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1 Introduction

Consider a variationally–posed 2nd–order elliptic boundary value problem

a(u, v) ≡
∫
Ω

A(x) ∇u · ∇v =

∫
Ω

f(x)v(x), for all v ∈ H1
0 (Ω), (1)

with solution u ∈ H1
0 (Ω) and domain Ω ⊂ Rd, d = 2, 3, where the coefficient

tensor A(x) is highly heterogeneous (possibly in a spatially complicated way).
We assume that A(x) is symmetric, uniformly positive definite and mildly
anisotropic, i.e. λmin(A(x)) & λmax(A(x)) uniformly in x. We are particularly
interested in the case when the contrast maxx,y∈Ω λmax(A(x))/λmax(A(y))
is large. Many examples of this type arise in subsurface flow modelling or in
material science. The space H1

0 (Ω) is the usual Sobolev space of functions
with vanishing trace on ∂Ω and f ∈ H−1(Ω). For simplicity we assume for
the remainder that A(x) = α(x)I, i.e. a scalar diffusion coefficient.

Let Th be a simplicial triangulation of Ω and let (1) be discretised in
Vh ⊂ H1

0 (Ω), the space of continuous, piecewise linear FE functions with
respect to Th that vanish on ∂Ω. For simplicity let Th be quasi-uniform. The
a-orthogonal projection of u to Vh is denoted by uh. In the usual nodal basis
{ϕi}ni=1 for Vh, the problem of finding uh reduces to the n× n linear system

Au = b (2)

with stiffness matrix A = (a(ϕi, ϕj))
n
i,j=1. Since the matrix A depends on α

only through element averages, we can assume (w.l.o.g.) that α is piecewise
constant with respect to Th. For simplicity we assume that α is piecewise
constant with respect to some non-overlapping partitioning of Ω into open,
connected Lipschitz polyhedra (polygons) {Ym}Mm=1 and set αm = α|Ym

.
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Especially for d = 3 and for problems where α varies on a small length
scale ε � diam(Ω), and thus the mesh size h needs to be very fine, mul-
tilevel iterative solvers (multigrid, domain decomposition, etc) are usually
essential to solve this problem efficiently. Their scalability and robustness
with respect to mesh refinement, as well as other discretisation parameters
has been studied extensively. Here we will focus on their robustness with
respect to coefficient variation. We will show that coefficient robustness is
inherently linked to a judicious choice of coarse space VH (related to some
coarse mesh TH with resolution H). If ε & H and if we can choose a coarse
mesh such that all coefficient jumps are aligned with the mesh, then the co-
efficient robustness of standard coarse spaces has been analysed in the 90s
(cf. [4, 3, 10, 16, 25, 21, 22] and the references therein). For certain methods
the robustness may depend on the quasi-monotonicity of the coefficient with
respect to the coarse mesh (in the sense of [3]). Substructuring-type (“exotic”)
coarse spaces are usually used to achieve uniform coefficient robustness. A
certain amount of robustness can be recovered for standard piecewise linear
coarse spaces by using the multilevel solver as a preconditioner within CG
(e.g. [24]). The key tool in all these analyses is the weighted L2–projection
of Bramble and Xu [1]. It requires a piecewise constant weight with respect
to the coarse mesh, an assumption that is often far too stringent in real
applications. We want to move away from this and crucially here make no
assumptions that the underlying coarse grids resolve the coefficients.

A lot of effort in the last 25 years has gone into the development of alge-
braic methods to construct coarse spaces, such as algebraic multigrid (AMG),
rather than analytic/geometric ones. It has been confirmed numerically that
AMG methods are in practice robust to coefficient variation when applied
to (2) (i.e. the number of iterations is unaffected), and they are therefore
extremely popular. However, they are built on several heuristics and so a rig-
orous analysis of their coefficient-robustness is difficult (see [22] for a review
of existing theoretical results). Nevertheless, the key principle of these alge-
braic coarse spaces, namely energy minimisation [11], also underlies many
other coarse spaces. To obtain rigorous coefficient–independent convergence
results we will need to work in the following energy and weighted L2-norms
on D ⊂ Ω,

