

problem. Techniques such as block elimination (cf. Section 5.5.2) could be used.

4. Investigating a theoretical justification for the robustness of the two-dimensional

Poisson-type equation with grid-aligned anisotropy, when solved with the non-

uniform multigrid method.

5. Investigation of multigrid methods for a more general class of problems, e.g. for

matrices with positive off-diagonal entries. This could be linked with point 2,

above.
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Appendix A

Convergence Theory Using

Fourier Analysis

Recall the one-dimensional model problem (4.1.1) from Section 4.1:

−uxx = f(x) on Ω = (0, 1), u(x) = 0 on Γ = {0, 1}.

Let nℓ − 1 and nℓ−1 − 1 be the number of interior grid points on levels ℓ (the fine grid)

and ℓ− 1 (the coarse grid) respectively. A finite difference discretisation of the above

problem leads to a system of nℓ − 1 equations denoted by

Aℓuℓ = bℓ ,

with

Aℓ =
1

h2ℓ




2 −1

−1 2
. . .

. . .
. . . −1

−1 2



.

We denote the mesh widths on each level by

hℓ =
1

nℓ
, hℓ−1 =

1

nℓ−1
= 2hℓ .

Recall from Section 4.2.3 that the eigenvectors {v(i)
ℓ : 1 ≤ i ≤ nℓ − 1} of Aℓ are

v
(i)
j,ℓ = sin(ijπhℓ), i, j = 1, . . . , nℓ − 1

199
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These eigenvectors form an orthonormal basis, so a matrix Qℓ consisting of v
(i)
ℓ as

its columns is unitary, i.e. QT
ℓ Qℓ = I. We form Qℓ with a special ordering of the

eigenvectors (the reason will become apparent later):

Qℓ = [v
(1)
ℓ ,v

(nℓ−1)
ℓ ,v

(2)
ℓ ,v

(nℓ−2)
ℓ , . . . ,v

(
nℓ
2
−1)

ℓ ,v
(
nℓ
2
+1)

ℓ ,v
(
nℓ
2
)

ℓ ] .

Multiplication by Qℓ or Q
T
ℓ does not change the spectral norm or spectral radius of a

matrix, thus we have

‖M̂ℓ‖2 = ‖Mℓ‖2 and ρ(M̂ℓ) = ρ(Mℓ) , (A.0.1)

where Mℓ is the iteration matrix for the two-grid method and M̂ℓ = Q−1ℓ MℓQℓ. Now,

convergence of the two-grid method is obtained if ρ(Mℓ) < 1, but since the spectral

radius and spectral norm of a symmetric matrix are equivalent, and by (A.0.1), we

have that convergence is obtained if

‖M̂ℓ‖2 < 1 .

It will be apparent that the Fourier-transformed iteration matrix M̂ℓ of the two-grid

method is a block diagonal matrix of the form

M̂ℓ = blockdiag{M1,M2, . . . ,Mnℓ−1−1,Mnℓ−1
} ,

where Mi ∈ R
2×2 for 1 ≤ i ≤ nℓ−1 − 1 and Mnℓ−1

∈ R. The matrices Mi satisfy

{
‖M̂ℓ‖2 = max{‖Mi‖2 : 1 ≤ i ≤ nℓ−1}
ρ(M̂ℓ) = max{ρ(Mi) : 1 ≤ i ≤ nℓ−1}

,

therefore it is sufficient to show that

max{‖Mi‖2 : 1 ≤ i ≤ nℓ−1} < 1

for convergence. The Fourier transformed two-grid iteration matrix is

M̂ℓ = QT
ℓ MℓQℓ = QT

ℓ (I − PA−1ℓ−1RAℓ)S
ν
ℓQℓ

= (I − P̂ Â−1ℓ−1R̂Âℓ)Ŝ
ν
ℓ ,

where

Âℓ = QT
ℓ AℓQℓ, Ŝℓ = QT

ℓ SℓQℓ, P̂ = QT
ℓ−1PQℓ, P̂ = QT

ℓ PQℓ−1 .
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Note that we are only using pre-smoothing for simplicity, but the analysis is still valid

when post-smoothing is included. The Fourier transformation matrix Qℓ−1 is built

using the eigenvectors of Aℓ−1, i.e. v
(i)
j,ℓ−1 = sin(2ijπhℓ), i = 1, . . . , nℓ−1 − 1, thus

