
Robust Domain Decomposition Algorithms for Multiscale
PDEs

I.G. Graham and R. Scheichl

Bath Institute For Complex Systems
Preprint 14/06 (2006)

http://www.bath.ac.uk/math-sci/BICS



Robust Domain Decomposition Algorithms for

Multiscale PDEs

I.G.Graham and R. Scheichl

Department of Mathematical Sciences ,

University of Bath ,

Bath BA2 7AY , U.K.

email: I.G.Graham@bath.ac.uk , R.Scheichl@bath.ac.uk

In this paper we describe a new class of domain deomposition preconditioners suitable for solving
elliptic PDEs in highly fractured or heterogeneous media, such as arise in groundwater flow or
oil recovery applications. Our methods employ novel coarsening operators which are adapted to
the heterogeneity of the media. In contrast to standard methods (based on piecewise polynomial
coarsening), the new methods can achieve robustness with respect to coefficient discontinuities
even when these are not resolved by a coarse mesh. This situation arises often in practical
flow computation, in both the deterministic and (Monte-Carlo simulated) stochastic cases. An
example of a suitable coarsener is provided by multiscale finite elements. In this paper we
explore the linear algebraic aspects of the multiscale algorithm, showing that it involves a blend
of both classical overlapping Schwarz methods and non-overlapping Schur methods. We also
extend the algorithm and the theory from its additive variant to obtain new hybrid and deflation
variants. Finally we give extensive numerical experiments on a range of heterogeneous media
problems illustrating the properties of the methods. c© 2006 John Wiley & Sons, Inc.

I. INTRODUCTION

In this paper we discuss new domain decomposition preconditioners for piecewise linear
finite element discretisations of boundary-value problems for the model elliptic problem

−∇ · (α∇u) = f , (I.1)

in a bounded polygonal or polyhedral domain Ω ⊂ R
d, d = 2 or 3 with suitable boundary

conditions on the boundary ∂Ω. The coefficient α(x) may vary over many orders of
magnitude in an unstructured way on Ω. Many examples of this kind arise in groundwater
flow and oil reservoir modelling.

Let T h be a conforming shape-regular simplicial mesh on Ω and let Vh denote the space
of continuous piecewise linear finite elements on T h which vanish on essential boundaries.
The finite element discretisation of (I.1) in this space yields the linear system:

Au = f , (I.2)
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and it is well-known that the conditioning of A worsens when T h is refined or when
the heterogeneity (characterised by the range of α) becomes large. It is of interest to
find solvers for (I.2) which are robust to changes in the mesh width h as well as in the
heterogeneity.

While there are many papers which solve this problem for “layered media” in which
discontinuities in α are simple interfaces which can be resolved by a coarse mesh (see
e.g. [4] and the references therein), until recently there was no rigorously justified method
for general heterogeneous media. The recent paper [9] presented a new analysis of domain
decomposition methods for (I.2) (which have inherent robustness with respect to h) and
this analysis indicated explicitly how subdomains and coarse spaces should be designed
in order to achieve robustness also with respect to heterogeneities. More precisely this
analysis introduced new “robustness indicators” (which depend on the choice of subdo-
mains and coarse space and in particular depend on the energy of the coarse space basis
functions) and proved that, if these indicators are controlled, then the preconditioner
will be robust. Paper [9] then goes on to consider the use of multiscale finite elements
to build coarse spaces for domain decomposition and proves a number of results which
indicate their robustness in cases where standard coarsening methods fail to be robust.
Crucially our methods do not require resolution of the coefficient jumps by the coarse
mesh to achieve robustness.

The coarse spaces proposed in [9] yield coefficient-dependent prolongation operators,
similar to those which have been tested empirically in the context of (Schur comple-
ment based) domain decomposition methods in [3, 6]. The concept of energy-minimising
coarse spaces also appears in several papers on the construction of algebraic multigrid
methods. For example [23] proposes to compute low energy coarse spaces by solving a
global constrained minimisation problem, before attempting the solution of (I.2). This
is in principle expensive, but an approximate solution (based on a few PCG iterations
to the minimization problem) yields some good emprirical results. In [11] a recursive
algorithm to approximately solve the constrained minimisation problem of [23] is pro-
posed, but the behaviour of this in the presence of heterogeneity is not analysed. The
use of multiscale finite elements as coarseners was also proposed in [1], but again this
was in the Schur-complement context and the analysis depended on classical periodic
homogenisation theory. The analysis in our recent paper [9] does not require periodicity
and does not appeal to homogenisation theory.

In [9] we presented rigorous error bounds for generalised domain decomposition meth-
ods and proved that they can work well in the presence of heterogeneity. The analysis
in [9] is presented in terms of the abstract theory of Schwarz methods. However that
analysis is not so revealing about the linear algebra aspects, which determine the compu-
tational work involved. Thus in this paper we give a linear algebraic presentation of the
multiscale preconditioners. In particular we show that the multiscale preconditioner, in
its simplest form, is a variant of the two-level overlapping additive Schwarz method with
a non-standard coarse solve. The coarse solve proposed in [9] could also be obtained by
(i) reduction of A to a Schur complement defined on the “skeleton nodes” (i.e. on all fine
freedoms that lie on coarse element boundaries) and (ii) subsequent further coarsening
(via interpolation) to obtain a matrix defined on coarse freedoms only. In this sense
the method combines aspects of both the classical overlapping and the non-overlapping
(Schur complement or iterative substructuring) methods.

We also go on to consider hybrid and deflation variants of our preconditioner, where
the coarse solve is either combined in a multiplicative way with the subdomain solves
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(see [13, 14, 21]), or used to deflate the system (see [16, 17]). We show that with an
appropriate initial guess both these preconditioners lead to the same preconditioned
conjugate gradient iteration and perform no worse than the additive variant. Finally we
present a range of numerical experiments illustrating the results.

To describe our preconditioners, we restrict to the case of homogeneous Dirichlet
boundary conditions for simplicity. For any subdomain D of Ω which consists of a union
of elements of T h, let Sh(D), denote the space of continuous piecewise linear functions
on D and let Sh

0 (D) = Sh(D) ∩ H1
0 (D). In particular, Vh = Sh

0 (Ω). Moreover, if W is
any subset of Ω, then N h(W ) := {xi : i ∈ Ih(W )} is the set of all nodes of the mesh
T h which lie in W (where Ih(W ) is a suitable index set).

