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SUMMARY

We present a new algebraic multigrid (AMG) algorithm for the solution of linear systems arising from
discontinuous Galerkin discretizations of heterogeneous elliptic problems. The algorithm is based on the
idea of subspace corrections and the first coarse level space is the subspace spanned by continuous linear
basis functions. The linear system associated with this space is constructed algebraically using a Galerkin
approach with the natural embedding as the prolongation operator. For the construction of the linear
systems on the subsequent coarser levels non-smoothed aggregation AMG techniques are used. In a series
of numerical experiments we establish the efficiency and robustness of the proposed method for various
symmetric and non-symmetric interior penalty discontinuous Galerkin methods, including several model
problems with complicated, high-contrast jumps in the coefficients. The solver is robust with respect to
an increase in the polynomial degree of the discontinuous Galerkin approximation space (at least up to
degree 6), computationally efficient, and it is affected only mildly by the coefficient jumps and by the mesh
size h (i.e. O(log h−1) number of iterations). Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the seventies the development of the discontinuous Galerkin (DG) finite element method for
discretizing partial differential equations started (cf. [1, 2, 3, 4, 5, 6]). It is based on a totally
discontinuous finite element space and has many advantageous properties. Due to the missing
continuity constraint of the basis functions its use with non-conforming unstructured grids is straight
forward and allows for easy mesh adaptation techniques. The choice of the basis functions used is
flexible and allows for easy adaptation in the polynomial order. For flow problems an important
property of the DG discretizations is its element-wise mass conservation. A disadvantage is that
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the resulting linear systems have a higher number of degrees of freedom when compared with the
continuous methods. This leads to even larger and more ill-conditioned systems and makes the
use of optimal solvers even more mandatory. The quest for such solvers is still ongoing as recent
publications such as [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] show. The most promising
types of solvers in this area are multigrid and domain decomposition methods.

Our solver is an extension of the algebraic multigrid method based on non-smoothed aggregation
presented in [22]. It is used as an inexact solver to compute a correction in the subspace of
continuous linear basis functions on the original mesh. Therefore the method can be seen as an
efficient implementation of a subspace correction method (cf. [23]) for discontinuous Galerkin.
Especially for higher order trial functions this leads to a tremendous reduction of the number of
degrees of freedom used on the finer levels. This approach works for both symmetric and non-
symmetric interior penalty discontinuous Galerkin discretizations provided the penalty parameter
is chosen sufficiently large. For the method of Oden and Baumann, that is lacking the penalty
parameter, additional measures have to be taken. On the finest level we employ overlapping as well
as non-overlapping Schwarz methods as smoothers. To construct the local subdomains needed in
these smoothers we use the greedy aggregation algorithm presented in [22]. The same aggregation
algorithm is then used to set up the coarser levels for the conforming subspace problem. We consider
only conforming grids here, but an extension to nonconforming grids is easily conceivable, e.g. in
the auxiliary space framework proposed in [24].

In a series of numerical experiments on two and three-dimensional test problems with constant,
checkerboard and random coefficients, we establish the efficiency and robustness of the proposed
approach.

We start in the next section by presenting the model problem which we investigate and the
discontinuous Galerkin discretization of it. Then we describe the multigrid algorithm in Section
3. After presenting numerical convergence results for our solver in Section 4, we conclude the paper
with a summary of the achievements and an outlook onto future perspectives.

2. MODEL PROBLEM AND ITS DISCRETIZATION

Let Ω be a polygonal domain in Rd, d = 1, 2, 3, with boundary ∂Ω = Γ̄D ∪ Γ̄N , such that ΓD has
nonzero measure and ΓD ∩ ΓN = ∅. We consider the heterogeneous elliptic model problem

−∇ · (K∇u) = f in Ω, (1a)

u = g on ΓD, (1b)

−(K∇u) · n = j on ΓN , (1c)

where K is a uniformly symmetric positive definite permeability tensor which may be highly
heterogeneous. Given an extension ug of the Dirichlet data to the complete domain Ω, as well as the
space V = H1

D(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD}, the weak formulation of (1) consists of finding
u ∈ ug + V such that

(K∇u,∇v)0,Ω = (f, v)0,Ω , ∀v ∈ V.
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Here (., .)0,Ω denotes the L2-scalar product on Ω.

2.1. Discontinuous Galerkin Method

Discontinuous Galerkin (DG) methods are a class of numerical schemes that has been studied
extensively in the last two decades, see [25] for an introduction and below for some key references.
In particular, we use the family of weighted interior penalty discontinuous Galerkin (WIPG)
schemes introduced in [26].

Let {Th}h>0 denote a family of conforming triangulations of the domain Ω. An element of the
triangulation is denoted by T , hT is its diameter, |T | its volume, and nT its unit outer normal
vector. F is called an “interior face” independent of the dimension if there are two elements
T−(F ), T+(F ) ∈ Th with T−(F ) ∩ T+(F ) = F and F has nonzero measure. All interior faces are
collected in the set F ih. The intersection of T ∈ Th with the boundary ∂Ω of non-zero measure is
called a boundary face. All boundary faces on the Dirichlet boundary are collected in the set FΓD

h ,
and those on the Neumann boundary in FΓN

h . The set of all faces is thus F = F ih ∪ F
ΓD
h ∪ FΓN

h .
The diameter of a face is denoted by hF and its volume by |F |. With each F ∈ F we associate a
unit normal vector nF (depending on position if F is curved) oriented from T−(F ) to T+(F ) for
an interior face. For a boundary face F , nF coincides with the exterior unit normal on the face.

The DG approximation space of degree k associated with Th is now defined as

V kh = {v ∈ L2(Ω) : ∀T ∈ Th, v|T ∈ Pk},

where Pk = {p : p =
∑
‖α‖1≤k cαx

α} are the polynomials of at most degree k. On an interior face
F a function v ∈ Vh is two-valued and its values v− and v+ are the restrictions from T−(F ) and
T+(F ), respectively. For F ∈ F ih and v ∈ Vh we introduce the jump and the weighted average