Qℓ−1 = [v
(1)
ℓ−1,v

(2)
ℓ−1, . . . ,v

(nℓ−1−1)
ℓ ] .

From Section 4.2.3, we know that the eigenvalues of Aℓ are

λi =
4

h2ℓ
sin2

(
iπ
hℓ
2

)
.

For convenience we introduce the notation

si = sin

(
iπ
hℓ
2

)
, ci = cos

(
iπ
hℓ
2

)
.

Noting that s2nℓ−i = c2i and that Aℓv
(i)
ℓ = λiv

(i)
ℓ for i = 1, . . . , nℓ − 1, we have

Âℓ = QT
ℓ AℓQℓ = blockdiag{A1, . . . , Anℓ−1

} , (A.0.2)

where

Ai = 4h−2ℓ

[
s2i 0

0 c2i

]
, i = 1, . . . , nℓ−1 − 1 and Anℓ−1

= 2h−2ℓ . (A.0.3)

For the smother, suppose we choose the Jacobi method damped by ω = 1
2 , i.e. Sℓ =

I − 1
4h

2
ℓAℓ. Then noting that s2i = 1− c2i , we use (A.0.2) and (A.0.3) to deduce that

Ŝℓ = QT
ℓ SℓQℓ = blockdiag{S1, . . . , Snℓ−1

} , (A.0.4)

where

Si =

[
c2i 0

0 s2i

]
, i = 1, . . . , nℓ−1 − 1 Snℓ−1

=
1

2
. (A.0.5)

For the coarse grid operator, we have

Âℓ−1 = QT
ℓ−1Aℓ−1Qℓ−1 = diag{A′1, . . . , A′nℓ−1

} where A′i = 4h−2ℓ s2i c
2
i , (A.0.6)

because of Aℓ−1v
(i)
ℓ−1 = λ′iv

(i)
ℓ−1 with λ′i = 4h−2ℓ−1 sin

2
(
iπ

hℓ−1

2

)
= h−2ℓ sin2(iπhℓ). Finally

for the transfer operators we obtain

R̂ = QT
ℓ−1RQℓ = blockdiag{R1, . . . , Rnℓ−1−1, 0} where Ri =

√
1

2
[c2i , s

2
i ] , (A.0.7)
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and

P̂ = QT
ℓ RQℓ−1 = blockdiag{P1, . . . , Pnℓ−1−1, 0} with Pi =

√
2

[
c2i
s2i

]
. (A.0.8)

Now, using (A.0.2) – (A.0.8), we obtain

Mi = (I − Pi(A
′
i)
−1RiAi)S

ν
i , i = 1, . . . , nℓ−1 − 1 and Mnℓ−1

= 2−ν .

Inserting the matrices, we obtain for i = 1, . . . , nℓ−1 − 1,

Mi =

([
1 0

0 1

]
−
[
c2i
s2i

]
h2

4c2i s
2
i

[c2i , s
2
i ]

[
s2i 0

0 c2i

])[
c2i 0

0 s2i

]ν

=

[
s2i c2i
s2i c2i

][
c2i 0

0 s2i

]ν
. (A.0.9)

The first matrix represents the coarse grid correction and the second represents the

smoother. Now since 1 ≤ i ≤ nℓ−1 − 1 ≤ nℓ − i ≤ nℓ, we have

0 < s2i <
1

2
< c2i < 1 .