Domain decomposition preconditioners for (I.2) are defined by first intoducing an
overlapping open covering {Ωi : i = 1, . . . , N} of Ω, with each Ωi assumed to consist of
a union of elements from T h. Then we introduce Vi := {vh ∈ Vh : supp(vh) ⊂ Ωi} and,
for j ∈ Ih(Ωi) and j′ ∈ Ih(Ω), we define the restriction matrix (Ri)j,j′ := δj,j′ . The
matrix Ai := RiAR

T
i , is then just the minor of A corresponding to rows and columns

taken from Ih(Ωi). One-level domain decomposition methods are constructed from the
inverses A−1

i .
Two-level methods are obtained by adding a global coarse solve. Let T H be a shape-

regular mesh of coarse simplices on Ω with a typical element of T H being the (closed) set
K, which again we assume to consist of the union of a set of fine grid elements τ ∈ T h.
Also, let FH denote the set of all (closed) faces of elements in T H . (In the 2D case “faces”
should be interpreted to mean “edges”.) The set of coarse mesh nodes on any subset
W of Ω is denoted by NH(W ) := {xH

p : p ∈ IH (W )} with a suitably chosen index set

IH(W ). The coarse space basis functions Φp are required to satisfy (for p, p′ ∈ IH(Ω))
the assumptions:

(C1) Φp ∈ Sh(Ω) , Φp(x
H
p′ ) = δp,p′ ;

(C2) supp(Φp) ⊂ ωp := ∪{K : p ∈ IH(K)} ;

(C3)
∑

p∈IH(Ω) Φp(x) = 1, x ∈ Ω;

(C4) ‖Φp‖L∞(Ω) . 1 .

From these functions we define the coarse space V0 := span{Φp : p ∈ IH(Ω)} ,
which, by (C1) and (C2), is the span of all Φp that vanish on the boundary ∂Ω, and is
thus a subspace of Vh. (A special case of basis functions satisfying (C1)–(C4) is given
by the standard continuous piecewise linear functions on the coarse mesh T H .) Now, if
we introduce the restriction matrix

(R0)pj := Φp(x
h
j ) , j ∈ Ih(Ω), p ∈ IH (Ω), (I.3)

then the matrix A0 := R0AR
T
0 is the stiffness matrix for problem (I.1) discretised in V0

using the basis {Φp : p ∈ IH (Ω)}.
Various two-level domain decomposition methods can be defined from these ingredi-

ents. Our first methods are the classical one- and two-level Additive Schwarz methods,
M−1

AS,1 and M−1
AS,2, given by

M−1
AS,1 =

N
∑

i=1

RiA
−1
i RT

i and M−1
AS,2 = RT

0 A
−1
0 R0 + M−1

AS,1 . (I.4)
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In the following section we give a short summary of some theoretical results from [9]
which describe the behaviour of the preconditioners in (I.4). Before proceeding, we
remark that the results in [9] have also been extended to coarse spaces constructed by
smoothed aggregation in [19, 20] .

II. SUMMARY OF THE THEORY

For the purposes of exposition we will describe the theory for scalar α in (I.1) (and all
our computations will be for that case), but we remark at the end of this section how the
theory extends to the tensor case. Throughout the paper, the notation C . D (for two
quantities C,D) means that C/D is bounded above independently, not only of the mesh
parameter h, the domain decomposition parameters δi, ρi and HK (introduced below),
but also of the average values of α on each τ ∈ T h. Moreover C ∼ D means that C . D
and D . C. For theoretical purposes, we shall assume that α ≥ 1. This is no loss
of generality, since problem (I.2) can be scaled by (minx α(x))−1 without changing its
conditioning.

The theory in [9] contains a number of technical assumptions which allow quite general
unstructured overlapping subdomains and also allow coarse meshes which are unrelated
to the subdomains. Here we give a descriptive treatment of these assumptions and refer
the reader to [9] for full details.

First we need some assumptions on the subdomains {Ωi}. For each i, we require that
there is an overlap parameter δi > 0, such that the part of Ωi which is overlapped by
the others is uniformly of order O(δi). We can state this more precisely by introducing
for µ > 0, the “near boundary subset”:

Ωi,µ := {x ∈ Ωi : dist(x,Γi) < µ} , (II.1)

where Γi is the boundary of Ωi. The overlap assumption then requires that the part of
Ωi which is overlapped by other subdomains should be contained in Ωi,δi

and moreover,
should also contain Ωi,cδi

, for some absolute constant 0 < c < 1.
We also allow the subdomains Ωi to have quite general shapes, but their “thinness”

places a constraint on the design of the coarse mesh (see below). For each i, we define
the shape parameter ρi as the largest µ so that the near-boundary set Ωi,µ can be
finitely covered by Lipschitz polyhedra, each of which has: (i) closure intersecting Γi in
a set of measure ∼ µd−1 ; (ii) diameter ∼ µ; (iii) length of edges ∼ µ; and (iv) volume
∼ µd. Since the part of Ωi which is overlapped by other subdomains consists of a union
of (shape–regular) elements from T h, the overlap assumption implies that ρi & δi > 0.

To see how the shape parameter measures the “thinness” of a subdomain, consider
in 3D, either a rectangular slab-shaped hexahedron Ω1 with dimensions a × a × b, or a
rectangular rod-shaped hexahedron Ω2 with dimensions a× b× b, where, in both cases,
b� a. Then clearly both these subdomains have shape parameter ρi ∼ b, i = 1, 2.

Having introduced the subdomains Ωi which cover Ω, now let Π({Ωi}) denote the set
of all partitions of unity {χi} ⊂ W 1

∞(Ω) subordinate to this cover. (This is a standard
concept - see, e.g., [21].) Then we define our first robustness indicator which will appear
in our condition number estimates below:
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Definition. (Partitioning robustness indicator). For a particular partition of
unity {χi}, define

π(α, {χi}) =
N

max
i=1

{

δ2i
∥

∥α|∇χi|
2
∥

∥

L∞(Ω)

}

.

Then the partition robustness indicator is defined by

π(α) = inf
{χi} ∈Π({Ωi})

π(α, {χi}) .

The quantity π(α) appears in our estimates for the one–level and the two–level precon-
ditioner below. Note that, roughly speaking, this robustness indicator is well-behaved if
there is a partition of unity whose functions have small gradient wherever α is large. So
in a certain sense π(α) measures the ability of the subdomains Ωi to handle the coefficient
heterogeneity. The weight δ2i is chosen to make π(α) . 1 when α = 1.

Turning now to the two-level variant, recall that the coarse space basis functions {Φp}
are required to satisfy assumptions (C1)–(C4) on a coarse simplicial mesh T H . The
coarse mesh will be assumed shape regular with the diameter of a typical element K
denoted by HK . A mild connection is needed between the local coarse and subdomain
sizes which is described by introducing the concept of the local coarse mesh diameter
defined by:

Hi := max
K∈T H(Ωi)

HK , where T H(Ωi) := {K ∈ T H : K ∩ Ωi 6= ∅} . (II.2)

Our final assumption is then:

(C5) Hi . ρi, i = 1, . . . , N .

This says that a coarse mesh element should not be large in comparison to the shape
parameters of the subdomains which it intersects and is a generalisation of [21, Assump-
tion 3.5]. Note that (C5) does not impose any direct structural relation between coarse
mesh and subdomains.