JvKF = v− − v+, {v}ω = ω−v− + ω+v+,

with the weights satisfying ω− + ω+ = 1, ω−, ω+ ≥ 0.
In the WIPG schemes the discrete solution uh ∈ V kh is now chosen such that it satisfies the

variational equation
ah(uh, v) = lh(v), ∀v ∈ V kh , (2)

with the bilinear form

ah(u, v) =
∑
T∈Th

(K∇u,∇v)0,T

+
∑
F∈Fih

[
θ
(
JuK, {nTFK∇v}ω

)
0,F
−
(
{nTFK∇u}ω, JvK

)
0,F

+ γF
(
JuK, JvK

)
0,F

]
+

∑
F∈FΓD

h

[
θ
(
u, nTFK∇v

)
0,F
−
(
nTFK∇u, v

)
0,F

+ γF (u, v)0,F

] (3)

and the linear form

lh(v) =
∑
T∈Th

(f, v)0,T +
∑

F∈FΓD
h

[
θ
(
g, nTFK∇v

)
0,F

+ γF (g, v)0,F

]
−

∑
F∈FΓN

h

(j, v)0,F . (4)
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Different choices of θ, of the penalty parameter γF , and of the weights ω± lead to the following
well known types of DG methods: A choice of

• θ = −1, ω± = 1/2 and γF ≥ γ0 sufficiently large, leads to the symmetric interior penalty (IP
or SIPG) method, [1, 2, 6];

• θ = +1, ω± = 1/2 and γF > 0 leads to the non-symmetric interior penalty (NIPG) method,
[5, 6];

• σ = +1, ω± = 1/2 and γF = 0 leads to the method of Baumann and Oden (OBB), see
[3, 4, 5].

However, in the case of highly varying coefficients K(x), as discussed in detail in [26], the
weights ω± need to be chosen differently and as a function of the permeability, i.e.

ω− =
δ+
Kn

δ−Kn + δ+
Kn

, ω+ =
δ−Kn

δ−Kn + δ+
Kn

,

with δ±Kn = nTFK
±nF for F ∈ F ih and δKn = nTFKnF for F ∈ F∂Ω

h , leading to the WIPG family
of [26] which we use in this publication.

The choice of the interior penalty parameter γF is crucial to ensure as much independence from
the problem and mesh parameters as possible. We define the penalty parameter as

γF =


α

2δ−Knδ
+
Kn

δ−Kn + δ+
Kn

k(k + d− 1)
|F |

min(|T−(F )|, |T+(F )|)
, ∀F ∈ F ih,

α δKn k(k + d− 1)
|F |

|T−(F )|
, ∀F ∈ F∂Ω

h .

(5)

with a user-defined parameter α. This choice is a combination of suggestions made in three different
papers. The harmonic average of “normal” permeabilities was introduced and analyzed in [26], the
dependence on the polynomial degree was analyzed in [27], and the mesh-dependence is taken from
[28].

DG methods are particularly suited for heterogeneous elliptic problems due to their cell-wise
conservation properties including the ability to handle full tensors. Approximation quality is
comparable to mixed finite elements, see [29]. For proofs of the approximation properties of the
above-mentioned methods see the well known publications [3, 5, 30].

2.2. Block Notation of Algebraic Systems

Choosing a basis Φh = {φ1, . . . , φn} for the DG approximation space V kh and expanding the
solution in this basis as u =

∑n
j=1 ujφj , the discrete variational problem (2) is equivalent to a

system of linear equations
Au = f (6)

for the coefficients u with ai,j = ah(φj , φi) and fi = lh(φi).
In DG methods a natural block structure is imposed on the stiffness matrix A by grouping all basis

functions of an element together. Let us assume that (as usual) the basis Φh is chosen in such away
that the support of any basis function φi ∈ Φh is restricted to a single element T ∈ Th. Then, in order
to efficiently deal with block-structured matrices we introduce the following notation. For any finite
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index set I ⊂ N we define the vector space RI to be isomorphic to R|I| with components indexed
by i ∈ I . Thus x ∈ RI can be interpreted as a mapping x : I → R and xi = x(i). In the same way,
for any two finite index sets I, J ⊂ N we write A ∈ RI×J with the interpretation A : I × J → R
and ai,j = A(i, j). Finally, for any subset I ′ ⊆ I we define the restriction matrix RI,I′ : RI → RI′

as (RI,I′x)i = xi ∀i ∈ I ′.
Now, let IT = {i ∈ N : supp φi ⊆ T}. Then⋃

T∈Th

IT = I = {1, . . . , n} and IT ∩ IT ′ = ∅, ∀T 6= T ′, (7)

and so {IT } forms a partitioning of the index set I . Using this partitioning and imposing an ordering
Th = {T1, . . . , Tm} on the mesh elements, the linear system (6) can be written in block form

AT1,T1 . . . AT1,Tm

...
. . .

...
ATm,T1

. . . ATm,Tm




uT1

...
uTm

 =


fT1

...
fTm

 (8)

where ATi,Tj = RI,ITi
ART

I,ITj
, uTi = RI,ITi

u and fTj = RI,ITj
f .

3. ALGEBRAIC MULTIGRID METHOD BASED ON SUBSPACE CORRECTION

Our objective is to solve the linear system (6) efficiently using a multigrid algorithm. Geometric
multigrid algorithms for the system (6) have been presented in [7, 9, 10, 11, 12, 13]. In this paper we
follow the idea of implementing an efficient inexact subspace correction method (cf. [23]). Related
theoretical work can be found in [18, 21].

In each iteration the following two steps are performed in a sequential (multiplicative) way:

1. Apply a small number of steps with an overlapping or non-overlapping Schwarz smoother on
the system (6) exploiting the block structure of the matrix.

2. Compute an approximate coarse space correction in the subspace of conforming, piecewise
linear finite element functions on the same grid using an aggregation-type algebraic multigrid
method.

Let us recall the basic ideas of subspace correction methods (see [23] for details). Let V be a finite
element space, ah(·, ·) : V × V → R a bilinear form, and lh(·) : V → V a linear form defining the
finite element system. Furthermore, let us assume that Vi ⊂ V , i = 0, . . . ,m, are a finite number of
subspaces of V with associated restriction operators Ri : V → Vi. The prolongation or extension
operator from Vi to V can be chosen to be RT

i . The subspace correction method consists now in
finding corrections RT

iwi, with wi ∈ Vi, to the current iterate u ∈ V that satisfy

a(u+ wi, v) = l(v) ∀v ∈ Vi .

In its additive version all corrections wi, i = 0, . . . ,m, are first computed with uk as the current
iterate u. The new iterate is then defined as uk+1 = uk +

∑m
i=0R

T
iwi. In the multiplicative form,

we need to choose an ordering and then loop over all subspaces Vi. In each step of the loop we
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use the previously computed iterate uk+ i
m+1 as the current iterate u when computing the correction

wi ∈ Vi. At the end of each step we set uk+ i+1
m+1 = uk+ i

m+1 +RT
iwi.