‖v‖a,D =
∫
D
α|∇v|2 and ‖v‖0,α,D =

∫
D
αv2 ,

respectively. When D = Ω we will usually not specify the domain explicitly.
A convenient framework to analyse most multilevel methods is the Schwarz

or subspace correction framework [21, 23]. We restrict attention to the two-
level overlapping additive Schwarz method and focus on the robustness of
various coarse spaces for this method. We review some recent papers on the
topic mainly by the author (jointly with co-workers), as well as by Efendiev
et al. All the results apply immediately also to multiplicative, hybrid and
non-overlapping versions of the Schwarz method (see [9, 18] for some explicit
comments). Many of the results can be extended to a multilevel theory [18, 5].
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2 Schwarz framework and abstract coarse spaces

Let us assume that {Ωk}Kk=1 is an overlapping partitioning of Ω and let
Ω◦k be the overlap of subdomain Ωk, i.e. the set of points x ∈ Ωk that are
contained in at least one other subdomain. We assume that Th is aligned with
this partitioning. Furthermore, let {χk}Kk=1 ⊂ Vh be an arbitrary partition of
unity (POU) of FE functions subordinate to {Ωk}Kk=1 such that ‖χk‖∞ . 1
and ‖∇χk‖∞ ≤ δ−1k , for all k = 1, . . . ,K. Note that (due to quasi-uniformity
of Th) we always have δk & h, and there is a partition of unity such that δk
is proportional to the (minimal) width of Ω◦k . We assume as usual that each
point x ∈ Ω is contained in at most N0 subdomains (finite covering).

We associate with each Ωk the space Vk = {v ∈ Vh : supp(v) ⊂ Ωk} and
assume that we have an additional coarse space

V0 = VH = span{Φj ∈ Vh : j = 1, . . . , N} ⊂ Vh .

Let ωj = interior(supp(Φj)) and set Hj = diam(ωj). Then H = maxj Hj is
the coarse mesh size associated with VH .

The two-level additive Schwarz preconditioner is now simply

M−1AS = RT0 A
−1
0 R0 +

∑K

k=1
RTkA

−1
k Rk with Ak = RkAR

T
k .

Rk is the matrix representation of a restriction operator from V to Vk: the
simple injection operator for k ≥ 1, and for k = 0 induced by the coarse space
basis {Φj}Nj=1 so that the coarse space stiffness matrix is A0 = (a(Φj , Φ`))

N
j,`.

The following result can be proved in the same way as [18, Thm. 2.5].
Since it is instructive, we give an outline of the proof.

Theorem 1. If there exists an operator Π : Vh → V0 such that for all v ∈ Vh

‖Πv‖2a ≤ C1 ‖v‖2a and
∑K

k=1
‖(v −Πv)∇χk‖20,α ≤ C2 ‖v‖2a , (3)

then κ(M−1ASA) . C1 + C2. The hidden constant depends on N0.

Proof. Let v0 = Πv be such that (3) holds and choose vk = Ih(χk(v − v0)),
where Ih is the standard nodal interpolant on Vh. This interpolant is stable
for all piecewise quadratic functions in the energy norm and in the weighted
L2-norm (independently of α) (cf. [18, Lem. 2.3]), and so we get∑K

k=0
‖vk‖2a . ‖v0‖2a +

∑K

k=1
‖χk(v − v0)‖2a

. ‖v0‖2a +
∑K

k=1
‖χk‖2∞‖v − v0‖2a,Ωk

+ ‖(v − v0)∇χk‖20,α .

Now, the boundedness of the POU functions, the finite cover assumption, as
well as (3) lead to the stability estimate

∑K
k=0 ‖vk‖2a . (C1 +C2)‖v‖2a. Since

v =
∑K
k=0 vk, the result follows from the abstract Schwarz theory (cf. [21]).
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This result shows the importance of the choice of coarse space. Provided
we have a good coarse space approximation in the weighted L2-norm that is
moreover stable in the energy norm, independently of variations in α, then
the bound on the condition number for two-level additive Schwarz is also
robust with respect to these variations. Note that it is crucial to use the
weighted L2 and the energy norm here to achieve coefficient-robustness, and
that we only require weak L2–approximation in regions where ∇χk 6= 0.