Analogous to π(α) we now introduce a quantity which reflects how the coarse space
handles the coefficient heterogeneity.

Definition. (Coarse space robustness indicator).

γ(α) := max
p∈IH(Ω)

{

H2−d
p |Φp|

2
H1(Ω),α

}

where Hp := diam(ωp) .

Note also that for the classical case when Φp are the nodal basis for the continuous
piecewise linear functions on T H , we have, via standard estimates, γ(α) . maxτ∈T h ατ ,
and so γ(α) . 1 when α ∼ 1. When α varies more rapidly, our framework leaves open the
possibility of choosing the Φp to depend on α in such a way that γ(α) is still well-behaved.

We can now state one of the main results from [9], giving condition number estimates
for the one- and two- level additive Schwarz preconditioners.

Theorem 2.1. The condition numbers of the preconditioned stiffness matrices using
the one-level and the two-level additive Schwarz preconditioners satisfy

κ
(

M−1
AS,1A

)

. π(α)
N

max
i=1

{

1

ρiδi

}

,

κ
(

M−1
AS,2A

)

. π(α) γ(1)
N

max
i=1

(

1 +
Hi

δi

)

+ γ(α) .
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It is important to emphasise that the quantity Hi introduced in (II.2) is not the
subdomain diameter. Since it is a measure of the size of coarse mesh elements which
intersect Ωi, it can be much smaller than the diameter of Ωi.

We note that Theorem 2.1 is a very general result in which the robustness indicators
π(α) and γ(α) both play a rôle. However the following example shows that, in a certain
sense the choice of the coarse basis functions Φp are the primary issue in determining
robustness of the two-level method.

Example. As above, choose a coarse grid T H and basis functions {Φp : p ∈ IH (Ω)} .
(Note that we include basis functions corresponding to nodes on the boundary ∂Ω.) Index
the subdomains by p ∈ IH(Ω) and choose the pth subdomain Ωp to be ωp (see (C2)).
It follows that the overlap parameter can be chosen as δp ∼ Hp. Now, the Φp form a
partition of unity subordinate to the covering {Ωp : p ∈ IH (Ω)}, and so by applying a
trivial bound to γ(α), we have

max{π(α), γ(α)} ≤ π (α, {Φp}) = max
p∈IH(Ω)

{

δ2p‖α|∇Φp|
2‖L∞(Ω)

}

.

Hence Theorem 2.1 implies

κ
(

M−1
AS,2A

)

. γ(1)π (α, {Φp})

and so robustness with respect to α is achieved in this case simply by ensuring Φp has a
small gradient wherever α is large.

We remark that Theorem 2.1 is a genuine extension of existing results on this topic.
The best general result (for linear coarsening, and written for the case α ≥ 1 which we
consider here) is:

κ(M−1
AS,2A) .

[

max
p

sup
x,y∈ωp

α(x)

] (

1 +
Hsub

δ

)

, (II.3)

where Hsub is the maximum subdomain diameter and δ is the global minimum of all the
overlap parameters δi. This guarantees “robustness” with respect to α only when the
coarse mesh resolves α sufficiently well. Related results (but not special cases of (II.3)) in
fact show robustness with respect to large jumps in α, provided these jumps are resolved
by the coarse mesh (see, for example [4] and many references therein). On the other
hand if we consider a “binary medium” of two materials, characterised by α1 = 1 and
α2 = α̂ → ∞, and we put some of each material into at least one element of the coarse
mesh, then (II.3) allows the condition number to grow with O(α̂) as α̂ → ∞. In contrast
the estimates in Theorem 2.1 show how the coarse mesh (and subdomains) should be
designed to restore robustness in cases where (II.3) fails to ensure it.

Our methods produce well-conditioned matrices even in the presence of a large number
of unresolved interfaces and arbitrary contrast of material properties (see §V.) and so
are suitable for random media. We remark that there are also a number of results on the
spectral clustering properties of preconditioners in the case of relatively few unresolved
interfaces which motivate deflation methods [7, 8, 2, 22]. We return to these in §IV.

Finally we remark that all the theory described above is extended in [9] to the case
where α in (I.1) is replaced by an isotropic and symmetric positive definite tensor A with
the property that

C α(x) |ξ|2 ≤ ξTA(x)ξ ≤ C α(x) |ξ|2 , ξ ∈ R
d ,

where C,C are constants and all the above estimates remain true.
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III. MULTISCALE COARSENING

In this section we describe the particular case when the coarse basis functions Φp are
obtained using “multiscale finite elements” ([10]). In this case the Φp are obtained by
extending predetermined boundary data into the interior of each element K by discrete
harmonic extension with respect to the original elliptic operator (I.1). Our exposition
here is slightly different to that in [9], but the method is the same.

Recalling the definition of FH , we can introduce the skeleton:

Γ := ∪{f : f ∈ FH} ,

i.e. the set of all faces of the mesh, including those belonging to the outer boundary
∂Ω. To introduce boundary data for the multiscale coarsening, for each p ∈ IH(Ω), we
introduce functions ψp : Γ → R which are required to be piecewise linear (with respect
to the mesh T h on Γ) and are required also to satisfy the assumptions:

(M1) ψp(x
H
p′ ) = δp,p′ , p, p′ ∈ IH(Ω),

(M2) 0 ≤ ψp(x) ≤ 1 , and
∑

p∈IH(Ω)

ψp(x) = 1 , for all x ∈ Γ ,

(M3) ψp ≡ 0 on all faces f ∈ FH such that xH
p 6∈ f .

Using ψp as boundary data, for each p ∈ IH (Ω) , the basis functions Φp ∈ Sh(Ω), are
then defined by discrete α−harmonic extension of ψp into the interior of each K ∈ T H .
That is, for each K ∈ T H , Φp|K ∈ {vh ∈ Sh(K) : Φp|∂K = ψp|∂K} is such that

∫

K

α∇(Φp|K) · ∇vh = 0 for all vh ∈ Sh
0 (K) . (III.1)

Note that since ψp vanishes on the boundaries of all coarse elements K which do not
contain xH

p , the number of solves in (III.1) remains O(1) for each p when H → 0 (since

the coarse mesh T H is assumed shape regular). The obvious example of boundary data
ψp satisfying (M1)–(M3) are the standard hat functions restricted to the faces (edges) of
the tetrahedron (triangle) K.

