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Abstract. We study two–level overlapping domain decomposition preconditioners with
coarse spaces obtained by smoothed aggregation in iterative solvers for finite element dis-
cretisations of second-order elliptic problems. We are particularly interested in the situa-
tion where the diffusion coefficient (or the permeability) α is highly variable throughout the
domain. Our motivating example is Monte-Carlo simulation for flow in rock with perme-
ability modelled by log-normal random fields. By using the concept of strongly-connected
graph r-neighbourhoods (suitably adapted from the algebraic multigrid context) we design
a two–level additive Schwarz preconditioner that is robust to strong variations in α as well
as to mesh refinement. We give upper bounds on the condition number of the precondi-
tioned system which do not depend on the size of the subdomains (not available previously
in the literature) and make explicit the interplay between the coefficient function and the
coarse space basis functions in this bound. In particular, we are able to show that the
condition number can be bounded independent of the ratio of the two values of α in a
binary medium even when the discontinuities in the coefficient function are not resolved
by the coarse mesh. Our numerical results show that the bounds with respect to the mesh
parameters are sharp and that the method is indeed robust to strong variations in α. We
compare the method to other preconditioners (aggregation-type AMG and classical additive
Schwarz) as well as to a sparse direct solver, and show its superiority over those methods
for highly variable coefficient functions α.

1 INTRODUCTION

This paper extends work by Brezina & Vanek3, Jenkins et al.14, Lasser & Toselli16,
Sala17, and Sala et al.18 on two-level additive Schwarz preconditioners based on smoothed
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aggregation techniques first introduced by Vanek, Mandel & Brezina21 in the context
of algebraic multigrid methods. We consider the iterative solution of linear systems of
equations resulting from discretisations of boundary-value problems for the model elliptic
problem

−∇ · (α∇u) = f , (1)

in a bounded 2D or 3D domain Ω, subject to homogeneous Dirichlet boundary conditions.
We are particularly interested in the case where α is highly variable throughout the
domain, as for example in the simulation of flow through heterogeneous porous media.

Let us consider the discretisation of (1) using continuous piecewise linear finite elements
Vh on a triangulation T h of Ω of mesh width h. Then the condition number of the
resulting stiffness matrix A will grow like O(h−2) as the mesh is refined. In addition the
condition number will also depend on supx,y∈Ω (α(x)/α(y)). To improve the conditioning,
suppose that Ω is covered by a set {Ωi : i = 1, . . . , s} of overlapping subdomains such
that

⋃s
i=1 Ωi = Ω and such that diam Ωi ≤ Hsub . Secondly, suppose that we also have a

coarse space V0 ⊂ Vh. In our case the coarse space V0 := span{φj : j = 1, . . . , N} will be
obtained by smoothed aggregation, i.e. the coarse space basis functions φj are obtained
by grouping together fine grid nodes into aggregates of diameter ≤ H, by summing the
associated fine grid basis functions and by “smoothing” the result21. Let M−1

AS denote the
classical two-level additive Schwarz preconditioner, obtained by solving discretisations of
(1) on each of the overlapping subdomains as well as on the coarse space V0 (see e.g.
Toselli & Widlund20).

The main theoretical result of this paper is to improve the bounds for κ(M−1
ASA) in

the literature16,17,18. Note that as we will see in the numerical experiments, for efficiency
reasons it is of interest to choose H sub � H. However, the estimates in the literature16,17,18

all involve Hsub as well as H and assume α ≡ 1. We extend their results to the case α 6≡ 1
and prove a sharper bound that makes explicit the dependency on α and on the mesh
parameters. In particular, we are able to show that κ(M−1

ASA) is independent of Hsub ,
the size of the subdomains, and only depends linearly on the local ratio of the size of the
coarse space aggregates and the size of their overlap. Our numerical experiments show
that this bound is sharp.