Several approaches have been studied in [2, 5, 6, 7, 8, 9, 17, 18, 19] to
provide constants in (3) that are independent of α (or at least of the contrast
in α) for various coarse spaces. However, in most cases the constants are not
independent of Hε , where ε is the minimal length scale at which α varies in the
regions where ∇χk 6= 0. So unfortunately in general, to be also independent
of H

ε , restrictions on the coarse mesh size are needed, at least locally.
Let us discuss the assumptions (3) a bit further. Let Πv =

∑
j fj(v)Φj ,

where fj : Vh → R is a suitable functional. Then

‖Πv‖a =
∥∥∑

j
fj(v)Φj

∥∥
a
≤
∑

j
|fj(v)|‖Φj‖a .

We see that a set of coarse basis functions with bounded energy (indepen-
dent of α) is beneficial. The first approaches in [8, 9, 17] attacked this target
directly and aimed at bounding ‖Φj‖a. In that case, it suffices to use the
standard quasi-interpolant. Alternatively, a weighted quasi-interpolant with
fj(v) =

∫
ωj
αv/

∫
ωj
α can be used. For certain (locally quasi-monotone) coeffi-

cients α this leads to a constant C1 that is independent of the contrast in α,
even if the energy of the basis functions is not bounded (see below).

Similar comments can be made about the second assumption in (3). Note
that

‖(v −Πv)∇χk‖20,α ≤

{
‖α|∇χk|2‖∞‖v −Πv‖20,Ω◦k , or

‖∇χk‖2∞‖v −Πv‖20,α,Ω◦k .

We can either try to choose a partition of unity {χk} such that ‖α|∇χk|2‖∞
is bounded independently of α, which is again related to energy minimisation,
or we can try to bound ‖v −Πv‖0,α,Ω◦k directly. As above, it is possible for
certain (locally quasi-monotone) coefficients to achieve this and to obtain a
constant C2 that does not depend on the contrast in α (see below).

When the coefficient is not locally quasi-monotone, then it is in general
necessary to enrich the coarse space, by either refining the coarse mesh locally,
or by choosing more than one basis function per subdomain Ωk, with the key
tool to achieve coarse space robustness being again energy minimisation.

To highlight some of the key issues we will use a number of representative
model problems shown in Figure 1. For the rest of the paper, we will only focus
on cases, such as Figures 1(c-h), where it is impossible or impractical that the
subdomains {Ωk} and the supports {ωj} of the coarse basis functions resolve
the coefficient jumps. The resolved cases in Figures 1(a-b) have already been
studied extensively, see e.g. [4, 3, 10, 16, 25, 21, 22, 24].
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(a) (b) (c)

(e) (f) (g) (h)

(d)

Fig. 1 Typical coefficient distributions (a) resolved; (b) not quasi-monotone; (c) neither

quasi-monotone nor resolved; (d) channelised; (e) flow barriers; (f) low permeability inclu-
sions; (g) high permeability inclusions; (h) high permeability inclusions and channels.

3 Analysis of coefficient–robustness

We present three possible approaches to try and prove coefficient robustness
rigorously and thus to design robust coarse spaces. For simplicity, we assume
that for each j = 1, . . . , N , there exists a k = 1, . . . ,K such that ωj ⊂ Ωk.

3.1 Standard quasi-interpolant & energy minimisation

The first approach makes use of the standard quasi-interpolant

Πv =
∑N

j=1
vωj

Φj , where vωj
= 1
|ωj |

∫
ωj
v .