However, these are not so appropriate if α varies strongly near the boundary ∂K. The
oscillatory boundary conditions suggested in [10] are more useful in this case: Let e
be an arbitrary edge of the coarse mesh T H with end points xH

p and xH
q , say, and let

αe denote a (suitable) piecewise constant restriction of α to e (defined for example by
averaging). We introduce the solution (with respect to T h restricted to e) of the two–
point boundary value problem −(αe(ψe

p)
′)′ = 0 with boundary conditions chosen to be 1

at xH
p and 0 at xH

q . This problem is easily seen to have an explicit continuous piecewise
linear solution. Then the “oscillatory boundary data” on a 2D element K is defined
by setting ψp|e = ψe

p on each edge e of K containing xH
p , and ψp|e = 0 on the other

edges. This can be extended to 3D by an obvious bootstrapping procedure (see, e.g. [9]),
and it is easy to see (by uniqueness and the maximum principle) that the resulting Ψp

satisfies the assumptions (M1)–(M3). This recipe specifies basis functions Φp which can
immediately be seen to satisfy the assumptions (C1) - (C4) (see e.g. [9]).
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Matrix form of preconditioner

In order to write the two-level preconditioner in (I.4) in matrix form it is convenient to
introduce the cardinalities:

n = #N h(Ω) , N = #NH(Ω) , and nΓ = #{N h(Γ ∩ Ω)} .

That is n is the number of fine grid freedoms in the open set Ω, N is the number of
coarse grid freedoms in Ω, and nΓ is the number of fine grid freedoms which lie on the
skeleton Γ, but not on ∂Ω. Thus any vector f ∈ R

n can be decomposed into

f =

[

fI
fB

]

where fI ∈ R
n−nΓ are its values at nodes in Ω\Γ and fB ∈ nΓ are its values at nodes in

Γ ∩ Ω. Correspondingly (following common procedure), the stiffness matrix A in (I.2)
can be partitioned

A =

[

AII AIB

ABI ABB

]

.

Note that AII is a block diagonal matrix, with each block corresponding to freedoms in
the interior of a particular coarse mesh element. After a little algebra, the exact inverse
of A can be written:

A−1 =

[

−A−1
II AIB

IBB

] [

S−1
] [

−ABIA
−1
II IBB

]

+

[

A−1
II 0
0 0

]

(III.2)

where S = ABB − ABIA
−1
II AIB is the Schur complement of AII in A and IBB denotes

the nΓ × nΓ identity matrix. (See also [21, p.95].)
The following lemma shows that the coarse grid component in the preconditioner (I.4)

in the case of multiscale coarsening is a natural approximation of the first term on the
right-hand side of (III.2). To state and prove it we need the following notation. For
p ∈ IH(Ω), the coarse basis function Φp is identified with its vector Φp ∈ R

n of nodal
values and correspondingly, ψp is identified with its vector ψp ∈ R

nΓ of nodal values.

Lemma 3.1.

RT
0 A

−1
0 R0 =

[

−A−1
II AIB

IBB

] [

QT (QSQT )−1Q
] [

−ABIA
−1
II IBB

]

,

where QT is the N × nΓ matrix whose p-th column is ψp.

Proof. Let p ∈ IH(Ω). Note first that each of the problems in (III.1) constitutes a
FE discretisation of a local Dirichlet problem with Dirichlet data ψp|∂K on the fine mesh
involving only freedoms of Φp in K. Since ψp was assumed piecewise linear, in matrix
notation this is equivalent to

[

AII 0
0 IBB

] [

Φp

]

=

[

−AIB

IBB

] [

ψp

]

.

Hence, by definition (I.3),

RT
0 = [Φ1,Φ2, . . . ,ΦN ] =

[

−A−1
II AIB

IBB

][

ψ1,ψ2, . . . ,ψN

]

=

[

−A−1
II AIB

IBB

]

QT .
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Thus an easy calculation shows A0 = R0AR
T
0 = QSQT , and the result follows di-

rectly.

Thus from Lemma 3.1 we see immediately that the preconditioner M−1
AS,2 defined in

(I.4) can be written

M−1
AS,2 =

[

−A−1
II AIB

IBB

] [

QT (QSQT )−1Q
] [

−ABIA
−1
II IBB

]

+
N

∑

i=1

RiA
−1
i RT

i .

(III.3)
Comparing (III.3) with (III.2), we notice two differences: firstly the exact inverse S−1

of the Schur complement in (III.2) (defined on all fine freedoms on the skeleton) has
been replaced by an approximation QT (QSQT )−1Q, where the solve (QSQT )−1 has to
be carried out only on the coarse mesh freedoms.

Secondly, while the second term on the right-hand side of (III.2) consists of the sum
of inverses of A on interior freedoms of each coarse element, the corresponding term in
(III.3) consists of a sum of inverses of A on subdomains. Because of assumption (C5), the
subdomain solves will always be over domains which are at least as big (asymptotically)
as the coarse elements. In this sense the second term on the right hand side of (III.3)
provides a better preconditioning because the local solves are now over bigger regions
which overlap.

Continuing the comparison further we notice that, in the special case of 1D, the
skeleton is the whole of the coarse grid and so the interpolation matrix Q is always
the identity. Thus the first terms on the right-hand side of (III.2) and (III.3) coincide.
This ensures that in 1D the multiscale preconditioner has condition number bounded
independently of mesh parameters and of the coefficient α.

To justify this assertion, consider the simplest case where each subdomain Ωi is the
extension of a coarse grid element K ∈ T H . Denoting the diagonal blocks in the last
term in (III.2) by AK we have, for any vector u ∈ R

n, from (III.2) and Lemma 3.1,

u = A−1Au = RT
0 A

−1
0 R0Au +

∑

K∈T H

RT
KA

−1
K RKAu , (III.4)

where RKu is the restriction of a vector u to its values at nodes in the interior of K. Also
note that RT

0 A
−1
0 R0A and RKA

−1
K RKA are the orthogonal projections, with respect to

the inner product induced by A, onto range(RT
0 ) and range(RT

K), respectively. Therefore
it follows from (III.4) that

‖u‖2
A = ‖RT

0 A
−1
0 R0Au‖2

A +
∑

K∈T H

‖RT
KA

−1
K RKAu‖2

A , (III.5)

where ‖ · ‖A is the norm induced by A. Now, let Ωi(K) be the subdomain associated with
K ∈ T H . Then range(RT

K) ⊂ range(RT
i(K)), and so (III.4) represents a decomposition of

u into components in range(RT
i ), for i = 0, . . . , N . But M−1

AS,2A is simply an analogous

sum of orthogonal projections onto range(RT
i ), i = 0, . . . , N . Hence (III.5) and Lions’

Lemma (see [21, Lemma 2.5]) ensure that the minimum eigenvalue of M−1
AS,2A is no

smaller than 1. The maximum eigenvalue is bounded above by a colouring argument
(independently of mesh parameters and the coefficient α) and the claim about the 1D
case follows.
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IV. OTHER VARIANTS

In this section we describe two variants of the additive Schwarz preconditioner (I.4) and
give condition number estimates analogous to those in Theorem 2.1 .

Hybrid additive-multiplicative Schwarz

This preconditioner has been first introduced and analysed in [13, 14]. It is obtained by
combining the one-level additive method (consisting only of the local subdomain solves)
in a multiplicative way with the coarse solve. In order to ensure that the resulting
preconditioner is symmetric we need to apply the coarse solve twice. We formulate this
preconditioner by first defining the matrix

Q0 = I −ART
0 A

−1
0 R0 . (IV.1)

(Note that I − QT
0 = RT

0 A
−1
0 R0A, which is the orthogonal projection discussed in the

previous section. We work with Q0 in this section since it relates best to the notation in
the existing literature and simplifies the comparison with deflation below.)