The dependency of the condition number κ(M−1
ASA) on α is reduced to the quantity

γ(α) := maxj {δ2
j ‖α|∇φj|2‖L∞(Ω)} where δj is the size of the overlap of the support of φj

and its neighbours, i.e provided ∇φj(x) is small wherever α(x) is large, then κ(M−1
ASA)

can be bounded independently of α. We will see that for certain choices of the coefficient
function α, smoothed aggregation techniques produce coarse space basis functions such
that γ(α) remains bounded even when supx,y∈Ω

α(x)
α(y)

goes to infinity. For highly variable α
the strongest results in the domain decomposition literature are for the “structured” case
with standard linear coarse space, in which the coarse mesh is constructed to resolve dis-
continuities in α. In such cases it is possible to bound the condition number independent
of α but at the expense of a stronger dependency on the mesh parameters. An excellent
survey of such results can be found in Chan & Mathew6. Another class of results10,22,11,4
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applies when the number of discontinuities in α which are not resolved is small. Then
it can be shown that domain decomposition preconditioners produce a highly clustered
spectrum with relatively few near-zero eigenvalues – which is an advantageous situation
for Krylov subspace methods like CG. We are not aware of any theoretical results in the
algebraic multigrid literature which make explicit the dependency on α for highly variable
coefficient functions. Some other related results about robust coarsening can be found in
the domain decomposition and multigrid literature23,5,9,13.

To test the resilience of our method to strong variations in the coefficient function α we
study problem (1) on the unit square with coefficient function α chosen as a realisation
of a log-normal random field or of a “clipped” log-normal field with variance σ2 and
correlation length scale λ. The method proves indeed to be extremely robust with respect
to variations in α and outperforms AMG and standard two-level additive Schwarz with
linear coarse space.

For more numerical results and detailed proofs see Scheichl & Vainikko19. Note also
that the there is a strong link between the results in this paper and the results in Graham,
Lechner & Scheichl12.

Throughout the paper, the notation C . D (for two quantities C,D) means that C/D
is bounded above independently of the mesh parameters and of the coefficient function α.

2 GENERAL THEORY

In this section we provide a general framework for the analysis of domain decompo-
sition preconditioners for (1) in which the dependence of the condition number of the
preconditioned stiffness matrix on α, as well as on the mesh parameters, is made precise.
For details and proofs see Scheichl & Vainikko19.

Let {T h} be a shape-regular family of triangulations of Ω of mesh width h, and let
Sh(Ω) denote the subspace of H1(Ω) ∩ C(Ω̄), consisting of continuous piecewise linear
functions with respect to T h. We consider the bilinear form

a(u, v) :=

∫

Ω

α∇u · ∇v, u, v ∈ H1
0 (Ω) , (2)

and its Galerkin approximation in the n–dimensional space Vh := Sh(Ω) ∩H1
0 (Ω). Let A

be the corresponding n× n stiffness matrix using the standard nodal basis for Vh.
We are interested in iterative methods for solving (1) and hence in preconditioners

for A which remove the ill-conditioning due to both the non-smoothness of α and the
smallness of the mesh width h. We will be concerned with preconditioners based on
domain decomposition methods. Let {Ωi : i = 1, . . . , s} be an overlapping open covering
of Ω. Note that we will neither make any assumptions on the shape of the subdomains
Ωi nor on the way they overlap, except that they should be resolved by the fine mesh.
However the conditions on our coarse space basis functions below will implicitly induce
some assumptions on the subdomains. Let Vi := Sh

0 (Ωi) and let Ri denote the restriction
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matrix which takes degrees of freedom in Ω to degrees of freedom in Ωi and set Ai :=
RiAR

T
i . Hence, Ai is just the minor of A corresponding to the degrees of freedom in Ωi.

To obtain scalability with respect to the number of subdomains, one normally intro-
duces an additional coarse space. We will define a coarse space in a quite general way by
defining a set of basis functions which satisfy certain assumptions. In Section 3 we will
then describe an aggregation technique to construct a set of functions which satisfy these
assumptions. Let {φj : j = 1, . . . , NH} ⊂ Sh(Ω) be a linearly independent set of finite
element functions and let

ωj := interior (supp{φj}) .

(Note that (C1) below guarantees that {ωj} is a covering of Ω.) Define Hj := diam{ωj}
and set H := maxNH

j=1Hj. We need to assume (for theoretical purposes only) that the
covering {ωj} is shape regular and that the overlap between any support ωj and its
neighbours is uniform of size δj (for details see Scheichl et al.19). Also, set δ := minNH

j=1 δj.
We make the following assumptions on the the functions {φj : j = 1, . . . , NH}:

(C1)

NH
∑

j=1

φj(x) = 1, for all x ∈ Ω̄.