Let {Φj}Nj=1 be a set of bounded coarse basis functions that form a parti-
tion of unity, except in a boundary layer of width O(H) near ∂Ω. Since each
support ωj ⊂ Ωk, for some k, the supports have finite overlap. C1 and C2

can now be bounded independent of the contrast in α, if either

γ2(α, {Φj}) =
N

max
j=1

H2−d
j ‖Φj‖2a and γ∞(α, {χk}) =

K
max
k=1

δ2k ‖α1/2∇χk‖2∞

(the so-called coarse space and partitioning robustness indicators) can be
bounded independent of α, for some choice of the partition of unity {χk}Kk=1

subordinate to {Ωk}Kk=1 (cf. [8]), or if γ∞(α, {Φj}) can be bounded indepen-
dent of α (cf. [17]). As mentioned above, this leads to the aim to construct
coarse basis functions with minimal or bounded energy. It is also at the heart
of matrix-dependent prolongation operators in multigrid methods.
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For certain binary coefficient distributions, e.g. for high-permeability in-
clusions in a low-permeability medium as depicted in Fig. 1(g), it was then
possible in [8] to show (rigorously) under the assumption α & 1 that multi-
scale FEs (w.r.t. some coarse mesh TH) can provide such a basis {Φj}, and
that the indicators can be bounded independent of the contrast in α. How-
ever, they depend on H/ε, where ε is the minimum width of any island/gap.

Similarly, it was possible in [17] to show (again assuming α & 1) that
aggregation based on a strong connection criterion (originally designed for
AMG methods) leads to a coarse basis {Φj} for which the robustness indi-
cators can be bounded independent of the contrast in α. Here the bounds
depend on H/h, since the overlap between any two supports is only O(h).

However, this approach to analyse robustness fails even for the simpler,
reverse situation of a high-permeability medium with low-permeability inclu-
sions (e.g. Fig. 1(f)), since in this case γ2(α, {Φj}) and γ∞(α, {Φj}) depend on
the contrast in α for any choice of {Φj}. Clearly a different quasi-interpolant
Π is needed in general.

3.2 Weighted quasi-interpolant & Poincaré’s inequality

The next approach to try to prove the assumptions in Theorem 1 makes use
of the weighted quasi-interpolant

Πv =
∑N

j=1
vαωj

Φj , where vαωj
=
∫
ωj
αv
/∫

ωj
α .

We describe this approach for one of the simplest coarse spaces, the piece-
wise linear one. The following is taken from [18] (see also [6] for earlier results).
Let VH be the continuous, piecewise linear FE space associated with a shape-
regular simplicial triangulation TH of Ω, such that Th is a refinement of TH .
The functions {Φj}Nj=1 are the standard nodal basis for VH . For simplicity,

we assume that {Ωk}Kk=1 = {ωj}Nj=1, and choose χk = Φk (suitably modified
near ∂Ω), so that the assumptions on {χk} are satisfied with δk ∼ Hk.

The key observation in [18] is now that one further assumption suffices to
fully describe the dependency of the constants C1 and C2 in (3) on α:

Assumption 1. Let ωT =
⋃
{k:ωk∩T 6=∅} ωk and HT = diam(ωT ), for T ∈ TH ,

and assume that there exists a C∗T > 0 such that, for all v ∈ Vh, either

inf
c∈R

∫
ωT

α(v − c)2 dx . C∗TH
2
T

∫
ωT

α|∇v|2 dx, or (4)

∂ωT ∩ ∂Ω 6= ∅ and

∫
ωT

αv2 dx . C∗TH
2
T

∫
ωT

α|∇v|2 dx . (5)

Proposition 1. Let Assumption 1 hold. Then C1 + C2 . C∗ = max
T∈TH

C∗T .



Robust Coarsening in Multiscale PDEs 7

Proof. Let v ∈ Vh and v0 =
∑N
j=1 v

α
ωj
Φj . By the Cauchy-Schwarz inequality

we have |vαωj
|2 ≤

∫
ωj
αv2

/ ∫
ωj
α, and so, using the fact that Φj ≤ 1,∫

T

αv20 ≤
∑

j:ωj∩T 6=∅

∫
ωj
αv2∫

ωj
α

∫
T

αΦ2
j ≤

∫
ωT

αv2 ,

which also implies
∫
T
α(v − v0)2 .