We now make particular choices for the subspaces for our model problem in the case of the DG
space V = V kh on a conforming mesh Th. For all k, the space V0 is chosen to be the subspace of
continuous, piecewise linear finite elements for simplices or piecewise multi-linear finite elements
for cubes associated with the same mesh Th. The subspaces Vi, i = 1, . . . ,m, on the other hand,
consist of functions in V kh whose support is restricted to some (overlapping or non-overlapping)
subdomains Ωi ⊂ Ω, such that {Ωi}mi=1 forms a partitioning of Ω. To algebraically construct the
overlapping subdomains we use a greedy aggregation algorithm which we describe in the next
subsection.

3.1. Aggregation Algorithm

Several components in our solver rely heavily on a greedy and heuristic aggregation algorithm. It
is a further development and extension of the version published by Raw (cf. [31]) for algebraic
multigrid methods (see also [32]). We use it to construct overlapping subdomains for our Schwarz
smoothers on the fine level, as well as to define the coarse levels in our algebraic multigrid algorithm
for continuous piecewise linear elements.

Let G = (V, E) be a graph with a set of vertices V and edges E and let wE : E → R and
wV : V → R be positive weight functions, to be defined later. These functions are used to classify
the edges and vertices of our graph. Let

N(i) := {j ∈ V | ∃(j, i) ∈ E}

be the set of adjacent vertices of vertex i and let

ηmax(i) := max
k∈N(i)

wE((k, i) wE((i, k))

wV(i) wV(k)
. (9)

Definition 3.1. (a) An edge (j, i) is called strong, if and only if

wE((i, j)) wE((j, i))

wV(i) wV(j)
> δ min(ηmax(i), ηmax(j)), (10)

for a given threshold 0 < δ < 1. We denote by Nδ(i) ⊂ N(i) the set of all vertices adjacent to
i that are connected to it via a strong edge.

(b) A vertex i is called isolated if and only if ηmax(i) < β, for a prescribed threshold 0 < β � 1.
We denote by I(V ) ⊂ V the set of all isolated vertices of the graph.

Our greedy aggregation algorithm is described in Algorithm 1. Until all non-isolated vertices
are aggregated, we start a new aggregate with a non-isolated vertex. The first aggregate is seeded
with a vertex that has the least connections to other vertices. The other aggregates are seeded with
vertices that are non-aggregated neighbor’s of the most recently created aggregates. If no such vertex
exists, we use a non-isolated, non-aggregated vertex that has the least connections to non-aggregated
vertices. At the same time we associate the index of the seed vertex with this new aggregate and add
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Algorithm 1 Build Aggregates

procedure AGGREGATION(V , E , smin, smax, dmax)
U ← V \ I(V) . First candidates are non-isolated vertices
I ← ∅ . Coarse index set
Select arbitrary seed v ∈ {u ∈ U : #Nδ(u) ≤ #Nδ(w) ∀w ∈ V}
while U 6= ∅ do
Av ← {v}
U ← U \ Av
I ← I ∪ {v}
GROWAGGREGATE(A, V , E , smin, dmax, U )
ROUNDAGGREGATE(A, V , E , smax, U )
if #Ai = 1 then . Merge one vertex aggregate with neighbors

C ← {Aj : j ∈ I \ {i} and ∃w ∈ Aj with w ∈ Nδ(v)}
if C 6= ∅ then

Choose Ak ∈ C
I ← I \ {s}
Ak ← Ak ∪ As

end if
end if
if U 6= ∅ then

Select arbitrary seed v ∈ U ∩ {w : N(w) ∩ ∪k∈IAk 6= ∅}
end if

end while
U ← I(V) . Aggregate isolated vertices
while U 6= ∅ do

Select arbitrary seed v ∈ U
Av ← {v}
U ← U \ Av
I ← I ∪ {v}
GROWISOAGGREGATE(A, V , E , smin, dmax, U )

end while
A ← {Ai : i ∈ I}
return (A, I)

end procedure

it to the index set I . The algorithm returns both the index set I for the set of aggregates as well as
the set A = {Ai : i ∈ I} of all aggregates it has built.

The first step in the construction of an aggregate in Algorithm 1 is to add new vertices to our
aggregate until we reach the minimal prescribed aggregate size smin. This is outlined in Algorithm
2. When adding new vertices, we always choose those with the most strong connections to the
vertices already in the aggregate. Here we give preference to vertices where both edge (i, j) and
edge (j, i) are strong. The functions cons1(v,A) and cons2(v,A) return the number of one-way
and two-way connections between the vertex v and all vertices of the aggregate A, respectively. If
there is more than one candidate, we choose the vertex that adds the least new connections between
aggregates. As a measure for this we use the function connect(v,A). It counts neighbors of v that
are not yet aggregated or belong to an aggregate that is not yet connected to aggregateA. Neighbors
of v that belong to aggregates that are already connected to aggregate A are counted twice. In this
way, we are able to choose among all candidates the vertex with the lowest number of connections to
other not yet aggregated vertices that are neighbors of the aggregate. The function neighbors(v,A)
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Algorithm 2 Grow Aggregate Step

function GROWAGGREGATE(A, V , E , smin, dmax, U )
while #A ≤ smin do . Makes aggregate A bigger until its size is smin

C0 ← {v ∈ N(A) : diam(A, v) ≤ dmax} . Limit the diameter of the aggregate
C1 ← {v ∈ C0 : cons2(v,A) ≥ cons2(w,A) ∀w ∈ N(A)}
if C1 = ∅ then . No candidate with two-way connections

C1 ← {v ∈ C0 : cons1(v,A) ≥ cons1(w,A) ∀w ∈ N(A)}
end if
if #C1 > 1 then . More than one candidate

C1 ← {v ∈ C1 : connect(v,A)
N(v) ≥ connect(w,A)

N(w) ∀w ∈ C1}
end if
if #C1 > 1 then . More than one candidate

C1 ← {v ∈ C1 : neighbors(v,A) ≥ neighbors(w,A) ∀w ∈ C1}
end if
if C1 = ∅ then break
end if
Select one candidate c ∈ C1

A ← A∪ {c} . Add candidate to aggregate
U ← U \ {c}

end while
end function

counts the number of neighbors of vertex v that are not yet aggregated neighbors of the aggregate
A. This criterion tries to maximize the number of candidates for choosing the next vertex. Finally,
we ensure that the aggregate does not have a bigger diameter than the prescribed maximum value
dmax after the new vertex is added.