(C2) For all j = 1, . . . , NH there is a unique ij ∈ {1, . . . , s} such that ωj ⊂ Ωij .

(C3) ‖φj‖L∞(Ω) . 1 .

To simplify our notation we assume that the functions φj are numbered in such a way
that φj ∈ Vh for all j ≤ N and φj 6∈ Vh for all j > N , with N < NH , i.e. for all j ≤ N
we have φj|∂Ω = 0. We can then define the coarse space as follows:

V0 = span{φj : j = 1, . . . , N}

and we have V0 ⊂ Vh. Now, if we introduce the restriction matrix

(R0)j,p = φj(xp) , p = 1, . . . , n, j = 1, . . . , N,

where xp, p = 1, . . . , n, are the interior nodes of the fine mesh T h, then the matrix
A0 := R0AR

T
0 is the stiffness matrix for the bilinear form a(·, ·) discretised in V0 using the

basis {φj : j = 1, . . . , N}. The corresponding two-level additive Schwarz preconditioner,
based on combining coarse and subdomain solves is

M−1
AS =

s
∑

i=0

RiA
−1
i RT

i . (3)

Note that although we have not directly made any assumptions on the overlap between
the subdomains Ωi, Assumption (C2) implies that the minimum overlap between two of
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the subdomains {Ωi} is in fact bounded from below by δ, the minimum overlap of the
supports {ωj}.

It has already been noted in the literature16,17,18 that in order to bound κ(M−1
ASA),

the condition number of the preconditioned stiffness matrix in the case of the two-level
additive Schwarz preconditioner, we need a further assumption on the gradient of the
coarse space basis functions. The following two assumptions have been used previously:

(C4a) |φj|
2
H1(Ω) .

Hd−1
j

δj
j = 1, . . . , NH ,

(C4b) ‖∇φj‖
2
L∞(Ω) . δ−2

j j = 1, . . . , NH .

Note that (C4b) implies (C4a) and is therefore a stronger assumption.
In the case of s = NH (i.e. one coarse space basis function per subdomain) and α ≡ 1

the following bound has been proved in Lasser & Toselli16. It can also be found in Toselli
& Widlund20.

Theorem 2.1 Assume that (C1)-(C3) hold true and that in addition s = NH and α ≡ 1.
Then

κ(M−1
ASA) .

(

1 +
NH

max
j=1

Hj

δj

)β

where β = 2 if assumption (C4a) holds and β = 1 if assumption (C4b) holds.

As we will see, in practice it is often more efficient to choose s� NH , or in other words
subdomains of much larger diameter than H. Let us denote H sub := maxs

i=1 diam Ωi and
let δsub be the minimum overlap between any two subdomains. It has been shown in
Sala17 that for α ≡ 1 and under the weaker assumption (C4a)

κ(M−1
ASA) .

(

1 +
Hsub

δsub

) (

1 +
H

δ

)

(4)

This result has been improved in Sala et al.18 using the stronger assumption (C4b) to give

κ(M−1
ASA) .

(

1 +
Hsub

δsub
+
H

δ

)

. (5)

However, both these results are not sharp for H sub � H as our numerical results in
Section 4 will show. Indeed it is possible to prove the following result (even for s� NH)
using a simple colouring argument.

Theorem 2.2 Assume that (C1)-(C3) hold true. Then

κ
(

M−1
ASA

)

. sup
x,y∈Ω

α(x)

α(y)

(

1 +
NH

max
j=1

Hj

δj

)β

where β = 2 if assumption (C4a) holds and β = 1 if assumption (C4b) holds.

Proof. See Scheichl & Vainikko19. 2
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We will see below that the bound in Theorem 2.2 can still be improved with respect
to the dependency on the coefficient function α(x). However, Theorem 2.2 constitutes
already a new result in its own right since it provides a sharper bound with respect to
the mesh parameters than previously available in the literature. The two main points
which should be highlighted are that our new result shows that (i) the condition number
of the preconditioned stiffness matrix using a two-level additive Schwarz preconditioner
with an aggregation-type coarse space is independent of the size of the subdomains and
that (ii) it only depends on local ratios of the size of the supports of the coarse space
basis functions and their overlap. The numerical results in Section 5 will show that this
accurately reflects the dependency of the condition number on the mesh parameters.

