HGS Heidelberg Compact Course

"Computational Methods for Uncertainty Quantification"

Exercise Sheet 1

- 1. (MC Methods Slide 11) Confidence intervals for Monte Carlo estimates:
 - (a) Using the Berry-Esseen bound derive a confidence interval for the estimate S_N/N and (upper and lower) bounds on the probability that μ falls into this confidence interval.
 - (b) In the Buffon needle problem, we have

$$\mathbf{E}[H_k] = p, \ \mathbf{Var}[H_k] = p(1-p), \ \mathbf{E}[|H_k - p|^3] = p(1-p)(1-2p+2p^2).$$

Calculate the confidence interval for this problem in the case N = 3408, $\ell = 2.5$, d = 3, and thus check how likely it is that Lazzarini's machine would produce 1808 intersections and a relative accuracy of π of $8.5 \cdot 10^{-8}$.

2. (Predator-Prey Example – Slide 17) Show that the mean square error for the Monte Carlo estimator can be expanded as

$$\mathbf{E}\left[\left(\mathbf{E}\left[Q\right] - \widehat{Q}_{M}\right)^{2}\right] = \left(\mathbf{E}\left[Q - Q_{M}\right]\right)^{2} + \frac{\mathbf{Var}[Q_{M}]}{N}$$

Hint: Note that $\mathbf{E}[Q]$ is constant and only \widehat{Q}_M is actually random.

- 3. (Predator-Prey Example Slide 23) Implementing standard Monte Carlo and antithetic sampling for the predator-prey example:
 - (a) Find an estimate for $\operatorname{Var}\left[\frac{1}{2}(\widehat{Q}_{M,N} + \widehat{\widetilde{Q}}_{M,N})\right]$ based on the sample variances and covariances of $\{Q_M^{(k)}\}$ and $\{\widetilde{Q}_M^{(k)}\}$ defined above.
 - (b) Implement the Monte Carlo method for the predator-prey system with $\overline{\mathbf{u}}_0 = [0.5, 2]^{\mathrm{T}}$, $\epsilon = 0.2$, T = 6, using explicit Euler discretisation, i.e.

$$\dot{\mathbf{u}} = \mathbf{f}(\mathbf{u}) \text{ and } \mathbf{u}(0) = \mathbf{u}_0 \longrightarrow \mathbf{u}_{j+1} = \mathbf{u}_j + \Delta t \, \mathbf{f}(\mathbf{u}_j).$$

Study the discretisation and MC errors and compute confidence intervals.

- (c) Implement also the antithetic estimator and compare the variance of the two estimators. How much is the variance reduced? Does this reduction depend on the selected tolerance TOL?
- 4. (Multilevel MC Slide 33) MLMC complexity analysis:
 - (a) Solve the constrained minimisation problem on Slide 30 to find the otimal numbers of samples on each level. (*Hint:* Use a Lagrange multiplier approach to include the constraint and then consider the first-order optimality constraints to find the minimum.)
 - (b) Proof the complexity theorem.
- 5. (Multilevel MC Slide 36) Implement the MLMC method for the predator-prey problem:
 - (a) Implement the multilevel MC method for the predator-prey problem. Choose M_0 not too small to avoid stability problems with the explicit Euler method. Compare the cost to achieve a certain tolerance TOL for the mean square error (in terms of floating point operations) against your other two implementations (standard and antithetic MC estimator). How big is the computational gain?
 - (b) Recall that $\alpha = \gamma = 1$ in that case. Verify this with your code. Compute $\operatorname{Var}[\widehat{Y}_{\ell}]$ and $\operatorname{Var}[\widehat{Q}_{M_{\ell}}]$ for a range of values of ℓ and M_0 . What is the numerically observed rate β ? Prove this theoretically.
 - (c) Can you think of any further enhancements of your code?

- 6. (Open ended question Slide 37)
 - (a) Think of a UQ question in your field of research and try to formulate a simple model problem that encapsulates the essential question. What type of uncertainty is it? How could you model it within your problem? Can you formulate a Monte Carlo simulation to estimate the uncertainties in a derived quantity of interest from your model? Are any of the variance reduction techniques we discussed applicable? Is there a natural model hierarchy that could be exploited in a multilevel algorithm?
 - (b) Implement a simple Monte Carlo code to quantify the uncertainties. If your problem has natural model hierarchies and allows to couple them, try to estimate $\operatorname{Var}[\widehat{Y}_{\ell}]$ and $\operatorname{Var}[\widehat{Q}_{M_{\ell}}]$ in the same way as we did above to check whether multilevel Monte Carlo would be beneficial.
 - (c) Implement a multilevel MC method for your problem. Do you achieve the gains that were predicted in (b)?