∫
ωT
αv2. Now, multiplying the left hand

side by |∇χk|2T (which is a constant ∼ H−2T ) and summing over k ≥ 1, we get∑K

k=1
‖(v − v0)∇χk‖20,α,T . H−2T

∫
ωT

αv2 . (6)

If {Φj} forms a partition of unity on all of ωT (i.e. if ∂ωT ∩ ∂Ω = ∅), we
can replace v in (6) by v̂ = v−c, for any c ∈ R, without changing the integral
on the left hand side. Otherwise we set v̂ = v. In both cases, by Assumption 1∫

ωT

αv̂2 . C∗T H
2
T

∫
ωT

α|∇v|2 . (7)

Combining (6) and (7) and summing over all T ∈ TH gives the bound for C2.
The bound for C1 can be established in a similar way (cf. [18, Lem. 4.1]).

Assumption 1 postulates the existence of a discrete weighted Poincaré/
Friedrichs–type inequality on each ωT . It always holds, but in general the
constants C∗T will not be independent of α|ωT

and HT /h. As described in
detail in [18, §3] (see also [14, 15, 13]), to obtain independence of α, we
require a certain local quasi–monotonicity of α on each of the regions ωT .

Weighted Poincaré Inequalities. Let us consider a generic coarse element
T ∈ TH and define the following subsets of ωT where α is constant:

ωm = ωT ∩ Ym, m = 1, . . . ,M.

By IT ⊂ {1, . . . ,M} we denote the index set of all regions ωm that are non-
empty. Let us assume w.l.o.g. that each of these subregions is connected. We
generalise now the notion of quasi-monotonicity coined in [3] by considering
the following three (two) directed combinatorial graphs G(k) = (N , E(k)),
0 ≤ k ≤ d− 1, where N = {ωm : m ∈ IT } and the edges are ordered pairs of
vertices. We distinguish between three (two) different types of connections.

Definition 1. Suppose that γm,m2 = ωm ∩ ωm2 is a non-empty manifold of
dimension k, for 0 ≤ k ≤ d − 1. The ordered pair (ωm, ωm2) is an edge in
E(k), if and only if αm . αm2 . The edges in E(k) are said to be of type-k.

In addition, for 1 ≤ k ≤ d− 1, we assume that

• meas(γm,m2) ∼ meas(ωm ∪ ωm2)k/d, and

• γm,m2 is sufficiently regular, i.e. it is a finite union of shape–regular k-
dimensional simplices of diameter ∼ meas(γm,m2)1/k.
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Quasi-monotonicity is related to the connectivity in G(k). Let m∗ ∈ IT be
the index of the region ωm∗ with the largest coefficient: αm∗ = maxm∈IT αm.

Definition 2. The coefficient α is type-k quasi-monotone on ωT , if there is
a path in G(k) from any vertex ωm to ωm∗ .

The following lemma summarises the results in [14, 15, 13]. The existence
of a benign constant C∗T that is independent of α is directly linked to quasi-
monotonicity, the way in which C∗T depends on HT /h to the type.

Lemma 1. Let ωT ⊂ Rd, d = 2, 3. If α is type-k quasi-monotone on ωT ,
then (4) holds with

C∗T =


1, if k = d− 1,
1 + log

(
HT

h

)
, if k = d− 2,

HT

h , if k = d− 3.
(8)

A similar result can also be established in the case where ∂ωK ∩ ∂Ω 6= ∅, i.e.
the case of Friedrichs inequality (5), see e.g. [18, §3] for details.

Quasi–monotonicity is crucial. If the coefficient is not quasi-monotone, e.g.
the situation in Figure 1(d), then C∗ cannot be bounded independent of α.
See [18, Ex. 3.1] for a counter example. If the coarse mesh is not adjusted in
certain critical areas of Ω, then VH is in general not robust. The numerical
results in [18] show that this is indeed the case and that quasi–monotonicity
is necessary and sufficient. However, a few simple adjustments suffice, namely
TH has to be sufficiently fine in certain “critical” areas of Ω:

1. Choose HT ≤ εm, for all T ∈ TH that intersect a region Ym that is
bordered by two regions Ym′ and Ym′′ with αm′ � αm and αm′′ � αm.
Here εm denotes the width of Ym at its narrowest point. This ensures that
α is quasi-monotone on all regions ωT that intersect Ym.