We have seen above that the size of the bound on the condition number κ
(

M−1
AS,2A

)

depends on the assumptions which are made on the gradient of the coarse space basis
functions. We now make the dependency even more explicit by introducing the following
quantity which measures the robustness of the coarse space V0 with respect to variations
in α:

Definition 2.3 (Coarse space robustness indicator).

γ(α) :=
NH

max
j=1

{

δ2
j ‖α|∇φj|

2‖L∞(Ω)

}

.

For the remainder of this section we assume that α ≥ 1. This is no loss of generality,
since otherwise the problem (1) can be rescaled by dividing through by infx∈Ω α(x) without
changing the condition number of the resulting discrete problem.

The following result which constitutes the main theoretical contribution of this paper
relies on an improved bound for the stability constant C0 for the decomposition of an
arbitrary uh ∈ Vh into elements ui ∈ Vi. The proof of this result is quite technical and is
omitted. It can again be found in Scheichl and Vainikko19.

Theorem 2.4 Assume that (C1)-(C3) hold true. Then

κ
(

M−1
ASA

)

. γ(α)

(

1 +
NH

max
j=1

Hj

δj

)

.

In principle, for an arbitrary coefficient function α(x) and for an arbitrary set of
coarse space basis functions that satisfy (C4b), the quantity γ(α) can become as bad

as supx,y∈Ω
α(x)
α(y)

which is the quantity that appears in Theorem 2.2. However, the huge

improvement in Theorem 2.4 lies in the fact that γ(α) accurately reflects the interplay be-
tween coefficient function and coarse space basis functions. In fact, we will see in Section 3
that for a range of coefficient functions α(x), smoothed aggregation techniques produce

coarse space basis functions such that γ(α) remains bounded even when supx,y∈Ω
α(x)
α(y)

goes
to infinity.

6



R. Scheichl and E. Vainikko Robust aggregation-based coarsening for additive Schwarz

3 SMOOTHED AGGREGATION COARSE SPACES

Smoothed aggregation techniques have been introduced first in the context of algebraic
multigrid methods in Vanek, Mandel & Brezina21 and further investigated by Brezina &
Vanek3, Jenkins et al.14, Lasser & Toselli16, Sala17, and Sala et al.18 in the context of
Schwarz methods. However, surprisingly, all of the latter papers only concentrate on the
case α ≡ 1 (or α ∼ 1) and do not use the concept of strongly-connected neighbourhoods
of nodes which plays such a key rôle in the context of the coarse grid construction in
algebraic multigrid21.

To describe the smoothed aggregation algorithm that we use to construct a set of coarse
space basis functions {φj : j = 1, . . . , NH} which satisfy the assumptions in Section 2,
we first need to define strongly-connected graph r–neighbourhoods. Let N := {xp : p =
1, . . . , nh} be the set of all nodes of T h including the boundary nodes (so that nh > n),
and let A be the nh × nh stiffness matrix corresponding to a discretisation of a(·, ·) in
Sh(Ω), i.e. including the degrees of freedom on the boundary.

Definition 3.1 (a) Let xp and xq be two neighbouring nodes of T h, p 6= q, i.e. there
exists a τ ∈ T h such that xp, xq ∈ τ . Then node xq is strongly connected to xp iff

|Ãpq| ≥ ε max
k 6=p

|Ãpk| (6)

where Ã := (diagA)−1/2A (diagA)−1/2 and ε ∈ [0, 1] is a pre–determined threshold.
Let Sε(xp) denote the set consisting of all nodes xq that are strongly connected to
xp with threshold ε, as well as the node xp itself.

(b) Let G := (N , E) be the graph induced by the mesh T h, where E denotes the set of all
edges of T h. Now, let xp and xq be two (arbitrary) nodes of T h. Then xp and xq are
strongly connected iff there exists a path γpq in G with nodes xp = xp0

, xp1
, . . . , xp`

=
xq such that xpi

is strongly connected to xpi−1
for all i = 1, . . . , ` (in the sense of

(a)). Let `pq be the length of the shortest such path γpq.

(c) The strongly–connected graph r–neighbourhood of a node xp is the set Sr,ε(xp) con-
sisting of all nodes xq that are strongly connected to xp with `pq ≤ r, as well as the
node xp itself.

To our knowledge the criterion (6) does not appear anywhere in the literature. It stems
from the algebraic multigrid code of Bastian2 and is a modified version of the criterion in
Vanek et al.21. Strongly–connected graph r-neighbourhoods are to our knowledge also a
novel concept in the context of domain decomposition methods.