Algorithm 3 Round Aggregate Step

function ROUNDAGGREGATE(A, V , E , smax, U ) . Rounds aggregate A while size < smax
while #A ≤ smax do

C ← {v ∈ Nα : cons(v,A) > cons(v, U)}
Select arbitrary candidate c ∈ C
A ← A∪ {c} . Add candidate to aggregate
U ← U \ {c}

end while
end function

In a second step we aim to make the aggregates “rounder”. This is sketched in Algorithm 3. We
add all non-aggregated adjacent vertices that have more connections to the current aggregate than to
other non-aggregated vertices or to other aggregates until we reach the maximum allowed size smax

of our aggregate.
If after these two steps an aggregate still consists of only one vertex, we try to find another

aggregate that the vertex is strongly connected to. If such an aggregate exists, we add the vertex to
that aggregate and choose a new seed vertex.

Finally, once all the non-isolated vertices are aggregated, we try to build aggregates for the
isolated vertices. Where possible, we build these by aggregating adjacent isolated vertices that have
at least one common neighboring aggregate consisting of non-isolated vertices. This is done in the
function GROWISOAGGREGATE which we do not present here.
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3.2. Schwarz–Type Smoothers for the DG System

The linear system (6) is coercive for both the NIPG and the SIPG method provided the penalty
parameter γF is sufficiently large. This depends on the choice of the parameter α in (5). If this is
the case, block versions of traditional relaxation methods, such as Jacobi, Gauss-Seidel or SOR,
can be used as smoothers on the DG space V kh . In the context of subspace correction (or Schwarz)
methods described above, this corresponds to choosing a set of non-overlapping subdomains {Ωi}.
The simplest choice that ensures that the grid resolves the partition is Ωi := Ti ∈ Th, i = 1, . . . ,m,
i.e. each subdomain consists of a single fine grid element and the associated degrees of freedom. In
this case, the subspace Vi, for each i = 1, . . . ,m, is then simply chosen to be span{φk | k ∈ ITi}.
For both NIPG and SIPG with sufficiently large γF we settle for these simple subspaces and use
exact subspace solvers. This is equivalent to using block Gauss-Seidel with the algebraic blocks
described in (8).

Unfortunately, non-overlapping subspace correction methods loose their smoothing properties for
low penalty parameters γF . This behavior was already observed in [13], where geometric multigrid
methods are applied to NIPG discretizations. However, in the same paper it is shown numerically
that the corresponding subspace correction methods using overlapping subspaces are robust for
low and high penalty parameters. Therefore, we use subspace correction methods with overlapping
subspaces for non-symmetric interior penalty methods with small or zero gammaF .

To find good (non-overlapping or overlapping) partitionings {Ωi} of Ω, we neglect geometric
properties of the grid and use only algebraic information encoded in the stiffness matrix A by
resorting to the aggregation algorithm described in the previous section. As input for our algorithm,
we use the connectivity graph of the block matrix (8), i.e. V = {1, . . .m} and E = {(i, j) | ATiTj 6=
0}. The weight functions are defined as wV (i) = ‖ATiTi‖∞ and wE((i, j) = ‖ATiTj‖∞. Therefore,
each of the resulting aggregates Ai, i ∈ I , can be associated with a set of mesh elements {Tk : k ∈
Ai}. For our non-overlapping smoothers we now simply choose

Ωi := interior

( ⋃
k∈Ai

Tk

)
.

To get an overlapping partitioning we start with the same aggregates {Ai : i ∈ I} and augment each
aggregate Ai by the set of all elements that share a face with any of the elements in Ai, i.e. we
choose

Ωi := interior

( ⋃
k∈Ãi

Tk

)
, where Ãi := Ai ∪

{
l : Tl ∩

( ⋃
k∈Ai

Tk

)
6= ∅

}
.

In Figure 1 a typical overlapping subdomain Ωi is shown together with the adjacency graph of the
system matrix. The aggregate Ai consists only of one mesh element in this case.

In both cases (overlapping and non-overlapping) we only use very small subdomain sizes. In
the non-overlapping case these correspond to one element of the grid and are represented by the
blocking used in (8). We use Gaussian elimination as a solver for these subproblems. For the
overlapping case the subspaces are larger and correspond to an aggregate of around 37 to 60
mesh elements. It turns out that inexact subspace solvers suffice, leading to substantial savings
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Figure 1. A typical subdomain (shaded) for the smoother.

in computing time in comparison to exact solvers. In the numerical experiments in Section 4 we
use a block-ILU(0) preconditioner as the inexact subspace solver, and we always use multiplicative
subspace correction. Note that the linear system of each overlapping subspace is a submatrix of (8)
and inherits the block form used by the preconditioner from the complete system.

3.3. Coarse Space Correction in the Conforming Subspace

Recall that Th is assumed to be a conforming, simplicial mesh and denote by

W 1
h = {w ∈ C0(Ω) : w|T ∈ P1 ∀T ∈ Th} (11)

the space of conforming linear finite element functions. Furthermore we denote by

W 1
h,0 = {w ∈W 1

h : w|ΓD = 0} (12)

the space of conforming linear finite element functions vanishing on the boundary. Other meshes,
such as quadrilateral or hexahedral ones, can be handled in an analogous way. Note that W 1

h ⊂ V kh
is a true subspace.

In our subspace correction method we choose now V0 = W 1
h for the case of SIPG and NIPG with

sufficiently large penalty parameter γF and V0 = W 1
h,0 for the case of NIPG with small γF and

OBB, i.e. given a current iterate u(s) ∈ V kh we seek a correction w0 ∈ V0 such that

ah

(
u(s) + w0, v

)
= lh(v) ∀v ∈ V0. (13)

Due to linearity this is equivalent to

bh(w0, v) = lh(v)− ah(u(s), v) ∀v ∈ V0,

with the reduced bilinear form

bh(u, v) = (K∇u,∇v)0,Ω +
∑

F∈FΓD
h

[
θ
(
u, nTFK∇v

)
0,F
−
(
nTFK∇u, v

)
0,F

+ γF (u, v)0,F

]
, (14)

for any u, v ∈ V0. This is due to the fact that all the jump terms in ah(·, ·) are 0 in V0 × V0. Note that
bh(·, ·) is almost identical to the standard bilinear form for the conforming finite element method.
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The only difference is the treatment of Dirichlet boundary conditions, which are enforced in a weak
sense in bh(·, ·). Therefore we can employ existing, tested inexact solvers to solve (14).