2. Choose HT . h, near any point or edge where α is only type-(d − 2) or
type-(d− 3) quasi–monotone, i.e. near any cross point.

Usually a logarithmic growth C∗ ∼ maxT log(HT /h) is acceptable, and so
even regions where the coefficient is type-(d − 2) quasi-monotone do not
require any particular attention.

For an arbitrary piecewise constant coefficient function α there will of-
ten only be a relatively small (fixed) number of regions ωT where α is not
quasi-monotone (see e.g. Figures 1(b-e)). Therefore it is very easy to en-
sure through some local refinement of TH near these regions that C∗ ∼ 1 (or
C∗ ∼ log(H/h)). Note that crucially, this local refinement does not mean that
TH has to be aligned with coefficient jumps anywhere in Ω. The coarse grid
merely has to be sufficiently fine in regions where α is not quasi-monotone.
Ideas on how to adapt TH in such a way are suggested in [18].

“Exotic” coarse spaces. Substructuring–type (“exotic”) coarse spaces (as
suggested in [4, 3, 16]) can be analysed in a similar way. Here the coarse basis
functions are constructed as a-harmonic extensions of face, edge or vertex
“cut” functions associated with a non-overlapping decomposition TH of the
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domain. This decomposition may be related to the overlapping partitioning
{Ωk}, or it may come from a separate coarse grid (not necessarily simplicial).
If the coefficient does not vary along any of the edges/faces of TH , then the
space can be analysed like the piecewise linear one above, using in addition
the energy minimising property of the a-harmonic extension (cf. [14]). If
the coefficient does vary along an edge/face, then special weighted Poincaré
inequalities for functions with vanishing weighted averages across edges/faces
are required. These have recently been introduced in the context of FETI-DP
methods in [12], which also analyses the robustness of the “cut” functions.
An explicit analysis in the context of overlapping Schwarz does not yet exist.

3.3 Abstract minimisation with functional constraints

An alternative to refining the coarse mesh in regions where α is not type–
(d − 1) or type–(d − 2) quasi-monotone, is to associate more than one basis
function (with possibly identical supports) with each subdomain Ωk. Let

V0 = span{Φk,j = Ih (χkΨk,j) : j = 1, . . . , Nk, k = 1, . . . ,K},

where Ψk,j , j = 1, . . . , Nk, are suitable FE functions in Vh(Ωk) (that do not
vanish on ∂Ωk) such that the functions {Φk,j} ⊂ Vh are linearly independent.
Good choices for the functions Ψk,j are the lowest modes of local eigenprob-
lems, or more generally, energy minimising functions that satisfy suitable
constraints. The following analysis is from [19] (see [7, 2] for related work).

In particular, let us assume that, for every Ωk, we have a collection of
linear functionals {fk,j}Nk

j=1 ⊂ Vh(Ωk)′ and let

Ψk,j = arg min
v∈Vh(Ωk)

|v|2a, subject to fk,l(Ψk,j) = δjl j, l = 1, . . . , Nk . (9)

Now, for any v ∈ Vh, choose the following quasi-interpolant

Πv =
∑K

k=1
Ih (χkΠΩk

v) , where ΠΩk
v =

∑Nk

j=1
fk,j(v|Ωk

)Ψk,j ,

i.e. a linear combination of the basis functions Φk,j with weights fk,j(v|Ωk
).

Then the bounds on C1 and C2 in Theorem 3 depend only on the stability
and on the local L2-approximation properties of ΠΩk

on each Ωk.

Theorem 2. For all k = 1, . . . ,K and for all v ∈ Vh(Ωk), let

‖ΠΩk
v‖2a,Ωk

≤ ‖v‖2a,Ωk
and ‖v −ΠΩk

v‖20,α,Ωk
. diam(Ωk)2‖u‖2a,Ωk

. (10)

Then C1 = O(1) and C2 . (diam(Ωk)/δk)2.