The construction of the coarse space basis functions is now almost identical to the
algorithm described in Brezina & Vanek3. However, the heuristics which we use (a) to
choose good seed nodes for each aggregate, (b) to ensure that the aggregates are shape-
regular where possible, (c) to minimise the number of nonzeros in the coarse matrix, and
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(d) to deal with isolated nodes are inspired by Bastian2. For details on those heuristics and
on the more practical aspects of our implementation see Scheichl et al.19. The algorithm
consists of two main steps: aggregation and smoothing. For both of those steps we make
use of the so–called filtered matrix Aε with entries

Aε
pq :=



















App +
∑

xq 6∈Sε(xp)

Apq if p = q,

Apq if xq ∈ Sε(xp)\{xp},

0 otherwise.

We start by creating a set of aggregates {Wj : j = 1, . . . , NH} such that

N =
⋃

j=1,...,NH

Wj and Wj ∩Wj′ = ∅ ∀j 6= j ′

(i.e. a non-overlapping partition of N ). The sets Wj can be obtained by choosing an
aggregation “radius” r ∈ N, a threshold ε ∈ [0, 1] and a set of seed nodes xH

j ∈ N , j =
1, . . . , NH , and by calculating the strongly–connected graph r-neighbourhoods Sr,ε(x

H
j ).

To calculate Sr,ε(x
H
j ) we make use of the filtered matrix Aε. Note that given a node

xp ∈ N we can calculate Sr,ε(xp) by calculating the vector w
p = (Aε)r

e
p where e

p is the
vector with entries ep

q = δpq. Sr,ε(xp) is then given by all the nodes xq such that wp
q 6= 0.

It is sufficient to carry out the sparse matrix-vector products needed in the calculation of
w

p symbolically.
In practice we choose the seed nodes by sweeping through Ω with an advancing front.

This might not lead to a complete partitioning of N and some heuristic procedures need
to be put in place that deal with nodes that are left over and/or isolated (not strongly–
connected to any other node). The algorithm aims to produce shape–regular aggregates
Wj and is guaranteed to achieve this in the case where {T h} is a quasi-uniform family of
triangulations and all connections are strong (see Figure 1 (left) for the case α ≡ 1 and
r = 2). However, for an arbitrary strongly–varying coefficient function α the aggregates
Wj may (and indeed should in many cases) not be shape-regular.

For each j = 1, . . . , NH we now define a vector Ψj ∈ R
nh as follows:

Ψj
p :=

{

1 if xp ∈ Wj

0 otherwise.

Let ψj ∈ Sh(Ω) be the finite element function corresponding to the coefficient vector Ψj.
We further smooth these vectors Ψj by using a damped Jacobi smoother

S :=
(

I − ω (diagAF )−1AF
)

.

with damping parameter ω. Let
Φj := Sµ Ψj

8
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Figure 1: Aggregates Wj for α ≡ 1 (left) and α strongly–varying (right) with r = 2, ε = 2

3
.

where µ is the number of smoothing steps. The jth coarse space basis function φj ∈ Sh(Ω)
is the finite element function corresponding to the coefficient vector Φj.

To construct the subdomains Ωi we apply the aggregation procedure (described above)
to A0. Therefore each subdomain Ωi will consist of the union of the supports of a set of
coarse space basis functions φj and (C2) is satisfied.

Let us now consider whether the functions φj, j = 1, . . . , NH , satisfy the other assump-
tions made in Section 2. Note that for quasi-uniform {T h} and α ∼ 1 all connections in
A are strong (provided ε is not too close to 1). This case has already been covered in the
literature. See Brezina & Vanek3 and Lasser & Toselli16 for details. It is important to
note however, that it has so far not been possible to prove Assumption (C4b) in the case
of smoothed basis functions (including the case of damped Jacobi smoothing used here).
In the unsmoothed case, i.e. for µ = 0, (C4b) follows directly from the construction of
the functions ψj.