Hence in the coarse grid correction, the component of the smooth eigenvector (i.e.

the first column containing the si terms) is better reduced, while the smoother better

reduces the component of the oscillatory eigenvector (the second column). Now, using

(A.0.9),

‖Mi‖2 =
√
2[s4i (1− s2i )

2ν + (1− s2i )
2s4νk ]

⇒ max{‖Mi‖2} = max{fν(s2i ) : i = 1, . . . , nℓ−1} ,

where

fν(ξ) =
√

2[ξ2(1− ξ)2ν + (1− ξ)2ξ2ν ] .

Since 0 < s2i <
1
2 , we have

‖M‖2 = ‖M̂‖2 = max{‖Mk‖2} ≤ max0≤ξ≤ 1
2
|fν(ξ)| .

Hence the convergence rate of the two-grid iteration depends only on the number of

smoothing steps ν and is independent of hℓ.



Appendix B

The Multigrid Iteration Matrix

The proof of Lemma 4.6.9 is as follows:

Proof. For ℓ = 1, there is no multigrid iteration and only the coarse grid solve. For

ℓ = 2, the multigrid algorithm is identical to the two-grid algorithm, since only two

grids are used. Let ℓ > 2, and uj
ℓ be the approximation to the solution at the jth

iteration of multigrid. Then the pre-smoothing step yields

ūℓ = Sν1
ℓ uj

ℓ .

Then we apply the multigrid iteration at level ℓ−1 to Aℓ−1eℓ−1 = dℓ−1 := R(bℓ−Aℓūℓ)

with starting guess e0ℓ−1 = 0:

e1ℓ−1 =MMG
ℓ−1 e

0
ℓ−1 +NMG

ℓ−1 dℓ−1 = NMG
ℓ−1 dℓ−1

⇒ eγℓ−1 =
γ−1∑

µ=0

(MMG
ℓ−1 )

µNMG
ℓ−1 dℓ−1 .

Interpolating the error onto the fine grid, we have

eℓ = Peγℓ−1 = P

γ−1∑

µ=0

(MMG
ℓ−1 )

µNMG
ℓ−1 dℓ−1,

and after updating the error and post-smoothing, we obtain

Sν2
ℓ uj+1

ℓ = Sν2
ℓ (ūℓ + eℓ) = Sν2

ℓ S
ν1
ℓ uj

ℓ + P

γ−1∑

µ=0

(MMG
ℓ−1 )

µNMG
ℓ−1 R(bℓ −AℓS

ν1
ℓ uj

ℓ) .
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Now, any solution of Aℓuℓ = bℓ is a stationary point of (4.6.32), thus

uℓ =MMG
ℓ uℓ +NMG

ℓ bℓ =MMG
ℓ uℓ +NMG

ℓ Aℓuℓ

⇒I =MMG
ℓ +NMG

ℓ Aℓ

⇒NMG
ℓ = (I −MMG

ℓ )A−1ℓ .

Using this expression for NMG
ℓ we obtain

P

γ−1∑

µ=0

(MMG
ℓ−1 )

µNMG
ℓ−1 R(bℓ −AℓS

ν1
ℓ uj

ℓ)

= P

γ−1∑

µ=0

(MMG
ℓ−1 )

µ(I −MMG
ℓ−1 )A

−1
ℓ−1R(bℓ −AℓS

ν1
ℓ uj

ℓ)

= P

γ−1∑

µ=0

[(MMG
ℓ−1 )

µ − (MMG
ℓ−1 )

µ+1]A−1ℓ−1R(bℓ −AℓS
ν1
ℓ uj

ℓ)

= P [I − (MMG
ℓ−1 )

γ ]A−1ℓ−1R(bℓ −AℓS
ν1
ℓ uj

ℓ) .