A property of Q0 which we will use frequently is that it “commutes” with A, i.e.

Q0A = A−ART
0 A

−1
0 R0A = AQT

0 . (IV.2)

The hybrid preconditioner is now defined as

M−1
Hyb = RT

0 A
−1
0 R0 +QT

0M
−1
AS,1Q0 . (IV.3)

The following theorem can be found in [13, Lemma 3.2] (see also [21, Lemma 2.15]).

Theorem 4.1.

κ(M−1
HybA) ≤ κ(M−1

AS,2A) .

Combining this theorem with Theorem 2.1, we have the following corollary for the
hybrid preconditioner.

Corollary.

κ
(

M−1
HybA

)

. π(α) γ(1)
N

max
i=1

(

1 +
Hi

δi

)

+ γ(α) .

Thus the hybrid preconditioner is also robust provided γ(α) and π(α) are bounded.
The inequality in Theorem 4.1 is sharp and we will see in Section V. that in practice
the introduction of the hybrid preconditioner instead of the additive one does not lead
to a significant improvement in the number of CG iterations in many test cases – in
particular when M−1

AS,2 is already an effective preconditioner. However, the introduction
of the hybrid preconditioner does seem to lead to a significant improvement in the case
of random coefficients where the additive preconditioner is less robust.

Although it may seem that the application of the hybrid preconditioner requires more
work than the application of the standard additive Schwarz method, the extra work can
be minimised after making the following observations.

Note first that, provided we choose an initial guess for the CG iteration of the form:
u(0) = RT

0 A
−1
0 R0f + w, with w ∈ range(QT

0 ), subsequent CG iterates satisfy

u(k) − u(0) ∈ range(QT
0 ) for all k ≥ 0 (IV.4)
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(see [21, Lemma 2.11]). Now recall that in each CG iteration the preconditioner M−1
Hyb is

applied to the current residual r(k) = f −Au(k). However, by (IV.2) and the assumption
on the initial guess,

r(0) = f −Au(0) = Q0f −Aw ∈ range(Q0A) .

Together with (IV.2) and (IV.4) this implies

r(k) ∈ range(Q0A) for all k ≥ 0. (IV.5)

and so the action of Q0 does not need to be calculated in practice. Since we also have
RT

0 A
−1
0 R0Q0 = 0, the additional work required to apply the hybrid preconditioner (as

opposed to the additive two-level preconditioner) is one matrix-vector product with A
per CG iteration.

It is possible to reduce this extra cost further by precalculating ART
0 and by storing

it in place of RT
0 . This can be achieved with one sparse matrix-matrix product at the

cost of approximately three matrix-vector products with A. The additional storage is
also equivalent to a few vectors.

Deflation

Another preconditioning strategy that has proven successful when there are a few isolated
near-zero eigenvalues is deflation (see [18, 16, 17] and the references therein). Here, given
an n × n matrix A we choose a set of vectors z1, . . . , zm that span an m-dimensional
subspace of R

n which we aim to project out of the iterates, with m � n. Following the
notation in the deflation literature [16, 17], let Z be the matrix with columns z1, . . . , zm

and let

P = I −AZ E−1 ZT where E = ZTAZ .

(Note that, anologously to (IV.1), (I − P T ) is the orthogonal projection of R
n onto

range(Z) with respect to the inner product induced by A and that again AP T = PA.)
Now, to solve the system (I.2), we write

u = P T u + (I − P T )u, (IV.6)

so that AP T u + A(I − P T )u = f . Then observe that, by applying P to each side of
this equation and using PA(I − P T ) = P (I − P )A = 0, we obtain a “deflated equation”
for the projection ũ := P T u, which reads simply

PAũ = P f . (IV.7)

The matrix PA in (IV.7) is positive semidefinite (with respect to the inner product
induced by A), and has rank n − m. To obtain the complimentary part of u, namely
(I − P T )u, note that (I − P T )u = ZE−1ZT f which can be found by solving directly a
small m-dimensional system with coefficient matrix E.

The large system (IV.7) can still be solved iteratively by preconditioned CG. (This
is because the right hand side of (IV.7) lies in the range of PAP T , so this system is
consistent and its effective condition number is positive.) The convergence rate depends
on the square root of the effective condition number:

κeff(M−1PA) =
λn

λm+1
(IV.8)
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where λi is the ith-largest eigenvalue of M−1PA and M is an SPD preconditioner
[18, 16, 17].

This method is particularly useful if the m smallest eigenvalues of A are isolated from
the rest of the spectrum and if z1, . . . , zm are corresponding eigenvectors. In this case the
deflated matrix PA has spectrum {0, . . . , 0, λm+1(A), . . . , λn(A)} and the performance
of preconditioned CG depends only on the n − m largest eigenvalues of A. This is of
particular relevance here, since standard one-level preconditioners for (I.1) often produce
highly clustered spectra with relatively few near–zero eigenvalues [7, 8, 2, 22]. How-
ever, usually the eigenvectors corresponding to the m smallest eigenvalues of A are not
available in practice, and deflation would be too expensive were they computed for this
purpose only. For this reason deflation preconditioners for (I.1) usually employ so-called
subdomain deflation (see [18, 16, 17]). The success of subdomain deflation is analysed in
[16, 17] by comparing it to additive and multiplicative coarse grid correction in Schwarz
methods. Since we have already established in Theorem 4.1 that the multiplicative coarse
grid correction is no worse than the additive one in Schwarz methods, we only quote the
result from [17] comparing deflation to multiplicative coarse grid correction.

Theorem 4.2. For any symmetric positive definite M ,

κeff(M−1PA) ≤ κ((ZE−1ZT + P TM−1P )A) .

The result in Theorem 4.2 is true for any choice of Z and M . In particular we may
choose Z = RT

0 (so that in this case P = Q0) and M = MAS,1, and in conjunction with
the corollary to Theorem 4.1 we have the following corollary.

Corollary.

κeff(M−1
AS,1PA) ≤ κ(M−1

HybA) . π(α) γ(1)
N

max
i=1

(

1 +
Hi

δi

)

+ γ(α) .

This shows that subdomain deflation with Z = [Φ1,Φ2, . . . ,ΦN ] also leads to a robust
preconditioner provided γ(α) and π(α) are bounded. Here the deflation vectors are the
nodal values of the coarse space basis functions Φp.