Let Ψh = {ψ1, . . . , ψn0
} be the standard Lagrange basis for W 1

h . Due to the nestedness of the
spaces W 1

h and V kh any basis function ψi ∈ Ψh can be represented in the basis Φh, i.e.

ψi =

n∑
j=1

(R0)i,j φj , (15)

providing a natural restriction operator R0 from V kh toW 1
h . The sparse matrix R0 has to be provided

as an additional input by the user and renders the method not fully algebraic. If u(s) ∈ Rn denotes
the coefficient representation of u(s) ∈ V kh , then the coarse space correction step (13) is equivalent
to solving the linear system

A0w0 = R0(f −Au(s)), (16)

where A0 = R0ART
0 . The solution vector w0 ∈ Rn0 , is the coefficient representation of the

correction w0 ∈W 1
h . Note that A0 coincides with the matrix obtained from a standard finite element

discretization with the Dirichlet boundary conditions enforced in a weak sense.
The linear system of the conforming subspace is solved inexactly by applying one V-cycle of

algebraic multigrid based on aggregation similar to the original method [31] (see [22] for details).
The aggregation is performed by Algorithm 1 on the matrix graph of A0. For the classification
of the vertices and edges we use the weight functions wV(i) = aii and wE(i, j) = max{0,−aji},
respectively. Given the aggregates {Ai}i∈I0 , we define the piecewise constant prolongation operator
as

(RT
1 )ij =

{
1 if j ∈ Ai
0 otherwise

.

The matrix on the next level is constructed by the standard Galerkin product: A1 = R1A0R
T
1 . The

matrices Al, l > 1, on the coarser levels are then constructed in the same way, using Algorithm 1
on the matrix graph of Al−1. As a smoother we use simple point Gauss-Seidel on each level. The
system on the coarsest level is solved with a direct solver.

4. NUMERICAL RESULTS

In this section we test our new algebraic multigrid method on various two- and three-dimensional
model problems and for various DG approximations. In the tables the acronyms NIPG(k, α),
SIPG(k, α) and OBB(k) mean that NIPG, SIPG, and OBB (all using weighted averages to account
for discontinuities in K) is used with parameter α and order k for the discretization, respectively.
The problems are discretized on a structured cube grid with uniform grid width h. The multigrid
method is used as the preconditioner in the conjugate gradient (CG) and BiCGSTAB method for
symmetric (SIPG) and unsymmetric linear systems (NIPG and OBB), respectively. We measure
the number of iterations (labelled It.) to achieve a relative residual reduction of 10−8, the time
needed per iteration (labelled TIt), the time for building the AMG hierarchy (labelled TB), and the
time needed for solving the linear system (labelled TS). V (sDG) means that one V-cycle of our
AMG method was used as a preconditioner with smoother sDG on the DG level. On all the other
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levels point-wise Gauss-Seidel is used as the smoother. The smoother sDG is either multiplicative
Schwarz with non-overlapping subdomains consisting of single mesh elements (labelled GS) or
with overlapping subdomains (labelled OGS). The parameters for the aggregation algorithm in the
overlapping case are set to the same values for 2D and 3D. The minimal and maximal prescribed
aggregate sizes are smin = 25 and smax = 37. The maximal diameter is dmax = 15. This results in
overlapping subspaces with, on average, 42 and 73 cells in 2D and 3D, respectively. The block-
ILU(0) factorization for each subspace is computed on the fly in each step to save memory. (Note
that in the non-overlapping case, since each subdomain consists only of a single element, the block-
ILU(0) factorization is in fact an exact factorization.) We always perform one pre- and one post-
smoothing step on all levels (in the DG as well as the conforming spaces).

γF
|F |

min(T−(F ),T+(F )) 103 102 10 1 10−1 10−2 10−3 10−4 0
GS Iter. 33 10 6 19.5 ∞ ∞ ∞ ∞ ∞

GS CPU Time 5.48 2.00 1.02 3.25 ∞ ∞ ∞ ∞ ∞
OGS Iter. 6 6 6 9 6 6 6 6 6

OGS CPU Time 3.64 3.65 3.34 5.18 3.46 3.70 3.39 3.42 3.76
Table I. Robustness of smoothers for 2D Poisson problem, 1/h = 128 elements, NIPG(2, µ)

γF
|F |

min(T−(F ),T+(F )) 103 102 10 1 10−1 10−2 10−3 10−4 0
GS Iter. 63 30 17 7 8 ∞ ∞ ∞ ∞

GS CPU time 9.67 4.50 2.59 1.05 1.31 ∞ ∞ ∞ ∞
OGS Iter. 53 22 9 4 4 4 4 4 6

OGS CPU time 38.07 15.87 6.13 3.28 2.56 2.93 2.92 2.54 3.38
Table II. Robustness of smoothers for 3D Poisson problem, 1/h = 16, NIPG(2, µ)

We start the analysis of our method by solving the Poisson equation, i.e. K ≡ I . The overlapping
smoothers need far more computing time than the non-overlapping versions. Still, we believe that
their usage is already justified by this very simple test case, when the penalty parameter γF is
not sufficiently big. Therefore we test the behavior of the method for NIPG with varying penalty
parameter γF . Recall that the limit case γF = 0 for NIPG represents the method of Baumann and
Oden (OBB). For sufficiently large gammaF we use the space W 1

h to compute the coarse space
correction. We switch to W 1

h,0 as the coarse space for gammaF < 0.1 in the two-dimensional
and gammaF < 10−4 in the three-dimensional case. The number of iterations needed to achieve
convergence are given in Tables I and II for the two dimensional and three dimensional case,
respectively. Where ∞ appears instead of a number, we could not achieve any convergence with
the method.

We can see clearly that it is mandatory to use the overlapping Schwarz smoother for vanishing
penalty parameter γF . We regard this feature as very important as we consider the method of
Baumann and Oden a good choice from an approximation point of view for problems with high
contrast jumps in the coefficients.