Inserting this into (B) gives

Sν2
ℓ uj+1

ℓ = Sν2
ℓ (ūℓ + eℓ) = Sν2

ℓ S
ν1
ℓ uj

ℓ + P [I − (MMG
ℓ−1 )

γ ]A−1ℓ−1R(bℓ −AℓS
ν1
ℓ uj

ℓ),

and so the iteration matrix is

MMG
ℓ = Sν2

ℓ (I − P [I − (MMG
ℓ−1 )

γ ]A−1ℓ−1RAℓ)S
ν1
ℓ

= Sν2
ℓ (I − PA−1ℓ−1RAℓ)S

ν1
ℓ + Sν2

ℓ P (M
MG
ℓ−1 )

γA−1ℓ−1RAℓS
ν1
ℓ

=MTG
ℓ + Sν2

ℓ P (M
MG
ℓ−1 )

γA−1ℓ−1RAℓS
ν1
ℓ ,

by induction.



Appendix C

Proof of the Approximation

Property

Proof. (of Theorem 4.6.3) The proof will be given in a finite element setting. We

consider the finite element discretisation of the 2D Poisson equation as it satisfies the

regularity assumption (4.6.5). Let us first recall the problem to be solved (in the weak

formulation):

Find u ∈ V s.t. a(u, v) = (f, v)L2(Ω) ∀v ∈ V ,

where a : V × V → R is a bilinear form, (·, ·)L2(Ω) is the scalar product of L2(Ω) and

V = H1
0 (Ω). For the Poisson problem, the weak form is

a(u, v) =

∫

Ω
∇u · ∇v dxdy , (f, v)L2(Ω) =

∫

Ω
fvdx .

The weak form may be recast as the problem of finding u ∈ V satisfying the equation

Au = f . (C.0.1)

where A : V → V ′ is a mapping from the Hilbert space V to a dual space V ′ of all

bounded linear functionals on V .

We introduce a hierarchy of piecewise bilinear finite dimensional spaces

V1 ⊂ V2 ⊂ · · · ⊂ VF−1 ⊂ VF ⊂ V .

with suitable piecewise bilinear nodal basis functions for each of the spaces. We want

to solve the approximate weak form in the space VF , so we seek uF ∈ VF s.t.

a(uF , vF ) = (f, vF )L2(Ω) ∀vF ∈ VF . (C.0.2)
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Then uF ∈ R
nF

is the vector containing the values of uF at the nodal points, and we

have dim(Vℓ) = dim(Rnℓ
) = nℓ, ∀ℓ = 1, . . . , F .

The finite element discretisation of (C.0.2) on level ℓ is:

Aℓuℓ = bℓ .

We now define a bijective mapping from R
nℓ to Vℓ using the operator pℓ:

uℓ = pℓuℓ ,

with the adjoint mapping from Vℓ to R
nℓ defined as rℓ = pTℓ such that

< rℓuℓ,uℓ >= (uℓ, pℓuℓ)L2(Ω) ,

where uℓ ∈ R
nℓ , uℓ ∈ Vℓ and where < ·, · > is the scalar product defined as

< a,b >= h2ℓ

nℓ∑

i=1

a(i)b(i) .

The scaling by h2ℓ in the definition of < ·, · > is applied to ensure that the Euclidean

norm of a vector vℓ ∈ R
nℓ and the L2(Ω)-norm of the corresponding function pℓvℓ ∈ Vℓ

are uniformly equivalent, i.e.

1

C
‖ vℓ ‖2≤‖ pℓvℓ ‖L2(Ω)≤ C ‖ vℓ ‖2 . (C.0.3)

Using the bijective mapping, we define the canonical interpolation operator Pℓ : R
nℓ−1 →

R
nℓ , by

pℓ−1 = pℓPℓ ⇒ Pℓ = p−1ℓ pℓ−1 .

The canonical restriction operator, Rℓ : R
nℓ → R

nℓ−1 , is defined as the adjoint of Pℓ:

Rℓ = P T
ℓ s.t. < Pℓuℓ−1,wℓ >=< uℓ−1, Rℓwℓ > .