Note that in [18, 16, 17], given a (non-overlapping) partitioning of the set of freedoms
N h(Ω) into m “aggregates” {Wj : j = 1, . . . ,m} (usually related to physical subdomains
of Ω), the (subdomain) deflation vectors {zj} are chosen such that

(zj)p =

{

1 if p ∈Wj ,
0 otherwise,

i.e. subdomain deflation with piecewise constant interpolation onto the subdomains. The
robustness of this type of (aggregation-based) coarse space is analysed in [19]. It is very
similar to the theory presented in §II, and in particular, it is shown there that

κ(M−1
AS,2A) .

m
max
j=1

{

δ2j ‖α|∇ζj |
2‖L∞(Ω)

} m
max
j=1

(

1 +
Hj

δj

)

(IV.9)

where ζj is the finite element function associated with the nodal vector zj and Hj is the
diameter of the support of the function ζj in Ω. The overlap parameter is δj = h in
this case. Theorems 4.1 and 4.2 imply that the same bound as in (IV.9) also holds for
κeff(M−1

AS,1PA). This means that unless care is taken that ∇ζj is small wherever α is
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large the original subdomain deflation preconditioners in [18, 16, 17] are not robust with
respect to heterogeneities in α. In particular, if α → ∞ in an element τ ∈ T h in the
overlap between two aggregates then κeff(M−1

AS,1PA) may grow unboundedly. Techniques
which avoid this and ensure coarse space robustness also in the case of aggregation are
described in [19]. These techniques use ideas from algebraic multigrid to construct the
aggregates Wj based on strong connections in A.

We finish this section with a result that links the hybrid preconditioner and deflation
even further. Provided the appropriate initial guess is chosen in each case, the deflation
preconditioner is in fact simply a different implementation of the hybrid preconditioner.
We state and prove the theorem for Z = RT

0 and M = MAS,1, but the result is true for
arbitrary (full-rank) Z and (symmetric positive definite) M and the proof is identical.

Theorem 4.3. Let u(k) denote the kth CG iterate for solving (I.2) with preconditioner
M−1

Hyb and let ũ(k) denote the kth CG iterate for solving the deflated system (IV.7) with

Z = RT
0 and preconditioner M−1

AS,1. If we choose the initial guesses for (IV.7) and (I.2)

such that ũ(0) ∈ range(QT
0 ) and u(0) = RT

0 A
−1
0 R0f + ũ(0), respectively, then in exact

arithmetic

u(k) = RT
0 A

−1
0 R0f + QT

0 ũ(k) for all k ≥ 0.

Proof. This result was first observed by Reinhard Nabben [15], but we know of no
proof in the literature. We prove by induction that

r(k−1) = r̃(k−1) and p(k) = QT
0 p̃(k) for all k ≥ 1, (IV.10)

where p(k) and p̃(k) are the search directions in the kth iteration of CG in the hybrid
and in the deflation case, respectively; r(k) is the kth residual in the hybrid case and
r̃(k) = Q0(f − Aũ(k)) is the (projected) residual in the deflation case (see e.g. [21,
Appendix C] for a description of the CG method). The result then follows easily from
(IV.10) together with (IV.2), i.e.

u(k) = A−1(f − r(k)) = A−1(f −Q0f +Q0Aũ(k)) = RT
0 A

−1
0 R0f + QT

0 ũ(k).

Now to prove (IV.10) note first that by (IV.5) and the subsequent discussion we have

M−1
Hybr

(k) = (RT
0 A

−1
0 R0 +QT

0M
−1
AS,1Q0)r

(k) = QT
0M

−1
AS,1r

(k). (IV.11)

By (IV.2) and the assumption on the initial guess, we have

r(0) = f −ART
0 A

−1
0 R0f −Aũ(0) = Q0(f −Aũ(0)) = r̃(0)

Hence, using (IV.11), p(1) = M−1
Hybr

(0) = QT
0M

−1
AS,1r

(0) = QT
0 p̃(1).

Now assume that r(k−1) = r̃(k−1) and p(k) = QT
0 p̃(k) for some k ≥ 1. This implies

(r(k−1))TM−1
Hybr

(k−1) = (r̃(k−1))TM−1
AS,1r̃

(k−1) and (p(k))TAp(k) = (p̃(k))TQ0Ap̃(k)

and so the search parameters in the hybrid and deflation cases coincide, i.e. α(k) = α̃(k).
Similarly, β(k) = β̃(k). Moreover, we also have using (IV.2) again that

r(k) = r(k−1) − α(k)Ap(k) = r̃(k−1) − α̃(k)AQT
0 p̃(k) = r̃(k)

and p(k+1) = M−1
Hybr

(k) + β(k)p(k) = QT
0 (M−1

AS,1r̃
(k) + β̃(k)p̃(k)) = QT

0 p̃(k+1).
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FIG. 1. Examples 1 (left) and 2 (right) for r = 5 and R = 1.

V. NUMERICAL EXPERIMENTS

In this section, by a series of examples involving “binary” media and random media, we
explain how our analysis in Section II yields sharp estimates for standard domain decom-
position methods and, moreover leads to new effective robust multiscale preconditioners.

We will work with the unit square Ω = [0, 1]2 and let T h be the family of uniform
(isosceles) triangulations of Ω obtained by taking a uniform mesh of squares of side
h = 2−r (for some r ∈ N) and subdividing each by a line joining the bottom left to
top right corners. Analogously, let T H be a uniform family of coarse meshes with mesh
width H = 2−R, R < r, so that each K ∈ T H is a union of a set of fine grid elements
as assumed above. For each coarse mesh T H we consider two types of coarse space basis
functions: standard piecewise linear basis functions and the multiscale basis functions
constructed in Section III with oscillatory boundary conditions. They will be denoted
by ΦL

p and ΦM
p for each p ∈ IH(Ω), respectively. The corresponding two–level additive

Schwarz preconditioners will be denoted by M−1
AS,L and M−1

AS,M , respectively, while the

one–level method is still denoted by M−1
AS,1. Moreover, γL(α) and γM(α) will denote the

corresponding coarse space robustness indicators as defined in Section II. The overlapping
open covering {Ωi : i = 1, . . . , N} of Ω is obtained from T H by extending each element
K ∈ T H with β layers of fine grid elements, where β ∈ N is fixed as h → 0. It follows
that the overlap parameter δi satisfies δi ∼ βh for each i = 1, . . . , N .

Let us first demonstrate how our analysis in Section II yields sharp estimates by
studying the condition numbers of the preconditioned stiffness matrices in the case of
two particular choices of α(x). Here, we restrict to the additive variant (I.4). The hybrid
and the deflation preconditioner will be studied later.

Example 1. Here we take r ≥ R + 3 (i.e. H ≥ 8h) and let α(x) describe a binary
medium where α(x) = α̂ on a square island of width H/4 in the “centre” of each coarse
element K ∈ T H . The islands are chosen such that they are located at a distance H/8
from the horizontal and vertical edges of K (see FIG. 1 (left)). In the rest of the domain
Ω we choose α(x) = 1. We study the behaviour of our preconditioners when α̂ → ∞.