Proof. See [19, Thm. 5.1].
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Note that the minimisation problems in (9) are local to each subdomain.
There are suitable choices for the functionals fk,j that guarantee (10) and that
lead to practical algorithms to construct the functions Ψk,j , j = 1, . . . , Nk:

• fk,j(v) = (Ψk,j , v)0,α,Ωk
where Ψk,j is the jth eigenfunction corresponding

to the variational eigenproblem: Find η ∈ Vh(Ωk) and λ ≥ 0, such that

a(η, w) = λ(η, w)0,α,Ωk
, for all w ∈ Vh(Ωk). (11)

This has first been suggested and analysed in [7].

• fk,j(v) = (Ψk,j , v)0,α,∂Ωk
where Ψk,j is the jth eigenfunction correspond-

ing to a variational eigenproblem similar to (11), but with (η, w)0,α,∂Ωk

instead of (η, w)0,α,Ωk
on the right hand side of (11), i.e. an eigenproblem

of Steklov-Poincaré type. This has been analysed in [2].

• fk,j(v) = vαDk,j
where {Dk,j}Nk

j=1 is a suitable non-overlapping partitioning

of Ωk such that the weighted Poincaré inequality (4) holds on each Dk,j

(e.g. Dk,j = Ωk ∩ Yj). The construction of {Ψk,j} requires the solution of
Nk local saddle point systems and was suggested and analysed in [19].

It has been shown in [7, 2] how (10) can be proved (directly) in the first
two cases, essentially based on the observation that the coarse space consists
of the lowest modes corresponding to the operator pencil associated to the
energy and to the weighted L2-norm. But the assumptions can be proved for
a much wider class of functionals using the following abstract approximation
result in [19]. This result is related to the classical Bramble-Hilbert lemma.

Abstract Approximation Result. Consider an abstract symmetric and
continuous bilinear form a(·, ·) : V × V 7→ IR, as well as a collection of linear
functionals {fl}ml=1 ⊂ V ′, where V ⊂ H and H is a Hilbert space with norm
‖ · ‖. We make the following assumptions on a(·, ·), V , H, ‖ · ‖ and {fl}:

A1. a(·, ·) is positive semi-definite and defines a semi-norm | · |a on V , i.e.

|v|2a = a(v, v) ≥ 0, for all v ∈ V.

In addition, for v ∈ V , the expression
√
‖v‖2 + |v|2a defines a norm on V .

A2. Let cq be a generic constant. For all q ∈ IRm there exists a vq ∈ V with

fl(vq) = ql, and ‖vq‖ . cq‖q‖l2(IRm).

A3. There are two constants ca and cf such that

‖v‖2 ≤ ca|v|2a + cf
∑m

l=1
|fl(v)|2 , for all v ∈ V. (12)

Now, as in the specific case above, define for all v ∈ V ,

πv =

m∑
l=1

fl(v)ψl , where ψl = arg min
v∈V
|v|2a, subject to fl(ψj) = δjl .
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Then the following inequalities hold; see [19, Thm. 3.3].

Theorem 3. Let Assumptions A1-3 be satisfied. Then, for all u ∈ V :

|πu|a ≤ |u|a and ‖u− πu‖ ≤
√
ca|u|a . (13)

(Note that they are independent of the constants cq and cf in A2 and A3.)

In the specific case considered above, on an arbitrary subdomain Ωk, As-
sumption A1 is naturally satisfied with H = L2(Ωk) and ‖ · ‖ = ‖ · ‖0,α,Ωk

.
Assumption A2 merely ensures that the linear functionals are linearly inde-
pendent. Thus, the question of coarse space robustness is reduced to verify-
ing Assumption A3. For one functional, i.e. for m = 1, this reduces to the
weighted Poincaré inequality in Section 3.2 and to the restrictions on the co-
efficients made there. For more than one functional, it opens the possibility
to get coefficient robustness even in the case of non-quasi-monotone coeffi-
cients, such as those depicted in Figures 1(b-d) and even (h). See [19, 7, 2]
for the complete analysis and some numerical experiments that confirm the
robustness for the functionals defined on the previous page. See also [20] for a
more recent extension to systems of elliptic PDEs (such as linear elasticity).
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