In Table III, we study the robustness with respect to polynomial order k for all three discretization
methods. The number of degrees of freedom per mesh is presented in the third column (Dof/E). The
solver is very robust for all methods and for all orders that we tested (k ≤ 6). For both NIPG with
non-overlapping Schwarz smoother and for OBB with overlapping Schwarz smoother the behavior
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k Dof Dof/E TB TS It.
2 98304 6 1.19 3.70 6
3 163840 10 1.27 7.54 5
4 245760 15 1.36 17.84 5
5 344064 21 1.42 58.06 6
6 458752 28 1.79 121.8 6

(a) OBB(p), V(OGS)

k Dof Dof/E TB TS It.
2 98304 6 1.20 1.04 6
3 163840 10 1.29 3.27 7
4 245760 15 1.25 7.25 7
5 344064 21 1.45 15.80 6
6 458752 28 1.76 36.37 7

(b) NIPG(p,0.65), V(GS)

k Dof Dof/E TB TS It.
2 98304 6 1.17 1.14 13
3 163840 10 1.19 3.82 13
4 245760 15 1.32 8.25 15
5 344064 21 1.43 20.46 16
6 458752 28 1.70 54.04 19

(c) SIPG(p,2.2), V(GS)

k Dof Dof/E TB TS It.
2 98304 6 1.19 3.67 12
3 163840 10 1.25 9.10 12
4 245760 15 1.3 21.31 12
5 344064 21 1.68 57.32 11
6 458752 28 1.77 123.86 11

(d) SIPG(p,2.2), V(OGS)

Table III. Robustness with respect to polynomial order k for 2D Poisson, 1/h = 128

of the solver, in terms of number of iterations, is optimal for polynomial orders k ≤ 6. Only for
SIPG the number of iterations increases slightly with the polynomial order if we use the non-
overlapping smoother. If we use the overlapping smoother instead our solver is also fully robust
for SIPG. However, at least for smaller polynomial degree this robustness comes at the price of a
higher computational cost due to the higher cost of the overlapping smoother.

In Tables IV and V we study the robustness with respect to mesh size h. The results show a

1/h DOF levels TB TIt It TS
32 6144 2 0.072 0.041 4 0.164
64 24576 3 0.316 0.153 4 0.612
128 98304 4 1.108 0.616 6 3.696
256 393216 5 4.988 2.361 7 16.53
512 1572864 6 20.14 10.07 8 80.59
1024 6291456 7 82.41 40.95 10 409.5

(a) OBB(2), V(OGS)

1/h DOF levels TB TIt It TS
32 6144 2 0.072 0.0115 8 0.09201
64 24576 3 0.276 0.02178 9 0.196
128 98304 4 1.232 0.09034 12 1.084
256 393216 5 4.724 0.3848 15 5.772
512 1572864 6 19.01 1.559 16 24.95
1024 6291456 7 77.93 6.107 18 109.9

(b) SIPG(2, 1.66), V(GS)

1/h DOF levels TB TIt It TS
32 6144 2 0.072 0.0184 5 0.09201
64 24576 3 0.296 0.0432 5 0.216
128 98304 4 1.184 0.1693 6 1.016
256 393216 5 4.728 0.708 7 4.956
512 1572864 6 19.35 2.725 9 24.53
1024 6291456 7 84.55 11.62 10 116.2

(c) NIPG(2, 0.65), V(GS)

Table IV. Robustness with respect to mesh width h for the 2D Poisson problem
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1/h DOF levels TB TIt It TS
8 5120 2 0.144 0.09867 3 0.296
16 40960 3 1.292 0.629 4 2.516
32 327680 4 10.72 5.487 5 27.43
64 2621440 5 87.78 49.59 6 297.6

(a) OBB(2), V(OGS)

1/h DOF levels TB TIt It TS
8 5120 2 0.128 0.01511 18 0.272
16 40960 3 1.232 0.07275 27 1.964
32 327680 4 10.64 0.548 38 20.83
64 2621440 5 84.26 4.026 52 209.4

(b) SIPG(2, 1.25), V(GS)

1/h DOF levels TB TIt It TS
8 5120 2 0.168 0.029 8 0.232
16 40960 3 1.296 0.133 12 1.596
32 327680 4 10.32 1.055 14 14.78
64 2621440 5 85.66 8.217 23 189

(c) NIPG(2, 0.48), V(GS)

Table V. Robustness with respect to mesh width h for the 3D Poisson problem

slight increase in the number of iterations needed for convergence. The logarithmic growth with h
is fully expected and due to the suboptimal convergence of the aggregation-type algebraic multigrid
method with piecewise constant prolongation which is used as the inexact solver on the conforming
subspace (see [22, 32]). The slightly better convergence behavior of the solver for OBB in 3D is due
to the overlapping Schwarz smoother, since the subspaces are larger and have more overlap than in
2D.

The rest of our examples are model problems with jumping coefficients. The first problem to be
investigated is given in the the following example.

Example 4.1. Let our diffusion problem be given by

−∇ · {k(x)∇u} = 1 in Ω = (0, 1)d, d = 2, 3,

u = 0 on ∂Ω .

The isotropic permeability k(x) ∈ R has jumps in a checkerboard manner. The checkerboard has 8d

cells of width H = 1/8 in each dimension. Let the function b·c return the maximum integer value
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that is equal to or smaller than the argument. Then the permeability field is described by

k(x) =



20.0 bx0/Hc even, bx1/Hc even, and bx2/Hc even
0.002 bx0/Hc odd, bx1/Hc even, and bx2/Hc even
0.2 bx0/Hc even, bx1/Hc odd, and bx2/Hc even
2000.0 bx0/Hc odd, bx1/Hc odd , and bx2/Hc even
1000.0 bx0/Hc even, bx1/Hc even, and bx2/Hc odd
0.001 bx0/Hc odd, bx1/Hc even, and bx2/Hc odd
0.1 bx0/Hc even, bx1/Hc odd, and bx2/Hc odd
10.0 bx0/Hc odd, bx1/Hc odd, and bx2/Hc odd

,

in three dimensions and by

k(x) =


20.0 bx0/Hc even, and bx1/Hc even
0.002 bx0/Hc odd, and bx1/Hc even
0.2 bx0/Hc even, and bx1/Hc odd
2000.0 bx0/Hc odd, and bx1/Hc odd

,

in two dimensions.

We present the results for this problem in two and three dimensions in Tables VI and VII. Clearly
the problem is harder than the Poisson problem studied above and on average all the methods require
slightly more iterations, but the scalability with respect to h is still very good if not better, staying
virtually constant over a large range of values for h.

The final two examples that we investigate are problems with random coefficients.

Example 4.2. Here we study the following heterogeneous model problem with mixed boundary
conditions

−∇ · {k(x)∇u} = 0 in Ω = (0, 1)d,

u = g on ΓD,

−∇u · ν = 0 on ΓN ,

with
ΓD = {x : x1 = 0 or x1 = 1} , ΓN = ∂Ω \ ΓD,

and

g(x) =

{
1 x1 = 0

0 x1 = 1
.

The scalar permeability field k(x) is chosen as a realization of a log-normal random field. More
specifically, log k(x) is chosen to be a realization of a homogeneous, isotropic Gaussian random
field with exponential covariance function and mean 0, variance σ2 and correlation length scale λ.
See [33] for more details about this model problem.