In the case of strongly varying α nothing has been proved so far. We will restrict
to the unsmoothed case here, i.e. µ = 0 and so φj = ψj. (For the case of smoothed
aggregation see Scheichl et al.19.) In the case of µ = 0 all the assumptions made in
Section 2 are satisfied by construction, except the shape regularity of the supports ωj.
This is not guaranteed and depends on the coefficient function α. The size of the overlap
δj = O(hmin

j ) where hmin

j is the diameter of the smallest element τ ⊂ ωj which touches
the boundary of ωj.

For certain special choices of α it can be shown that the covering {ωj} is shape regular
even when α varies very strongly, and moreover that the coarse space robustness indicator
γ(α) in Definition 2.3 is bounded independently of α and of the mesh parameters. Take
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Figure 2: Typical situation for Example 3.2, i.e. “islands” Bk (in red) where α is large.

for instance the following example of a binary medium α:

Example 3.2 Let Bk, k = 1, . . . , m, be closed, simply connected, disjoint, polygonal
subsets of Ω (“islands”), i.e. Bk∩Bk′ = ∅ for all k′ 6= k (see Figure 2 for an example). Let
us assume for simplicity that the distance between two islands Bk and Bk′ is comparable
in size to their diameter. Now let

α(x) =

{

α̂ if x ∈ Bk for some k = 1, . . . , m

1 otherwise

with α̂� 1. Note first of all that for α̂ large enough (and for h small enough) we have for
any xp ∈ N either (i) Sε(xp) ⊂ Bk for some k = 1, . . . , m, or (ii) Sε(xp)∩Bk = ∅ for all
k = 1, . . . , m; i.e. if two nodes are strongly connected they either both lie in one of the sets
Bk or they do not lie in any of the sets at all. Hence, the aggregates Wj, j = 1, . . . , NH ,
constructed above satisfy either Wj ⊂ Bk for some k = 1, . . . , m or Wj ∩ Bk = ∅ for all
k = 1, . . . , m.

A good choice of seed nodes will then ensure that the supports ωj of the coarse space
basis functions φj are shape regular as h→ 0. The shape regularity constant will depend
on the original configuration of the sets Bk, e.g. it might be large if one of the sets Bk is
very long and thin, or if the gap between two islands is small, but it will not depend on
h or any other mesh parameter as h → 0. Moreover, if we choose the aggregation radius
r large enough, then each island Bk will contain exactly one aggregate Wj. Since the sets
Bk were assumed to be closed, we then have α|τ = 1 for all elements τ in the overlap of
any two supports ωj and ωj′ with j ′ 6= j. Since ∇φj(x) ≤ δ−1

j for all x ∈ Ω, this implies
that the coarse space robustness indicator

γ(α) ≤ 1.

Therefore in the case of a quasi-uniform family of meshes and for suitably chosen r, the
bound in Theorem 2.4 reduces to

κ
(

M−1
ASA

)

. h−1 m
max
k=1

{diamBk}

independent of the size of α̂. Hence, if the maximum diameter of the islands is O(h), the
bound is completely independent of α.
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Figure 3: Condition numbers and CPU times for Laplacian with n = 10242, δsub = 3h, µ = 1.

4 NUMERICAL RESULTS

In all the numerical experiments below Ω = [0, 1]2 and {T h} is a family of uniform tri-
angulations of Ω. We solve the resulting linear equation systems with preconditioned CG
and tolerance 10−6. We use the sparse direct solver UMFPACKv4.48 to solve the subdomain
and coarse grid problems. All CPU times were obtained on a 3GHz Intel P4 processor
with 1GByte RAM.

Let us first consider the case α ≡ 1, i.e. the Laplacian. As we have seen in the previous
section (cf. Figure 1), in this case the aggregates {Wj} and thus the supports {ωj} are
uniformly of size H = 2(r+ µ+ 1)h and overlap δ = (2µ+ 1)h where r is the aggregation
radius in the fine grid aggregation (i.e. aggregating the degrees of freedom in A) and
µ is the number of smoothing steps. Similarly, the subdomains Ωi are uniformly of size
Hsub ≈ (2r0 + 1)H, where r0 is the coarse grid aggregation (i.e. aggregating the degrees
of freedom in A0).