The coarse grid operator Aℓ−1 is then constructed using the Galerkin product (see

Section 4.4.2), i.e. Aℓ−1 = RℓAℓPℓ.

Recall the regularity assumption from Finite Element theory [19] (see also (4.6.5)):

‖ uℓ − u ‖L2(Ω)≤ Ch2ℓ ‖ f ‖L2(Ω) . (C.0.4)

Now, (C.0.1) implies u = A−1f . Also, it can be shown that Aℓ = rℓApℓ and bℓ = rℓf
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which gives uℓ = pℓA
−1
ℓ rℓf . Inserting the values for u and uℓ into (C.0.4), we get

‖ pℓA−1ℓ rℓf −A−1f ‖L2(Ω)≤ Ch2ℓ ‖ f ‖L2(Ω)

⇒ ‖ pℓA−1ℓ rℓ −A−1 ‖L2(Ω)→L2(Ω)≤ Ch2ℓ . (C.0.5)

Similarly, on Vℓ−1 we have:

‖ pℓ−1A−1ℓ−1rℓ−1 −A−1 ‖L2(Ω)→L2(Ω)≤ Ch2ℓ−1 . (C.0.6)

So combining (C.0.5) and (C.0.6) gives

‖ pℓA−1ℓ rℓ − pℓ−1A
−1
ℓ−1rℓ−1 ‖L2(Ω)→L2(Ω)

≤‖ pℓA−1ℓ rℓ −A−1 ‖L2(Ω)→L2(Ω) + ‖ pℓ−1A−1ℓ−1rℓ−1 −A−1 ‖L2(Ω)→L2(Ω)

≤ C(h2ℓ + h2ℓ−1) .

Then using pℓ−1 = pℓPℓ and rℓ−1 = Rℓrℓ, we obtain

‖ pℓ(A−1ℓ − PA−1ℓ−1R)rℓ ‖L2(Ω)→L2(Ω)≤ C(h2ℓ + h2ℓ−1) .

Now inequality (C.0.3) implies ‖ pℓXrℓ ‖L2(Ω)→L2(Ω)≤ C2 ‖ X ‖2, where ‖ · ‖2 now

denotes the spectral norm, so

‖ A−1ℓ − PA−1ℓ−1R ‖2 ≤
1

C2
‖ pℓ(A−1ℓ − PA−1ℓ−1R)rℓ ‖L2(Ω)→L2(Ω)

≤ C ′(h2ℓ + h2ℓ−1) ≤ CAh
2
ℓ

under the assumption that hℓ−1 = 2hℓ. This proves the approximation property.
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[36] R. Eymard, T. Gallouët, and R. Herbin. Finite volume methods. Handbook of

numerical analysis, 7:713–1018, 2000.



CHAPTER C. APPLICATION IN THE PV-BASED CVT 211

[37] R.D. Falgout and U.M. Yang. hypre: A Library of High Performance Precondi-

tioners. Lecture Notes in Computer Science, 2331/2002:632–641, 2002.

[38] M. Fisher. Background error covariance modelling. In Seminar on Recent Devel-

opment in Data Assimilation for Atmosphere and Ocean, pages 45–63, 2003.

[39] S.R. Fulton, P.E. Ciesielski, and W.H. Schubert. Multigrid methods for elliptic

problems: A review. Mon. Wea. Rev, 114(5):943–959, 1986.

[40] M.W. Gee, J.J. Hu, and R.S. Tuminaro. A new smoothed aggregation multigrid

method for anisotropic problems. Numer. Lin. Alg. Appl, 16:19–37, 2009.

[41] T. Gjesdal. A Cell-Centered Multigrid Algorithm for All Grid Sizes. In NASA

conference publication, pages 327–338. Citeseer, 1996.

[42] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: portable parallel programming

with the message-passing interface. MIT press, 1999.