Example 4.3. Here, the problem is described by the same equations as in Example 4.2. The only
difference lies in the choice of permeability field. It is again based on the log-normal distribution
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1/h DOF levels TB TIt It TS
32 6144 2 0.072 0.04267 9 0.384
64 24576 3 0.336 0.1447 12 1.736
128 98304 4 1.268 0.616 16 9.857
256 393216 5 5.084 2.449 15 36.73
512 1572864 6 20.19 10.12 14 141.7
1024 6291456 7 83.74 39.92 14 558.8

(a) OBB(2), V(OGS)

1/h DOF levels TB TIt It TS
32 6144 2 0.084 0.01055 11 0.116
64 24576 3 0.252 0.02225 32 0.712
128 98304 4 1.14 0.08971 40 3.588
256 393216 5 4.84 0.3855 36 13.88
512 1572864 6 19.84 1.566 30 46.97
1024 6291456 7 80.04 6.149 39 239.8

(b) SIPG(2, 1.66), V(GS)

1/h DOF levels TB TIt It TS
32 6144 2 0.064 0.01933 6 0.116
64 24576 3 0.272 0.04089 18 0.736
128 98304 4 1.224 0.1725 18 3.104
256 393216 5 4.8 0.7379 13 9.593
512 1572864 6 19.29 2.844 17 48.36
1024 6291456 7 80.06 11.2 18 201.6

(c) NIPG(2, 0.65), V(GS)

Table VI. Chequerboard Problem (Example 4.1) in 2D

1/h DOF levels TB TIt It TS
16 40960 3 1.216 0.7364 25 18.41
32 327680 4 10.07 5.967 27 161.1
64 2621440 5 84.55 48.17 21 1012

(a) OBB(2), V(OGS)

1/h DOF levels TB TIt It TS
16 40960 3 1.236 0.07283 68 4.952
32 327680 4 10.1 0.5466 72 39.36
64 2621440 6 82.51 4.015 122 489.8

(b) SIPG(2, 0.48), V(GS)

1/h DOF levels TB TIt It TS
16 40960 3 1.204 0.1344 38 5.108
32 327680 4 10.36 1.07 40 42.79
64 2621440 5 83.28 8.265 41 338.9

(c) NIPG(2, 1.25), V(GS)

Table VII. Checkerboard Problem (Example 4.1) in 3D

described above. However, here we create a binary medium by clustering the values into two sets.
Given a realization of the log-normal distribution on Ω = (0, 1)d, sampled at the centers of each
mesh element, we compute the arithmetic mean of the permeability values over all of Ω. We cluster
together the elements with values above this mean and those with values below. On each of the
clusters we replace the actual value of the permeability with the arithmetic mean over the respective
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cluster. This results in a two-valued permeability field modelling a binary medium. We refer to it as
a clipped log-normal field. In contrast to the previous example, the permeabilities now jump across
complicated interfaces instead of just changing gradually. This is a very challenging model problem
that has been used previously to study robustness of solvers for conforming discretization in [32].

For the log-normally distributed permeability field (Example 4.2), the results for varying problem
size are given in Tables VIII and IX. For the clipped version described in Example 4.3, the numbers

1/h DOF levels TB TIt It TS
32 6144 2 0.08001 0.041 4 0.164
64 24576 3 0.308 0.1384 5 0.692
128 98304 4 1.248 0.624 7 4.368
256 393216 5 5.176 2.49 20 49.8
512 1572864 7 20.95 9.849 20 197
1024 6291456 8 86.1 41.25 28 1155

(a) OBB(2), V(OGS)

1/h DOF levels TB TIt It TS
32 6144 2 0.056 0.011 8 0.088
64 24576 3 0.272 0.02364 11 0.26
128 98304 4 1.164 0.09271 17 1.576
256 393216 5 4.784 0.3897 24 9.353
512 1572864 7 18.83 1.556 41 63.81
1024 6291456 8 77.54 6.163 51 314.3

(b) SIPG(2, 1.66), V(GS)

1/h DOF levels TB TIt It TS
32 6144 2 0.08001 0.0208 5 0.104
64 24576 3 0.26 0.04467 6 0.268
128 98304 4 1.22 0.1835 8 1.468
256 393216 5 4.892 0.7444 13 9.677
512 1572864 7 19.03 2.954 21 62.02
1024 6291456 8 78.74 11.73 21 246.4

(c) NIPG(2, 0.65), V(GS)

Table VIII. Log–normal Random Problem (Example 4.2) in 2D, σ2 = 8, λ = 4h

can be found in Tables X and XI. In both cases, similarly to [32][Table 3], we left the variance fixed
at σ2 = 8 and the correlation length is scaled with the grid width such that λ = 4h. Therefore,
the permeability fields become less smooth for larger problems. In 2D this is reflected in a more
steeply ascending number of iterations needed for convergence when compared to the Poisson
case. However, the number of iterations is reasonable in all cases for these hard problems and
comparable to the behavior of aggregation–type AMG for conforming discretization (see [22, 32]).
More surprising is the extremely robust behavior in 3D. The numbers of iterations in both examples
are virtually identically to the corresponding numbers for the simple Poisson case. It confirms the
excellent robustness of our approach. The reason for the better performance in 3D lies probably
in the fact that the test problem is actually easier than in 2D for the same model parameters. The
problem models percolation through the region Ω from left to right, and it is well known that binary
media exhibit a different percolation threshold (with respect to the amount of available percolation
paths) in three dimensions than in two dimensions.
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1/h DOF levels TB TIt It TS
8 5120 2 0.12 0.09467 3 0.284
16 40960 3 1.212 0.7507 3 2.252
32 327680 4 10.24 6.349 4 25.4
64 2621440 7 87.93 50.77 9 456.9

(a) OBB(2), V(OGS)

1/h DOF levels TB TIt It TS
8 5120 2 0.132 0.01653 15 0.248
16 40960 3 1.204 0.07349 27 1.984
32 327680 4 10.4 0.5575 36 20.07
64 2621440 6 83.61 4.281 54 231.2

(b) SIPG(2, 1.25), V(GS)

1/h DOF levels TB TIt It TS
8 5120 2 0.124 0.032 7 0.224
16 40960 3 1.256 0.136 10 1.36
32 327680 4 10.2 0.9998 15 15
64 2621440 6 87.27 8.409 23 193.4

(c) NIPG(2, 0.48), V(GS)