In Figure 3 we plot the condition numbers κ
(

M−1
ASA

)

of the preconditioned systems
and the CPU times for various choices of r and r0. The various parameters in our method
are: the problem size n = 10242 and thus h = 1/1025; the subdomain overlap δsub = 3h;
the threshold for strong connections ε = 2

3
; the damping parameter in the Jacobi smoother

ω = 2
3

and the number of smoothing steps µ = 1 (hence δ = 3h).
We note that the agreement with the theory is extremely good: the condition number

κ
(

M−1
ASA

)

≤ 5H
δ
, for all values of r and r0, and it is independent of the subdomain

size Hsub . The CPU times confirm the statement made earlier that it is more efficient
computationally to choose H sub � H. We see that the best efficiency of the method is
attained for Hsub ≈ 10H − 30H.

The method is also independent of h as we see in Figure 4. Here, using the same

11
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Figure 4: Condition numbers and CPU times for Laplacian with δsub = 3h (varying n).

parameters as above but varying the number n of degrees of freedom we see that the
condition number is (asymptotically) independent of n (and thus of h) for various choices
of the number of smoothing steps µ and of the aggregation radius r. We observe again
that κ

(

M−1
ASA

)

≤ 5H
δ
. (Note that the method does not break down in the case µ = 2

where δ = 5h > δsub and our theoretical assumption (C2) is violated.) The CPU times are
growing approximately like O(n1.1) which is almost optimal. The growth stems from the
fact that our coarse problem size and the subdomain problem sizes in the tests in Figure
4 are growing proportionally to n. However, this increase in the CPU time is extremely
mild, since UMFPACK scales very well for reasonably small problems (up to n = 105 degrees
of freedom), i.e. it scales approximately like O(n1.1). We are able to exploit this good
performance of sparse direct solvers fully here. Note that for larger problems (say n ≈ 106

or bigger) UMFPACK and other sparse direct solvers start to slow down dramatically, e.g.
UMFPACK scales only like O(n1.9) for n ≈ 106 on our system, while our method continues to
scale like O(n1.1). Note also that there seems to be little dependency of the computational
efficiency on small changes in the number of smoothing steps µ or the aggregation radius r.

As we said already earlier, we are also interested in the robustness of our method to
large jumps in the value of the coefficient function α. To test this we choose α as a
realisation of a log-normal random field, i.e logα(x) is a realisation of a homogeneous,
isotropic Gaussian random field with exponential covariance function, mean 0, variance σ2

and correlation length scale λ. This is a commonly studied model for flow in heterogeneous
porous media. For more details on the physical background see e.g. Cliffe et al.7. We
use Gaussian

16 to create these random fields. See Figure 5 (left) for a grey-scale plot
of a typical realisation: Black areas in the plot represent large values of α, white areas
represent small values of α. The larger the correlation length λ, the more correlated (and
thus smoother) is the field. The larger the variance σ2, the larger is the difference between

12
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Figure 5: Log-normal and “clipped” log-normal random fields with n = 5122 and λ = 1/64.

large and small values of α. For example for the field in Figure 5 for σ2 = 8 we have
supx,y∈Ω

α(x)
α(y)

≈ 3 ∗ 1010.
As an even harder test for our method we use “clipped” log-normal random fields, i.e.

the smallest 50% and the largest 50% of the values of logα(x) are each set to their average
value (see Figure 5 (right)). The size and the “roughness” of the areas with small and
large coefficients is again related to the correlation length λ. The size of the jump in the
value of α is related to the variance σ2. For the clipped field in Figure 5 for σ2 = 8 we have
supx,y∈Ω

α(x)
α(y)

≈ 5∗105. Although this fraction is smaller here, the fact that α changes very
rapidly throughout the domain and that the size of the jump at each discontinuity is of
the order 105 makes it a more challenging problem for the linear solver. Note that clipped
random fields play an important rôle in the modelling of emergent (electrical, mechanical
or thermal) behaviour of micro-structures1.

We will now test the robustness of our method (denoted ADOUG below) in the case
of these clipped log-normal fields and compare its performance with the (aggregation-
type) AMG code of Bastian2,a, with the multifrontal sparse direct solver UMFPACKv4.4

8,
and with the “classical” additive Schwarz solver DOUG10,11,b which uses graph partitioning
software to construct the subdomains and a standard linear FE coarse space. In all the
tests below we choose r = 2, ε = 2