[43] W. Hackbusch. Multi-grid convergence theory. Multigrid Methods, pages 177–219,

1982.

[44] W. Hackbusch. Multi-grid methods and applications. Springer Verlag, 1985.

[45] W. Hackbusch. Iterative solution of large sparse systems of equations. Springer,

1994.

[46] V.E. Henson and U.M. Yang. BoomerAMG: a parallel algebraic multigrid solver

and preconditioner. Applied Numerical Mathematics, 41(1):155–177, 2002.

[47] M.R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear

systems. Journal of Research of the National Bureau of Standards, (49):409–436,

1952.

[48] J.D. Hogg, J.K. Reid, and J.A. Scott. A DAG-based sparse Cholesky solver for

multicore architectures. 2009.

[49] N.B. Ingleby. The statistical structure of forecast errors and its representation in

the Met. Office global 3-D variational data assimilation scheme. Quarterly Journal

of the Royal Meteorological Society, 127(571):209–232, 2001.

[50] A. Iserles. A first course in the numerical analysis of differential equations. Cam-

bridge Univ Pr, 2008.



CHAPTER C. APPLICATION IN THE PV-BASED CVT 212

[51] M. Kameyama, A. Kageyama, and T. Sato. Multigrid-based simulation code for

mantle convection in spherical shell using Yin-Yang grid. Physics of the Earth and

Planetary Interiors, 171(1-4):19–32, 2008.

[52] D. Katz. The application of PV-based control variable transformations in varia-

tional data assimilation. PhD thesis, Reading University, Department of Mathe-

matics, 2007.

[53] D. Katz, A.S. Lawless, N.K. Nichols, M.J.P. Cullen, and R.N. Bannister. A com-

parison of potential vorticity-based and vorticity-based control variables. The

University of Reading, Department of Mathematics, Numerical Analysis Report,

8:1–34, 2006.

[54] M.C. Lai and W.C. Wang. Fast direct solvers for Poisson equation on 2D polar

and spherical geometries. Numerical Methods for Partial Differential Equations,

18(1):56–68, 2002.

[55] J. Larsson, F.S. Lien, and E. Yee. Conditional semi-coarsening multigrid algorithm

for the Poisson equation on anisotropic grids. J. Comput. Phys., 208:368–383, 2005.

[56] AC Lorenc. Analysis methods for numerical weather prediction. Quart. J. Roy.

Meteor. Soc, 112(11):77–1194, 1986.

[57] T Melvin, M Dubal, N Wood, A Staniforth, and M Zerroukat. An inherently

mass conserving iterative semi-implicit semi-Lagrangian discretization of the non-

hydroststic vertical-slice equations. Quart. J. Roy. Meteor. Soc, 136:799–814, 2010.

[58] N. Neuss. V-cycle convergence with unsymmetric smoothers and application to

an anisotropic model problem. SIAM Journal of Numerical Analysis, 35(3):1201–

1212, 1998.

[59] Y. Notay. Convergence analysis of perturbed two-grid and multigrid methods.

SIAM J. Numer. Anal., 45(3):1035–1044.

[60] P.S. Pacheco. Parallel programming with MPI. Morgan Kaufmann, 1997.

[61] F. Rawlins, S.P. Ballard, K.J. Bovis, A.M. Clayton, D. Li, G.W. Inverarity,

A.C. Lorenc, and T.J. Payne. The Met Office global four-dimensional variational

data assimilation scheme. Quarterly Journal of the Royal Meteorological Society,

133(623):347–362, 2007.



CHAPTER C. APPLICATION IN THE PV-BASED CVT 213

[62] J.W. Ruge, Y. Li, S. McCormick, A. Brandt, and J.R. Bates. A nonlinear multigrid

solver for a semi-Lagrangian potential vorticity-based shallow-water model on the

sphere. SIAM Journal on Scientific Computing, 21:2381, 2000.
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