Note that for this choice of α it can be shown that γM(α) . 1 and π(α) ∼ 1 (see [9]
for a proof). On the other hand, γL(α) → ∞ as α̂→ ∞.

The first set of numerical results in Table 1 shows the loss of robustness of two–level
additive Schwarz with linear coarsening in Example 1. It also demonstrates that γL(α)
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is a good indicator for this loss of robustness. Moreover, the results show that in the
case of linear coarsening the two–level method is performing asymptotically like the one–
level method. This is in accordance with the theory since κ(M−1

AS,2A) . κ(M−1
AS,1A) for

any choice of the coarse space (cf. [9] for details). In contrast, the last two columns in
Table 1 highlight the robustness of multiscale coarsening and show that γM(α) is also a
good indicator for this robustness. The observations confirm the predictions of Theorem
2.1 with respect to variations in α.

TABLE 1. Standard one–level and two–level additive Schwarz preconditioning (with linear and
multiscale coarsening) for Example 1 with h = 1

256
, H = 8h and δ = 2h.

α̂ κ(M−1
AS,1A) κ(M−1

AS,LA) γL(α) κ(M−1
AS,MA) γM(α)

100 8410 22.0 3.0 22.0 3.0
102 6100 111.0 40.1 17.7 4.26
104 6040 3870 3.75(+3) 17.6 4.31
106 6040 6000 3.75(+5) 17.6 4.31

The results in Table 2 show the sharpness of the maxi(1 +Hi/δi) term in the bound
in Theorem 2.1. Finally, our third set of results in Table 3 explains more the loss of
robustness of the standard method as the coarse mesh is refined, i.e. the two–level
method with linear coarsening behaves asymptotically like the one–level method and
degenerates as the fine mesh is refined while multiscale coarsening leads to a robust
preconditioner, with respect to both h and α̂.

TABLE 2. Condition numbers for the two-level additive method with multiscale coarsening
for Example 1 with h = 1

256
and α̂ = 106.

δ H = 8h H = 16h H = 32h H = 64h

2h 17.6 33.2 62.4 115.4
4h 9.9 17.9 32.8 59.4
8h 6.4 9.9 17.7 31.4
16h 6.4 9.8 17.1

TABLE 3. Condition numbers for the one-level and for the two-level methods with H = 8h,
h = 2−r and δ = 2h for α̂ = 106 in Example 1 (as the fine mesh is refined).

r 1/h κ(M−1
AS,1A) κ(M−1

AS,LA) κ(M−1
AS,MA)

7 128 1510 1510 17.5
8 256 6040 6000 17.6
9 512 24160 23630 17.7
10 1024 96640 88680 17.7

Example 2. Here, we want to let the areas with large coefficients also touch the edges
of our coarse mesh T H and investigate the effectiveness of the oscillatory boundary
conditions in this case. Let α(x) describe a binary medium, where α(x) = α̂ on uniformly
placed, square islands of diameter h that are separated by exactly one layer of fine grid
elements (see Figure 1 (right)). In the rest of the domain we choose α(x) = 1. We study
again the behaviour of our preconditioners when α̂→ ∞.
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It can easily be shown again that γL(α) → ∞ as α̂ → ∞. In contrast, we will see in
Tables 4 and 5 below that γM(α) is bounded as α̂→ ∞.

Our first set of numerical results for Example 2 in Table 4 was obtained with minimal
subdomain overlap, i.e. with β = 1 (i.e. δ = 2h). In this case π(α) ∼ α̂ and thus grows
unboundedly as α̂ → ∞ (see [9] for details). Therefore none of the preconditioners is
robust, even though we see in the last column that in the case of multiscale coarsening
(with oscillatory boundary conditions) we have coarse space robustness.

TABLE 4. Condition numbers for Example 2 with h = 1

256
, H = 8h and δ = 2h (i.e. β = 1).

α̂ κ(M−1
AS,1A) κ(M−1

AS,LA) κ(M−1
AS,MA) γM(α)

100 8.41(+3) 2.20(+1) 2.20(+1) 3.0
102 6.40(+4) 2.36(+2) 2.31(+2) 7.9
104 5.11(+6) 2.13(+4) 2.07(+4) 8.0
106 > 108 > 106 > 106 8.0

On the other hand, for β ≥ 2, it can be shown that π(α) . β2 (see again [9] for
details). The results in Table 5 (column 5) confirm this, i.e. as predicted by our theory,
multiscale coarsening with oscillatory boundary conditions leads to a robust two–level
preconditioner also in Example 2. The coarse space robustness indicator γM(α) is able
to predict this behaviour accurately. As in Example 1, linear coarsening leads to a two–
level method which performs no better than the one-level method as α̂ → ∞ (Table 5,
column 3).

TABLE 5. Condition numbers for Example 2 with h = 1

256
, H = 8h and δ = 4h (i.e. β = 2).

α̂ κ(M−1
AS,1A) κ(M−1

AS,LA) κ(M−1
Hyb,LA) κ(M−1

AS,MA) κ(M−1
Hyb,MA) γM(α)

100 3300 11.9 10.4 11.9 10.4 3.0
102 3430 116.0 43.1 12.0 10.4 7.9
104 3440 2650 1840 12.0 10.4 8.0
106 3440 3430 3410 12.0 10.4 8.0

Table 5 also gives the condition numbers in the case of the hybrid preconditioner
defined in Section IV, both for standard piecewise linear and for multiscale coarsening
– denoted by M−1

Hyb,L and M−1
Hyb,M , respectively. As predicted (cf. Theorem 4.1) the

condition number for the hybrid preconditioner is never any worse than that of the cor-
responding additive preconditioner. However, more importantly, we see that it is the
choice of the coarse space functions which is crucial for the robustness of the precondi-
tioner, and not the way the coarse solve is combined with the local subdomain solves.

We will now explore the efficiency of the new coarsening strategies by using our pre-
conditioners within a preconditioned Conjugate Gradient (CG) method for (I.2) with
f = 1. The stopping criterion for CG is a reduction in the Euclidean norm of the resid-
ual by a factor ε = 10−6. Apart from the additive preconditioners M−1

AS,1, M
−1
AS,L and

M−1
AS,M , already introduced above, we will also include results with the hybrid and the

deflation preconditioners defined in Section IV. The initial guess in the CG method is
u(0) = RT

0 A
−1
0 R0f for all the two-level methods and u(0) = 0 for the one-level method.

In Tables 6 and 7 we compare for varying problem sizes n, the number of CG iterations
in the case of α̂ = 106 in Examples 1 and 2, respectively. The results confirm the
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statement made in Theorem 4.3, i.e. the number of CG iterations with the hybrid and
the deflation preconditioners is identical in each case (up to the effect of rounding errors).
The results confirm again the robustness of multiscale coarsening in comparison to linear
coarsening and show that the way the coarse solve is combined with the local subdomain
solves is not crucial.