3
, δsub = 3h and µ = 0, i.e. no smoothing. See Figure 1

(right) for a typical set of aggregates.
We begin in Table 1 by fixing n = 2562 and λ = 1/64 and by varying σ2. We see that

the new method ADOUG is extremely robust with respect to the size of the jumps. Both
the number of iterations and the CPU-time do not grow with σ2. All the other methods
show a dependency on the size of the jump, even the direct solver UMFPACK. This is due

aNote that for efficiency reasons Bastian’s AMG code uses unsmoothed piecewise constant prolongation
and can therefore not be expected to be independent of the problem size n.

bNote that DOUG is a parallel code that uses a master-slave model. All timings for DOUG are for a
parallel run with one processor handling the coarse solve and one doing the rest. Due to the slow network
speed on our system the CPU-times are pessimistic.
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CG–iterations CPU–time (in secs)

σ2 supΩ
α(x)
α(y)

ADOUG AMG DOUG

2 1.5 ∗ 101 24 14 32
4 2.2 ∗ 102 27 27 89
6 3.3 ∗ 103 29 40 296
8 4.9 ∗ 104 26 77 498
10 7.4 ∗ 105 26 27 724

σ2
ADOUG AMG DOUG UMFPACK

2 2.12 1.35 5.54 1.85
4 2.14 2.27 8.18 1.70
6 2.34 3.31 19.1 1.33
8 2.41 6.23 29.9 4.88
10 2.37 2.39 42.2 4.98

Table 1: Comparison of solvers for clipped random fields with n = 2562 and λ = 1/64.

to the extra cost for partial pivoting in the case of largely varying diagonal entries in A.
The classical additive Schwarz method DOUG does not cope at all with this problem.

In Table 2 we fix n = 2562 and σ2 = 8 and study the behaviour of all the methods
as we vary the correlation length λ. Again ADOUG is extremely robust and does not vary
at all for correlation lengths of size λ ≥ 4h. Only for extremely short correlation lengths
(i.e. close to the size of the fine mesh width h) do we start to see any deterioration, and
even then the number of iterations does not even double. AMG shows a much stronger
dependency on λ and seems to have real problems with short correlation lengths. UMFPACK
also is affected strongly by the correlation length.

CG–iterations CPU–time (in secs)

λ ADOUG AMG DOUG

1/17 26 18 355
1/33 27 64 430
1/65 26 77 498
1/129 33 70 655
1/257 48 166 858

λ ADOUG AMG DOUG UMFPACK

1/17 2.20 1.67 22.3 4.52
1/33 2.24 5.14 26.3 4.77
1/65 2.41 6.23 29.9 4.88
1/129 2.71 5.77 38.2 7.48
1/257 3.84 13.5 49.5 10.2

Table 2: Comparison of solvers for clipped random fields with n = 2562 and σ2 = 8.

In Table 3 we carry out the comparison for fixed σ2 = 8 varying the mesh width h,
with λ linked to h by λ = 4h. Note that this means that the problem actually gets
harder the more the mesh is refined (not only because of the growing problem size n). As
before ADOUG is robust for most of the range but starts to struggle slightly for h = 1/1025.
However, the growth in the number of iterations is much milder than that of AMG.
Moreover, the growth in the CPU-times for ADOUG is even milder, it grows like O(n1.3)
which is almost as good as in the case of the Laplacian (i.e. α ≡ 1) in Figure 4. UMFPACK
starts to bail out at h = 1/512 and the classical additive Schwarz method DOUG again
does not cope either.

To finish we give one set of results with an unclipped log-normal random field in Table
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CG–iterations CPU–time (in secs)

h ADOUG AMG DOUG

1/65 20 12 60
1/129 25 35 136
1/257 26 77 498
1/513 34 100 1111
1/1025 74 422 ****

h ADOUG AMG DOUG UMFPACK

1/65 0.10 0.06 0.89 0.05
1/129 0.46 0.68 2.62 0.52
1/257 2.41 6.23 29.9 4.88
1/513 16.8 33.8 258 88.8
1/1025 105.9 540 **** ****

Table 3: Comparison of solvers for clipped random fields with σ2 = 8 and λ = 4h.

4, to show that this case is indeed simpler and that our method also works here. The only
new thing to observe is that in this case the performance of the classical additive Schwarz
method DOUG is strongly improved.

ADOUG AMG DOUG UMFPACK

Iterations 19 38 62
CPU-time 8.3 13.1 29.7 10.3

Table 4: Comparison for an unclipped log-normal field with n = 5122, σ2 = 8 and λ = 8h.
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