Table IX. Log–normal Random Problem (Example 4.2) in 3D, σ2 = 8, λ = 4h

1/h DOF levels TB TIt It TS
32 6144 2 0.092 0.047 4 0.188
64 24576 3 0.316 0.143 5 0.716
128 98304 4 1.268 0.6274 6 3.768
256 393216 5 4.696 2.589 7 18.13
512 1572864 6 19.66 9.904 12 118.8
1024 6291456 7 88.21 41.6 15 625.4

(a) OBB(2), V(OGS)

1/h DOF levels TB TIt It TS
32 6144 2 0.052 0.011 8 0.08801
64 24576 3 0.284 0.02255 11 0.248
128 98304 4 1.228 0.08901 20 1.78
256 393216 5 4.9 0.3816 35 13.36
512 1572864 6 19.79 1.53 47 71.92
1024 6291456 7 79.78 6.236 61 380.4

(b) SIPG(2, 1.66), V(GS)

1/h DOF levels TB TIt It TS
32 6144 2 0.08801 0.02 5 0.1
64 24576 3 0.272 0.04334 6 0.26
128 98304 4 1.208 0.1686 13 2.192
256 393216 5 4.784 0.7174 18 12.91
512 1572864 6 19.46 2.951 23 67.86
1024 6291456 7 81.11 11.47 28 321.3

(c) NIPG(2, 0.65), V(GS)

Table X. Clipped Log–normal Random Problem (Example 4.3) in 2D, σ2 = 8, λ = 4h

We examine the robustness with respect to changes in the variance σ2 for the 2D clipped log-
normal random problem (Example 4.3) in Table XII(a). We use OBB for the discretization on a
uniform grid with h = 1/128 and the overlapping Schwarz method as the smoother on the DG space.
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1/h DOF levels TB TIt It TS
8 5120 2 0.124 0.09601 3 0.288
16 40960 3 1.192 0.635 4 2.54
32 327680 4 10.7 6.648 6 39.89
64 2621440 5 88.42 49.8 7 348.6

(a) OBB(2), V(OGS)

1/h DOF levels TB TIt It TS
8 5120 2 0.112 0.01511 18 0.272
16 40960 3 1.248 0.07245 27 1.956
32 327680 4 10.01 0.5268 38 20.02
64 2621440 6 82.24 4.134 55 227.4

(b) SIPG(2, 1.25), V(GS)

1/h DOF levels TB TIt It TS
8 5120 2 0.116 0.031 8 0.248
16 40960 3 1.192 0.1353 12 1.624
32 327680 4 10.09 1.033 15 15.5
64 2621440 5 80.81 8.095 19 153.8

(c) NIPG(2, 0.48), V(GS)

Table XI. Clipped Log–normal Random Problem (Example 4.3) in 3D, σ2 = 8, λ = 4h

σ2 1 2 4 8 16
It. 7 8 9 19 53
maxτν

kτ
kν

5.5 12.2 44.8 366 1.2 ∗ 105

(a) Fixed correlation length λ = 1/64, varying σ2

λ 1/2 1/4 1/8 1/16 1/32 1/64 1/128
It. 6 7 7 8 9 9 12

(b) Fixed variance σ2 = 4, varying λ

Table XII. Clipped Log–normal Random Problem (Example 4.3) in 2D

, h = 1/128

The first row contains the variance used for the problem, the second row the number of iterations
needed for convergence, and the last row the ratio between the highest and lowest permeability
values in the chosen realization. In all runs the correlation length is λ = 1/64. The number of
iterations seems to increase only roughly linearly with σ, even though the jump size increases
exponentially.

Finally, in Table XII(b) we keep the variance fixed at σ2 = 4 and compare the number of iterations
needed for convergence with varying correlation length λ for Example 4.3 in 2D. The number of
iterations needed by our OBB solver only increases slightly for shorter correlation lengths. Even
when the correlation length is equal to the mesh width, i.e. λ = h, we get a reasonable convergence
rate.

5. RELATED WORK AND DISCUSSION

To the best of our knowledge the first publication on AMG as a solver for discontinuous Galerkin
discretizations is [15]. It contains a case study of applying (smoothed) element agglomeration AMG
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to linear systems from piecewise linear SIPG discretizations. The coarse level matrices are created
using a Galerkin product PTAP. The prolongation operator P from the first coarse grid is defined
by the natural embedding of the corresponding space of piecewise constant trial functions into that of
piecewise linear trial functions both defined on the finest grid. A recursive graph bisection algorithm
is used on the adjacency graph of the grid elements to form the remaining coarser meshes. The
elements of the coarse meshes are agglomerations of the elements of the fine grid. The prolongation
matrices from these meshes represent the natural embeddings of the piece-wise constant trial spaces
on the coarse mesh into those on the next fine mesh. No strength of connection criterion is used
and therefore this approach cannot be applied to problems with jumping diffusion coefficients.
Furthermore the complexity of the hierarchy building is O(N log(N)), where N is the number
of unknowns.

More recently, the application of smoothed aggregation algebraic multigrid was investigated
by Prill et al. [19]. The authors solve linear systems from NIPG and SIPG discretizations with
piecewise constant and bi-linear quadrilateral elements. Higher order elements are discarded with
the note that p-multigrid could be used to reduce the polynomial order. No numerical tests for
jumping diffusion coefficients were performed. Compared to non-smoothed aggregation multigrid
the presented approach produces considerable fill-in on the coarser levels. This effect would even
be more amplified for higher order discretizations.

In contrast to the above mentioned related approaches, we have shown here that our
preconditioners can be used also for higher order discretizations and for the method of Baumann and
Oden. Additionally, we have demonstrated their robustness for problems with highly heterogeneous
diffusion coefficients.

In [22] a parallelization approach for multigrid methods is described. This parallelization is
already available for the algebraic multigrid method used as an inexact solver for the conforming
space. It was shown in the above publication that it scales very well up to 4096 cores for the model
problems investigated here. Meanwhile good scalability was achieved for nearly 300 thousand cores,
which will be published in a forthcoming paper. The described parallelization approach can easily
be applied to the Schwarz smoother used on the discontinuous approximation space and should lead
to a very scalable algebraic multigrid solver for discontinuous Galerkin discretizations.
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34. Bastian P, Blatt M, Dedner A, Engwer C, Klöfkorn R, Ohlberger M, Sander O. A generic grid interface for
parallel and adaptive scientific computing. part I: abstract framework. Computing 2008; 82(2–3):103–119, doi:
10.1007/s00607-008-0003-x.
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