TABLE 6. CG iterations for Example 1 with H = 8h, δ = 2h and α̂ = 106.

Linear Coarsening Multiscale Coarsening
r n 1-Level Additive Hybrid Deflation Additive Hybrid Deflation

7 1.61(+4) 77 79 76 76 22 21 21
8 6.45(+4) 153 150 145 145 22 20 20
9 2.58(+5) 292 287 287 287 20 19 19
10 1.03(+6) 586 574 573 575 21 18 18

TABLE 7. CG iterations for Example 2 with H = 8h, δ = 4h and α̂ = 106.

Linear Coarsening Multiscale Coarsening
r n 1-Level Additive Hybrid Deflation Additive Hybrid Deflation

7 1.61(+4) 77 100 102 102 22 26 26
8 6.45(+4) 144 185 187 185 22 24 24
9 2.58(+5) 292 355 362 362 22 21 21
10 1.03(+6) 534 681 730 729 21 21 21

In Table 8 we compare the setup time for each of the preconditioners, and the total
CPU–time in the case of Example 2. The CPU–times were all obtained on a 3GHz Intel
P4 processor. The coarse problem and all the local problems were solved using banded
solvers in LAPACK. We see that the extra setup cost to construct the coarse space basis
functions in the multiscale case is negligible. Moreover, the highly reduced iteration
count leads to a speedup on the finest mesh of over 20 in comparison to the standard
two-level method with linear coarsening and of over 15 in comparison to the one-level
method. We note the slightly worse timings for the hybrid method compared to the
additive variant in this example.

TABLE 8. Total CPU–time (in secs) for the problem in Example 2 with H = 8h, δ = 4h and
α̂ = 106. The setup times for the preconditioners are given in brackets.

Linear Coarsening Multiscale Coarsening
r n 1-Level Additive Hybrid Additive Hybrid

7 1.61(+4) 0.65 (0.06) 0.87 (0.06) 0.95 (0.06) 0.26 (0.07) 0.30 (0.07)
8 6.45(+4) 4.71 (0.21) 6.68 (0.26) 7.16 (0.26) 1.11 (0.31) 1.23 (0.31)
9 2.58(+5) 38.8 (0.87) 52.6 (1.12) 57.1 (1.12) 4.63 (1.31) 4.71 (1.31)
10 1.03(+6) 286 (3.55) 409 (4.97) 470 (4.97) 18.8 (5.72) 19.7 (5.72)

Finally, we illustrate by some numerical experiments that the multiscale method also
leads to greatly improved performance over standard preconditioners for random media.

Example 3. Here, we choose α as a realisation of a log–normal random field, i.e.
logα(x) is a realisation of a homogeneous, isotropic Gaussian random field with ex-
ponential covariance function, mean 0, variance σ2 and correlation length scale λ (as
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FIG. 2. Typical realisation of a log-normal random field for Example 3 (h = 1

512
and λ = 4h).

Black areas represent large values of α; white areas represent small values of α.

defined in e.g. Cliffe et al. [5]). This is a commonly studied model for flow in heteroge-
neous porous media. For more details on the physical background see e.g. [5]. We use
Gaussian [12] to create realisations of these random fields (see Figure 2 for a grey-scale
plot of a typical realisation). The larger the correlation length λ, the more correlated
(and thus smoother) is the field. The larger the variance σ2, the larger is the contrast,
i.e. the ratio of the largest and the smallest values of α. For example, for the field in
Figure 2 with σ2 = 8, we have maxτ,τ ′∈T h

ατ

ατ′

= O(1010).

TABLE 9. Average number of CG iterations (over 100 realisations) for the problem in Exam-
ple 3 with h = 1

256
, H = 8h, δ = 8h and λ = 4h.

Linear Coarsening Multiscale Coarsening
σ2 max ατ

ατ′

1-Level Additive Hybrid Additive Hybrid

0 1.0 77 18 14 18 14
2 1.9(+5) 180 30 18 23 16
4 3.3(+7) 252 44 25 28 19
8 5.2(+10) 453 85 47 39 25
12 1.6(+13) 730 145 80 51 32
16 2.1(+15) 1021 231 128 64 40
20 1.5(+17) 1345 349 193 79 48

In Table 9 we compare the average number of CG iterations necessary to solve (I.2)
with right hand side f = 1 up to a tolerance of ε = 10−6, for 100 different realisations
of α for variances between σ2 = 0 and 20. We see that for the largest variance σ2 = 20
multiscale coarsening performs more than four times faster than standard linear coarsen-
ing. Here we see a more substantial superiority of the hybrid method, since it improves
on the additive variant by a factor of nearly two in both the linear and multiscale cases.
This is also reflected in the average CPU–times. The (small) additional cost for the
hybrid preconditioner is outweighed by the benefits achieved: for example in the case
σ2 = 20, the additive variant takes 7.05 seconds, while the hybrid takes 4.75 seconds.
What is more, the latter is only about 2.5 times the time it takes to solve in the case of
the Laplacian (i.e. σ2 = 0), namely 1.87 seconds. The improvement is of the same order
for other choices of h, H , λ and δ.
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FIG. 3. Exact (dashed) and updated (solid) residual norm for Example 3 with h = 1

256
, λ = 4h

and σ2 = 20, in the case of the hybrid (left) and the deflation preconditioner (right).

Our final set of result in FIG. 3 investigates the robustness of the hybrid and the
deflation preconditioner. It has been shown in [16] that both the hybrid and the deflation
preconditioner are sensitive to perturbations in A−1

0 . Extreme contrasts in the coefficient
α(x) can lead to a severe accumulation of round-off error in the LU factors of A0 (even
with partial pivoting) and thus to large perturbations in A−1

0 . It was also shown in [16]
that the additive two-level method is insensitive to these perturbations. The results in
FIG. 3 show that the effect which these perturbations have is more severe in the case
of deflation, causing the CG iteration to diverge (since r̃(k) is no longer in the range
of Q0AQ

T
0 ). In contrast, the hybrid preconditioned iterative method produces good

solutions to the problem being solved, even in the case of the most extreme contrasts in
the coefficients (i.e. for variance σ2 = 20). In the graph the dashed line represents the
Euclidean norm of the exact residual, while the solid line represents the Euclidean norm
of the residual computed by updates inside the CG algorithm. The graphs show that the
stopping criterion (based on CG residuals) is producing an actual residual which is within
tolerance. Similar behaviour is observed in Examples 1 and 2. In conclusion, the hybrid
preconditioner seems to be more robust than deflation, and since both preconditioners
lead to the same CG iterates (cf. Theorem 4.3) and to the same computational cost there
seems to be no benefit in using deflation. It should be noted though that in practice this
issue is not so crucial since it occurs only for very large contrasts in α(x) and for very
strict stopping criteria.

For numerical results with other choices of the overlapping covering and the coefficient
function α (including multiscale basis functions with linear boundary conditions) see [9].
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